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Definition 6. Let X be a set of formal symbols, and let F'(X) be the free group generated
by the set of involutions X. Let R C F(X). Let N be the subgroup generated by the set

{cYr¥c|ce F(X), r € R}. (21)

In other words, N is the set of elements of F'(X) expressible as a product of elements in
the set (21). The set
F(X)/N={aN |a € F(X)},

where aN = {ab | b € N} for a € F(X), forms a group under the binary operation

F(X)/N x F(X)/N — F(X)/N
(aN,bN) +— abN

and it is called the group with presentation (X | R).

In view of Definition 6, we show that the dihedral group G of order 2m is isomorphic
to the the group with presentation (z,y | (xy)™). Indeed, we have seen that there is a
homomorphism f : F(X) — G with f(z) = sand f(y) = t. In our case, R = {(zy)™}
which is mapped to 1 under f. So f is constant on each equivalence class, and hence f
induces a mapping f : F(X)/N — G defined by f(aN) = f(a) (a € F(X)). This
mapping f is a homomorphism since

Moreover, it is clear that both f and f are surjective, since G = (s, t) = (f(z), f(y)). The
most important part of the proof is injectivity of f. The argument on the transformation
rule defined by (zy)™ shows

F(X)/N = {(zy)’N [0 < j <m}U{(zy)zN [0 < j <m}.

In particular, |F/(X)/N| < 2m = |G|. Since f is surjective, equality and injectivity of f
are forced.

Definition 7. Let V be a finite-dimensional vector space over R with positive definite inner
product. The set O(V') of orthogonal linear transformations of 1V forms a group under
composition. We call O(V) the orthogonal group of V.

Definition 8. Let V' be a finite-dimensional vector space over R with positive definite inner
product. A subgroup W of the group O(V) is said to be a finite reflection group if

1) W £ {idy },
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(i1) W is finite,
(iii)) W is generated by a set of reflections.

For example, the dihedral group GG of order 2m is a finite reflection group, since G C
O(R?), |G| = 2m is neither 1 nor infinite, and G is generated by two reflections. We have
seen that GG has presentation (s, t | (st)™). One of the goal of these lectures is to show that
every finite reflection group has presentation (s1, ..., s, | R), where R C F({s1,...,Sn})
is of the form {(s;s;)™7 | 1 <i,j <n}.

Let n > 2 be an integer, and let §,, denote the symmetric group of degree n. In other
words, S, consists of all permutations of the set {1,2,...,n}. Since permutations are
bijections from {1, 2, ...,n} to itself, S,, forms a group under composition. Let ¢y, ..., &,
denote the standard basis of R"™. For each o € S,,, we define g, € O(R") by setting

9. cig) = it
=1 i=1

and set
Gn=A{9, |0 €S}

It is easy to verify that G, is a subgroup of O(V') and, the mapping S,, — G,, defined by
0 — g, 1s an isomorphism. We claim that g, is a reflection if ¢ is a transposition; more
precisely,

Jo = S¢,—e; ifo=(i]). (22)

Indeed, for k € {1,2,...,n},
2(ex, €0 — €5)

Se.—e:\Ek) =€ — Ei — &
& 5]( k) k (81_8‘7762_6])( 1 .7)

= er — (er&i —&5)(e — &)
(81'—(81'—83') lf/{ZIZ,
=i+ (e, —¢j) ifk=y,

L Ek otherwise
(e; ifk =4,

= £ if ]{7 = j,
(€1 otherwise

= Eo(k)

=90 (5k>

It is well known that S,, is generated by its set of transposition. Via the isomorphism
o — ¢,, we see that (G, is generated by the set of reflections

{8ci—c, |1 < i< j <n}.
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Therefore, G,, is a finite reflection group.

Observe that G3 has order 6, and we know another finite reflection group of order 6,
namely, the dihedral group of order 6. Although G3 C O(R?) while the dihedral group is
a subgroup of O(R?), these two groups are isomorphic. In order to see their connection,
we make a definition.

Definition 9. Let V' be a finite-dimensional vector space over R with positive definite inner
product. Let W C O(V') be a finite reflection group. We say that W is not essential if there
exists a nonzero vector A € V such that t\ = A for all £ € W. Otherwise, we say that W
is essential.

For example, the dihedral group G of order 2m > 6 is essential. Indeed, G contains a
rotation ¢ whose matrix representation is

21 s 27
COS ooy Sin ooy (23)
14 2T 2
Sin — COS —
m m

There exists no nonzero vector A € V' such that t\ = ) since the matrix (23) does not have
1 as an eigenvalue:

27 s 2
cosZL -1 —sin< 2m
Mo or ™| =2(1 —cos—) #0.
sin <% cos <% — 1 m

On the other hand, the group G,, which is isomorphic to §,, is not essential. Indeed,
the vector A = Y, &, is fixed by every ¢ € G,,. In order to find connections between the
dihedral group of order 6 and the group (G35, we need a method to produce an essential finite
reflection group from non-essential one.

Given a finite reflection group W C O(V), let

U={AeV|VteW, tA=2A}.

It is easy to see that U is a subspace of V. Let U’ be the orthogonal complement of U in V.
Since tU = U for all t € W, we have tU’ = U’ for all t € W. This allows to construct the
restriction homomorphism W — O(U’) defined by ¢ — t|y.

Exercise 10. Show that the above restriction homomorphism is injective, and the image
W |y is an essential finite reflection group in O(U").

For the group G5, we have

U= R(€1 + &9 + 63),
U' =R(e; —e2) + R(eg — &3)

- Rnl + RT]Q?
where
1
= 5(51 - 52);
1
T2 = %(81 —+ Eg — 253)

is an orthonormal basis of U’.
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Exercise 11. Compute the matrix representations of g(; 2y and g, 3) with respect to the
basis {7, 72}. Show that they are reflections whose lines of symmetry form an angle 7 /3.

As a consequence of Exercise 10, we see that the group G, restricted to the subspace
U’ so that it becomes essential, is nothing but the dihedral group of order 6.
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