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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. We also let � be a root system in V . Recall that P(�) and S(�)
denote the set of positive systems and that of simple systems, respectively, in �. Define

⇡ : S(�) ! P(�)

� 7! � \R�0�.

Theorem 30 is proved in an awkward manner, in the sense that ⇡�1
(⇧) 2 S(�) for ⇧ 2

P(�) is not explicitly shown. Lemma 29(ii) shows that the existence of a simple system
in ⇧ does imply ⇡�1

(⇧) 2 S(�), but showing the existence of a simple system in ⇧ is a
separate problem. Here is how one can show ⇡�1

(⇧) 2 S(�) directly. We need a lemma.

Lemma 31. Suppose that V is given a total ordering, let A ⇢ V+ be a subset, ↵1, . . . ,↵n 2
V+, and � 2 V+ \

Sn
i=1 R↵i. If

↵i 2 R�0(A [ {�}), (55)
� 2 R�0(A [ {↵1, . . . ,↵n}), (56)

then ↵1, . . . ,↵n, � 2 R�0A.

Proof. Let A = R�0A, A+ = A \ {0}. By the assumption, we have A+ ⇢ V+. Then it
suffices to show

� 2 A (57)

only, since ↵i 2 A follows immediately from (55) and (57).
By (55), there exist bi 2 R�0 and �i 2 A such that

↵i = bi� + �i. (58)

Since � /2 R↵i, we have �i 6= 0, i.e.,

�i 2 A+. (59)

By (56), there exist a1, . . . , an 2 R�0 such that

� 2
nX

i=1

ai↵i +A. (60)

If ai = 0 for all i, then (57) holds, so we may assume ai > 0 for some i. Then (59) implies
nX

i=1

ai�i 2 A+. (61)

By (58) and (60), we obtain

� 2
nX

i=1

ai(bi� + �i) +A
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=

nX

i=1

aibi� +

nX

i=1

ai�i +A

⇢
nX

i=1

aibi� +A+ (by (61))

=

nX

i=1

aibi� + V+ \A.

This implies
 
1�

nX

i=1

aibi

!
� 2 V+, (62)

 
1�

nX

i=1

aibi

!
� 2 A. (63)

By (62), we have 1�
Pn

i=1 aibi > 0. Then (57) follows from (63).

Proposition 32. Let ⇧ 2 P(�), and set

� = {↵ 2 ⇧ | ↵ /2 R�0(⇧ \ {↵})}.

Then

(i) (↵, �)  0 for all ↵ 6= � in �,

(ii) � is a simple system in �.

Proof. (i) Suppose, to the contrary, (↵, �) > 0 for some distinct ↵, � 2 �. Since ±s↵(�) 2
� = ⇧ [ (�⇧), in view of (48), we may assume without loss of generality ↵ 2 R>0� +

R�0⇧. By Lemma 28, we obtain ↵ 2 R�0(⇧ \ {↵}), which contradicts ↵ 2 �.
(ii) By (i) and Lemma 27, � consists of linearly independent vectors. It remains to

show ⇧ ⇢ R�0�. We consider the set

B = {B ⇢ ⇧ \� | B ⇢ R�0(⇧ \B)}.

For all ↵ 2 ⇧ \�, we have ↵ 2 R�0(⇧ \ {↵}). Thus {↵} 2 B, and hence B 6= ;.
Let B = {↵1, . . . ,↵n} be a maximal member of B. Suppose B ( ⇧ \ �. Then there

exists � 2 ⇧ \ (B [ �). Set A = ⇧ \ (B [ {�}). Then (55) holds since B 2 B, while
(56) holds since � /2 �. Lemma 31 then implies ↵1, . . . ,↵n, � 2 R�0(⇧\ (B[{�}). This
implies B [ {�} 2 B, contradicting maximality of B. Therefore, B = ⇧ \�. This implies
⇧ \ � 2 B, which in turn implies ⇧ \ � ⇢ R�0�. Since � ⇢ R�0� holds trivially, we
obtain ⇧ ⇢ R�0�. This completes the proof of (ii).

Recall
W (�) = hs↵ | ↵ 2 �i.

By Definition 14(R2), we have

w� = � (w 2 W (�)). (64)
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Lemma 33. Let w 2 W (�). Then

(i) w� 2 S(�) and ⇡(w�) = w⇡(�) for all � 2 S(�),

(ii) w⇧ 2 P(�) and ⇡�1
(w⇧) = w⇡�1

(⇧) for all ⇧ 2 P(�).

Proof. (i) Clear from (64) and (44).
(ii) For ⇧ 2 P(�), let � = ⇡�1

(⇧) 2 S(�). Then w⇧ = w⇡(�) = ⇡(w�) 2
⇡(S(�)) = P(�) by (i). Also, ⇡�1

(w⇧) = w� = w⇡�1
(⇧).

Lemma 34. Let ↵ 2 � 2 S(�) and ⇧ = ⇡(�). Then s↵(⇧ \ {↵}) = ⇧ \ {↵}.

Proof. Let � 2 ⇧ \ {↵}, and write � =

P
�2� c��. Then

9� 2 � \ {↵}, c� > 0. (65)

Set
c =

2(�,↵)

(↵,↵)
,

so that

s↵� = � � c↵

=

X

�2�

c�� � c↵

=

X

�2�\{↵}

c�� + (c↵ � c)↵.

Since s↵� 2 � ⇢ R�0� [ R0�, (65) implies s↵� 2 � \ R�0� = ⇡(�) = ⇧. Since
� 2 ⇧ 63 �↵, we have � 6= �↵ = s↵↵. Thus s↵� 6= ↵. Therefore, s↵� 2 ⇧ \ {↵}.

Definition 35. Let G be a group, and let ⌦ be a set. We say that G acts on ⌦ if there is a
mapping

G⇥ ⌦ ! ⌦

(g,↵) 7! g.↵
(g 2 G, ↵ 2 ⌦)

such that

(i) 1.↵ = ↵ for all ↵ 2 ⌦,

(ii) g.(h.↵) = (gh).↵ for all g, h 2 G and ↵ 2 ⌦.

We say that G acts transitively on ⌦, or the action of G is transitive, if

8↵, � 2 ⌦, 9g 2 G, g.↵ = �.

Observe, by Lemma 23,

|⇧| = 1

2

|�| (⇧ 2 P(�)). (66)
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Theorem 36. The group W (�) acts transitively on both P(�) and S(�).

Proof. First we show that

8⇧,⇧0 2 P(�), 9w 2 W (�), w⇧ = ⇧

0 (67)

by induction on r = |⇧ \ (�⇧

0
)|. If r = 0, then ⇧ ⇢ ⇧

0, and we obtain ⇧ = ⇧

0 by (66).
If r > 0, then ⇧ 6= ⇧

0. Let � = ⇡�1
(⇧). Then � 6= ⇡�1

(⇧

0
), so � is not contained

in ⇧

0 by Theorem 30(ii). This implies � \ (�⇧

0
) 6= ; since � = ⇧

0 [ (�⇧

0
). Choose

↵ 2 � \ (�⇧

0
). Then

�↵ /2 �⇧

0. (68)

Since

s↵⇧ = s↵({↵} [ (⇧ \ {↵}))
= {s↵↵} [ (s↵(⇧ \ {↵}))
= {�↵} [ s↵(⇧ \ {↵})
= {�↵} [ (⇧ \ {↵}) (by Lemma 34),

we have

|s↵⇧ \ (�⇧

0
)| = |({�↵} [ (⇧ \ {↵})) \ (�⇧

0
)|

= |(⇧ \ {↵}) \ (�⇧

0
)| (by (68))

= |(⇧ \ (�⇧

0
)) \ {↵}|

= r � 1.

Since s↵⇧ 2 P(�) by Lemma 33(ii), the inductive hypothesis applied to the pair s↵⇧,⇧0

implies that there exists w 2 W (�) such that ws↵⇧ = ⇧

0. Therefore, we have proved (67),
which implies that W (�) acts transitively on P(�). The transitivity of W (�) on S(�)
now follows immediately from Lemma 33 using the fact that ⇡ is a bijection from S(�) to
P(�).

Definition 37. Let � 2 S(�). For � =

P
↵2� c↵↵ 2 �, the height of � relative to �,

denoted ht(�), is defined as
ht(�) =

X

↵2�

c↵.

Example 38. Continuing Example 26, let

� = {"i � "i+1 | 1  i < n} 2 S(�),

where
� = {±("i � "j) | 1  i < j  n}.

Then for i < j,

ht("i � "j) = ht(

j�1X

k=i

("k � "k+1)) = j � i.
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