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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product.

Recall that a total ordering < of V partitions V into three parts

V = V+ [ {0} [ (�V+),

such that

V+ + V+ ⇢ V+, (38)
R�0V+ ⇢ V+ [ {0}. (39)

Lemma 27. Let � be a finite set of nonzero vectors in V+. If (↵, �)  0 for any distinct

↵, � 2 �, then � consists of linearly independent vectors.

Proof. Let X

↵2�

a↵↵ = 0, (40)

and define
� =

X

↵2�
a↵>0

a↵↵.

Then

0  (�, �)

= (

X

↵2�
a↵>0

a↵↵,
X

↵2�

a↵↵�
X

�2�
a�<0

a��)

= (

X

↵2�
a↵>0

a↵↵,�
X

�2�
a�<0

a��) (by (40))

= �
X

↵2�
a↵>0

X

�2�
a�<0

a↵a�(↵, �)

 0.

This forces � = 0, so there is no ↵ 2 � with a↵ > 0. Similarly, we can show that there is
no ↵ 2 � with a↵ < 0. Therefore, a↵ = 0 for all ↵ 2 �.

Lemma 28. Let � ⇢ V+ be a subset, and let ↵, � 2 � be linearly independent. If

↵ 2 R>0� +R�0�, then ↵ 2 R�0(� \ {↵}).

Proof. Since

↵ 2 R>0� +R�0�
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= R>0� +R�0↵ +R�0� +R�0(� \ {↵, �})
= R�0↵ +R>0� +R�0(� \ {↵, �})
⇢ R�0↵ + V+ \R�0(� \ {↵}),

there exists a 2 R�0 such that

↵ 2 a↵ + V+ \R�0(� \ {↵}). (41)

Thus

(1� a)↵ 2 V+, (42)
(1� a)↵ 2 R�0(� \ {↵}). (43)

By (42), we have 1� a > 0. The result then follows from (43).

For a root system � in V , we denote by P(�) and S(�), the set of positive systems and
that of simple systems, respectively, in �. More specifically,

P(�) = {{↵ 2 � | ↵ > 0} | “>” is a total ordering of V },
S(�) = {� ⇢ � | � ⇢ R�0� [R0�, � is linearly independent}.

It is clear that P(�) is non-empty, since V can be given a total ordering. We show that
S(�) is non-empty by establishing a bijection between S(�) and P(�), which is defined
by

⇡ : S(�) ! P(�)

� 7! � \R�0�.
(44)

Lemma 29. Let � be a root system in V . If � is a simple system contained in a positive

system ⇧, then

(i) ⇧ = � \R�0�,

(ii) � = {↵ 2 ⇧ | ↵ /2 R�0(⇧ \ {↵})}.

Proof. (i) Since � is a simple system, we have

� ⇢ R�0� [R0�. (45)

Since � ⇢ ⇧ ⇢ V+ for some total ordering of V , we have

R�0� ⇢ V+ [ {0}, (46)
R0� ⇢ V� [ {0}. (47)

Thus

⇧ = � \ V+

= � \ (R�0� [R0�) \ V+ (by (45))
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= � \R�0� \ V+ (by (47))
= � \ (R�0� \ {0}) (by (46))
= � \R�0�.

(ii) If ↵ 2 ⇧ \�, then � ⇢ ⇧ \ {↵}, so R�0(⇧ \ {↵}) � R�0� 3 ↵. This proves

� � {↵ 2 ⇧ | ↵ /2 R�0(⇧ \ {↵})}.

Conversely, suppose ↵ 2 ⇧ and ↵ 2 R�0(⇧ \ {↵}). Then there exists � 2 ⇧ \ {↵}
such that

↵ 2 R>0� +R�0(⇧ \ {↵, �})
⇢ R>0� +R�0⇧

= R>0� +R�0� (by (i)).

Since � 2 ⇧ \ {↵} ⇢ R�0� \R�0↵, there exists � 2 � \ {↵} such that

� 2 R>0� +R�0�.

Thus ↵ 2 R>0�+R�0�, and hence {↵}[� is linearly dependent. This implies ↵ /2 �.

Recall that for 0 6= ↵ 2 V , s↵ 2 O(V ) denotes the reflection

s↵(�) = �� 2(�,↵)

(↵,↵)
↵ (� 2 V ). (48)

Theorem 30. Let � be a root system in V . Then the mapping ⇡ : S(�) ! P(�) defined

by (44) is a bijection whose inverse is given by

⇡�1
: P(�) ! S(�)

⇧ 7! {↵ 2 ⇧ | ↵ /2 R�0(⇧ \ {↵})}. (49)

Moreover,

(i) for every simple system � in �, ⇡(�) is the unique positive system containing �,

(ii) for every positive system ⇧ in �, ⇡�1
(⇧) is the unique simple system contained in ⇧.

Proof. If � 2 S(�), then � is a basis of the subspace spanned by �, so there exists a basis
˜

� of V containing �. By Example 19, there exists a total ordering < of V such that ↵ > 0

for all ↵ 2 ˜

�. Then

⇡(�) = � \R�0�

= � \ (R�0� [R0�) \ V+

= � \ V+

is a positive system containing �.
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Next we show that ⇡ is injective. Suppose �,�0 2 S(�) and ⇡(�) = ⇡(�0
). Then

both � and �

0 are simple system contained in ⇧ = ⇡(�). By Lemma 29(ii), we have

� = {↵ 2 ⇧ | ↵ /2 R�0(⇧ \ {↵})} = �

0.

Therefore, ⇡ is injective. Note that this shows

⇡�1
(⇧) ⇢ {{↵ 2 ⇧ | ↵ /2 R�0(⇧ \ {↵})}}. (50)

Next we show that ⇡ is surjective. Suppose ⇧ 2 P(�). Define D by

D = {� ⇢ ⇧ | ⇧ ⇢ R�0�}. (51)

Since � is a finite set, so are ⇧ and D. Since ⇧ 2 D, D is non-empty. Thus, there exists a
minimal member � of D. This means

⇧ ⇢ R�0�, (52)
8↵ 2 �, ⇧ 6⇢ R�0(� \ {↵}). (53)

Since ⇧ is a positive system, there exists a total ordering of V such that ⇧ = � \ V+. In
particular, � ⇢ V+. We claim

(↵, �)  0 for all pairs ↵ 6= � in �. (54)

Indeed, suppose, to the contrary, (↵, �) > 0 for some distinct ↵, � 2 �. Since ±s↵(�) 2
� = ⇧ [ (�⇧), in view of (48), we may assume without loss of generality ↵ 2 R>0� +

R�0�. Then by Lemma 28, we obtain ↵ 2 R�0(� \ {↵}). Now

R�0(� \ {↵}) = R�0↵ +R�0(� \ {↵})
= R�0�

� ⇧,

contradicting (53). This proves (54). Now, by Lemma 27, � consists of linearly indepen-
dent vectors. We have shown that � is a simple system, and by construction, � ⇢ ⇧.
Lemma 29(i) then implies ⇧ = ⇡(�). Therefore, ⇡ is surjective. This also implies that
equality holds in (50), which shows that the inverse ⇡�1 is given by (49).

Finally, (i) follows from Lemma 29(i), while (ii) follows from Lemma 29(ii).
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