May 9, 2016

For today’s lecture, we let V' be a finite-dimensional vector space over R, with positive-
definite inner product. Recall that for 0 # « € V, s, € O(V') denotes the reflection
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Sa(A) = A a (AeV). (24)

Lemma 12. Fort € O(V) and 0 # a € V, we have ts,t ™' = s4,.

Proof. For A € V', we have
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(by (24))
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This implies ts, = s:,t, and the result follows. L]

For example, if s, is a reflection in a dihedral group GG, and ¢ € G is a rotation, then s,
and ¢ are not necessarily commutative, but rotating before reflecting can be compensated
by reflecting with respect to another line afterwards.

Proposition 13. Ler W C O(V') be a finite reflection group, and let 0 # « € V. If
w,Sq € W, then s, € W.

Proof. By Lemma 12, we have s,,, = ws,w™ € W. O

Definition 14. Let ® be a nonempty finite set of nonzero vectors in V. We say that ¢ is a
root system if

R1) PNRa = {a,—a} foralla € P,

R2) s, =P forall « € P.

Proposition 15. Let © be a root system in V. Then the subgroup
W(P) = (sa | @ € D)

of O(V') is a finite reflection group. Moreover, W (®) is essential if and only if  spans V.
Conversely, for every finite reflection group W C O(V'), there exists a root system ® C V
such that W = W (®).
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Proof. Since ® # (), the group W (®) contains at least one reflection. In particular,
W(®) # {idy}. By construction, IV is generated by reflections. In order to show that
W is finite, let U be the subspace of V' spanned by ®. Since U+ C (Ra)* for all a € &,
we have s,()\) = A forall &« € ® and A\ € U~. This implies that

U}|UL = idUL (w € W) (25)

In particular, W leaves U~ invariant. Since W C O(V), W also leaves U invariant.
We can form the restriction homomorphism W — O(U) which is injective. Indeed, if
an element w € W is in the kernel of the restriction homomorphism, then w|y = idy.
Together with (25), we see w = idy. By (R2), W permutes the finite set ®, hence there is
a homomorphism f from W to the symmetric group on ¢. An element w € Ker f fixes
every element of @, in particular, a basis of U. This implies that w is in the kernel of the
restriction homomorphism, and hence w = idy,. We have shown that f is an injection from
W to the symmetric group of ® which is finite. Therefore W is finite. This completes the
proof of the first part.

Moreover, W (®) is not essential if and only if there exists a nonzero vector A € V' such
that t\ = A for all t € W(®). Since W () is generated by {s, | o € D},

tA=X(Vt e W(D)) <= s, A=A\ (Va € D)
— (AMa)=0Vaecd)
= \e U™
Thus, W (®) is not essential if and only if U+ # 0, or equivalently, ® does not span V.

Conversely, let W C O(V) be a finite reflection group, and let S be the set of all
reflections of W. By Definition 8(iii), W is generated by .S. Define

b={acV]|s, €S8, |a =1} (26)
Observe
S ={sq | acd} 27)

We claim that ® is a root system. First, since W # {idy }, we have ® # (). Let o« € ®.
Since s, = s_, and ||af| = || — «]|, we see that ® satisfies (R1). For § € ®, we have
s (B)]| = [|18]| = 1, and s, (5 € W by Proposition 13, since s,, sz € W. This implies
Sa(B) € ®, and hence s,(P) = ®. Therefore, ® is a root system. It remains to show that

W = W(®). But this follows immediately from (27) since W = (5). O
Example 16. We have seen that the group G, generated by reflections
{8ei—c, | 1 < i < j <n}, (28)
where 1, .. ., &, is the standard basis of R", is a finite reflection group which is abstractly
isomorphic to the symmetric group of degree n. The set
¢ ={£(e;—¢)|1<i<j<n} (29)

is a root system. Indeed, ® clearly satisfies (R1). It is also clear that g,® = ® for all
o € S, so in particular, (R2) holds.
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Exercise 17. Show that (28) is precisely the set of reflections in G,,. In other words, show
that g, is a reflection if and only if o is a transposition.

Definition 18. A rotal ordering of V' is a transitive relation on V' (denoted <) satisfying
the following axioms.

(i) For each pair A\, u € V, exactly one of A < p, A = p, o < A holds.
(i) Forall \,pu,v € V, u < vimplies A + p < A\ + v.
(iii) Let y < vandc € R. If ¢ > 0 then cp < cv, and if ¢ < 0 then cv < cp.

For convenience, we write A > p if p < A. By (ii), A > 0 implies 0 > —A\. Thus

V=V, u{0}UV_ (disjoint), (30)

where
Vi={ eV |A>0}, €29
Vo={AeV]|A<0}. (32)

We say that A € V/, is positive, and A € V_ is negative.

Example 19. Let )\, ..., )\, be a basis of V. Define the lexicographic ordering of V' with
respect to Ay, ..., A\, by

n

Zai)\i <sz/\z <— dk e {1,2,...,71}, a1 =by,...,ap_1 = br_1,ar < by.

i=1 =1

Clearly, this is a total ordering of V. Note that \; > O foralli € {1,...,n}. Forn = 2, we
have
V+ = {Cl)\l + 02)\2 | c1 > O, Co € R} U {02)\2 | Coy > 0}

Lemma 20. Let < be a total ordering of V, and let A\, € V.
1) If A\, > 0, then A\ + > 0.
(i) IfA>0,ce Randc > 0, then cA > 0.
(i) If A >0, ce Rand c < 0, then cA < 0. In particular, —\ < 0.

Proof. (i) By Definition 18(ii), we have A + . > A > 0.

(ii) By Definition 18(iii), we have cA > c¢- 0 = 0.

(iii) By Definition 18(iii), we have cA < ¢ -0 = 0. Taking ¢ = —1 gives the second
statement. O]

Definition 21. Let ® be a root system in V. A subset II of ® is called a positive system if
there exists a total ordering < of V' such that

I={aed|a>0}. (33)
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Since a total ordering of V' always exists by Example 19, and every total ordering of
V' defines a positive system of a root system ¢ in V', according to Definition 21, there are
many positive systems in P.

Example 22. Continuing Example 16, let < be the total ordering defined by the basis
€1,...,En. Theng; > g; if ¢ < j. Thus, according to (33),

M= {e—e|1<i<j<n}

Lemma 23. If I1 is a positive system in a root system ®, then & = I1 U (—1I1I) (disjoint),

where
—I={—-a|aell}. (34)

In particular,

—I={aecd|a<0}. (35)
Proof. We have

N (—I) =10 (by Lemma 20(iii)),
IHco (by Definition 21),
—11ce (by Definition 14(R1)).

Thus, it remains to show ® C [T U (—II). Suppose o € & \ II. Then

adll = a0 (by (33))
= a<0 (since 0 ¢ P)
— 0< —« (by Definition 18(ii)
— —acll (by (33))
— a € —II (by (34)).

This proves ® \ II C (—II), proving & C TTU (—II).
Since ® = [T U (—II) (disjoint) and 0 ¢ @, (33) implies (35). O

Definition 24. Let II be a positive system in a root system ®. We call —II defined by (34)
the negative system in ® with respect to II.

Definition 25. Let A be a subset of a root system ®. We call A a simple system if A is a
basis of the subspace spanned by ®, and if moreover each o € @ is a linear combination of
A with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

b C RZ()A U RS()A, (36)

where
RooA ={) caor|ca >0 (a € A)}.

aEA

If A is a simple system, we call its elements simple roots.
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Example 26. Continuing Example 22,
A:{81—8i+1‘1§’i<n} (37)

is a simple system. Indeed, for ¢; — ¢; € ®, we have

(e —era1) €RsoAifi< g,
&&= i—1 :
> —i(—(ej —€j11)) € ReoA  otherwise.
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