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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product.

Recall that for 0 6= α ∈ V , sα ∈ O(V ) denotes the reflection

sα(λ) = λ− 2(λ, α)

(α, α)
α (λ ∈ V ).

Definition 1. Let Φ be a nonempty finite set of nonzero vectors in V . We say that Φ is a
root system if

(R1) Φ ∩Rα = {α,−α} for all α ∈ Φ,

(R2) sαΦ = Φ for all α ∈ Φ.

Definition 2. A total ordering of V is a transitive relation on V (denoted <) satisfying the
following axioms.

(i) For each pair λ, µ ∈ V , exactly one of λ < µ, λ = µ, µ < λ holds.

(ii) For all λ, µ, ν ∈ V , µ < ν implies λ+ µ < λ+ ν.

(iii) Let µ < ν and c ∈ R. If c > 0 then cµ < cν, and if c < 0 then cν < cµ.

For convenience, we write λ > µ if µ < λ. By (ii), λ > 0 implies 0 > −λ. Thus

V = V+ ∪ {0} ∪ V− (disjoint),

where

V+ = {λ ∈ V | λ > 0},
V− = {λ ∈ V | λ < 0}.

We say that λ ∈ V+ is positive, and λ ∈ V− is negative.

Example 3. Let λ1, . . . , λn be a basis of V . Define the lexicographic ordering of V with
respect to λ1, . . . , λn by

n∑
i=1

aiλi <

n∑
i=1

biλi ⇐⇒ ∃k ∈ {1, 2, . . . , n}, a1 = b1, . . . , ak−1 = bk−1, ak < bk.

Clearly, this is a total ordering of V . Note that λi > 0 for all i ∈ {1, . . . , n}.

Lemma 4. Let < be a total ordering of V , and let λ, µ ∈ V .

(i) If λ, µ > 0, then λ+ µ > 0.

(ii) If λ > 0, c ∈ R and c > 0, then cλ > 0.
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(iii) If λ > 0, c ∈ R and c < 0, then cλ < 0. In particular, −λ < 0.

Definition 5. Let Φ be a root system in V . A subset Π of Φ is called a positive system if
there exists a total ordering < of V such that

Π = {α ∈ Φ | α > 0}.

Definition 6. Let ∆ be a subset of a root system Φ. We call ∆ a simple system if ∆ is a
basis of the subspace spanned by Φ, and if moreover each α ∈ Φ is a linear combination of
∆ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

Φ ⊂ R≥0∆ ∪R≤0∆,

where
R≥0∆ = {

∑
α∈∆

cαα | cα ≥ 0 (α ∈ ∆)}.

If ∆ is a simple system, we call its elements simple roots.

Example 7. Let n ≥ 2 be an integer, and let Sn denote the symmetric group of degree n. In
other words, Sn consists of all permutations of the set {1, 2, . . . , n}. Since permutations are
bijections from {1, 2, . . . , n} to itself, Sn forms a group under composition. Let ε1, . . . , εn
denote the standard basis of Rn. For each σ ∈ Sn, we define gσ ∈ O(Rn) by setting

gσ(
n∑

i=1

ciεi) =
n∑

i=1

ciεσ(i),

and set
Gn = {gσ | σ ∈ Sn}.

It is easy to verify that Gn is a subgroup of O(V ) and, the mapping Sn → Gn defined by
σ 7→ gσ is an isomorphism.

It is well known that Sn is generated by its set of transposition. Via the isomorphism
σ 7→ gσ, we see that Gn is generated by the set of reflections

{sεi−εj | 1 ≤ i < j ≤ n}. (1)

Exercise 8. Show that (1) is precisely the set of reflections in Gn. In other words, show
that gσ is a reflection if and only if σ is a transposition.
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