May 30, 2016

For today’s lecture, we let V' be a finite-dimensional vector space over R, with positive-
definite inner product. We also let ® be a root system in V. Recall that P(®) and S(®)
denote the set of positive systems and that of simple systems, respectively, in ®. Define

7:S8(P) — P(P)
A — @ﬂRzoA

Theorem 30 is proved in an awkward manner, in the sense that 7! (IT) € S(®) for II €
P(®) is not explicitly shown. Lemma 29(ii) shows that the existence of a simple system
in IT does imply 7= *(IT) € S(®), but showing the existence of a simple system in II is a
separate problem. Here is how one can show 7! (II) € S(®) directly. We need a lemma.

Lemma 31. Suppose that V' is given a total ordering, let A C V., be a subset, a1, . .., ay, €
Vi,and p € Vo \ U, Ro. If
o; € Rzo(A @) {ﬁ}), (55)
B € R20<Au{a17"'7an})7 (56)

then aq,...,ap, 3 € RZ()A.

Proof. Let A = R5pA, A, = A\ {0}. By the assumption, we have A, C V. Then it
suffices to show

peA (57)

only, since «; € A follows immediately from (55) and (57).
By (55), there exist b; € R>¢ and \; € A such that

a; = b + A (58)
Since 8 ¢ Ra;, we have \; # 0, i.e.,
Ni € Ay (59)
By (56), there exist ay, . . ., a, € R>¢ such that
BED ao+ A (60)
i=1

If a; = O for all 7, then (57) holds, so we may assume a; > 0 for some . Then (59) implies

Z Cli>\i S A+. (61)
i=1
By (58) and (60), we obtain
BeED aibif+ )+ A
i=1
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=1 =1

C Y abif+ A, (by (61))

=1
= abf+VinA
=1

This implies

(1 — Zaibz) BeV,, (62)
=1

(1 — Zain-) Se A (63)
=1

By (62), we have 1 — Zz;l a;b; > 0. Then (57) follows from (63). O
Proposition 32. Let IT € P(P), and set
A={aecll|a¢Rxo(II\{a})}.
Then
(1) (o, B) < Oforalla # Bin A,
(i1) A is a simple system in P.

Proof. (i) Suppose, to the contrary, («, 5) > 0 for some distinct o, 5 € A. Since £5,(0) €
® = [T U (—II), in view of (48), we may assume without loss of generality « € R~/ +
R lIl. By Lemma 28, we obtain o € R>o(IT \ {a}), which contradicts o € A.

(i1) By (i) and Lemma 27, A consists of linearly independent vectors. It remains to
show II C R>¢A. We consider the set

Forall « € IT\ A, we have a € R>o(IT \ {«}). Thus {«} € B, and hence B # (.

Let B = {a,...,a,} be a maximal member of B. Suppose B C II \ A. Then there
exists 5 € I\ (BUA). Set A =11\ (B U{f}). Then (55) holds since B € B, while
(56) holds since 5 ¢ A. Lemma 31 then implies o, ..., ay,, f € Rso(IT\ (BU{S}). This
implies BU {5} € B, contradicting maximality of B. Therefore, B = I\ A. This implies
IT\ A € B, which in turn implies IT \ A C R>(A. Since A C R>(A holds trivially, we
obtain II C R>¢A. This completes the proof of (ii). L]

Recall
W(P) = (sq | @ € D).
By Definition 14(R2), we have

wd =0 (weW(D)). (64)
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Lemma 33. Let w € W(®). Then
(i) wA € §(P) and m(wA) = wr(A) forall A € S(P),
(i) wIl € P(®) and 7' (wll) = wr~ (1) for all I € P(P).

Proof. (1) Clear from (64) and (44).
(i) For I € P(®), let A = 7 (1) € S(P). Then wll = wr(A) = 7(wA) €
7(S(®)) = P(®) by (i). Also, 7~ H(wll) = wA = wr(I). O

Lemma 34. Let v € A € §(P) and 11 = w(A). Then s,(I1\ {a}) =11\ {a}.

Proof. Let 3 € I\ {a}, and write 3 =}, ¢,7. Then
Iy e A\ {a}, ¢, > 0. (65)
Set
_ 28,0
C= )
(a, )
so that
saff = P — ca
= Z CyY — Cco
vEA
= Z cyY + (co — ).
veA\{a}

Since 5,5 € & C R>pA URA, (65) implies s, € & N R5oA = 7(A) = II. Since
€l # —a, we have  # —a = s,a. Thus s, # a. Therefore, s, € 11\ {a}. ]

Definition 35. Let GG be a group, and let €2 be a set. We say that G acts on (2 if there is a

mapping
GxQ — Q

(g.0) = ga (e G, ae)

such that
(1) L.a=aforall a € €,

(i) g.(h.a) = (gh).aforall g,h € G and o € Q.

We say that G acts transitively on €2, or the action of G is transitive, if
Vo, €8, dg € G, g.a = [.

Observe, by Lemma 23,

1
1] = ;le[ (I €P(2)). (66)
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Theorem 36. The group W (®) acts transitively on both P(®) and S(P).
Proof. First we show that
VILII' € P(®), Jw € W(®P), wll =1T' (67)

by induction on r = |II N (—II")|. If » = 0, then II C II’, and we obtain IT = II' by (66).

If r > 0, then IT # IT". Let A = 7~ '(II). Then A # 7~ (I'), so A is not contained
in IT" by Theorem 30(ii). This implies A N (—II') # @ since ® = IT' U (—II'). Choose
a € AN (=IT"). Then

—a ¢ 1T (68)
Since
II = so({a} U(IT\ {a}))
= {sa0} U (so(IT\ {a}))
={—a}Us.(II'\{a})
={—a} U I\ {a}) (by Lemma 34),
we have

[soI1 N (=I1)| = [({=a} U (IT\ {a})) N (=1T')]

= |(IT\ {a}) N (-1T')| (by (68))
= [ITN (1) \ {a}
=r—1.

Since s,I1 € P(®P) by Lemma 33(ii), the inductive hypothesis applied to the pair s,II, II’
implies that there exists w € W (®) such that ws,II = II'. Therefore, we have proved (67),
which implies that W (®) acts transitively on P(®). The transitivity of W (®) on S(®)
now follows immediately from Lemma 33 using the fact that 7 is a bijection from S(®) to
P(D). O

Definition 37. Let A € S(®). For 8 = ) .\ catx € @, the height of /3 relative to A,
denoted ht([3), is defined as
= E Ca-

a€A

Example 38. Continuing Example 26, let
A:{€Z‘—€Z’+1 | 1 §Z<TL}ES(®),

where

Then for i < j,

<.
|
—

ht(e; —e;) =ht(» (ex —epy1)) =7 — 1.

i

i
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