June 6, 2016

For today's lecture, we let V be a finite-dimensional vector space over \mathbf{R} , with positive-definite inner product. We also let Φ be a root system in V, and fix a simple system Δ in Φ . Let $\Pi = \Phi \cap \mathbf{R}_{>0}\Delta$ be the unique positive system containing Δ . Recall

$$W(\Phi) = \langle s_{\alpha} \mid \alpha \in \Phi \rangle,$$

which we denote by W for brevity.

Lemma 39. If $\beta \in \Pi \setminus \Delta$, then there exists $\alpha \in \Delta$ such that $s_{\alpha}\beta \in \Pi$ and $\operatorname{ht}(\beta) > \operatorname{ht}(s_{\alpha}\beta)$.

Proof. Write $\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$, where $c_{\alpha} \in \mathbb{R}_{\geq 0}$ for $\alpha \in \Delta$. Since

$$0 < (\beta, \beta)$$

$$= \sum_{\alpha \in \Delta} c_{\alpha}(\alpha, \beta),$$

there exists $\alpha \in \Delta$ such that $c_{\alpha}(\alpha, \beta) > 0$. In particular, as $c_{\alpha} \geq 0$, we have

$$c = \frac{2(\alpha, \beta)}{(\alpha, \alpha)} > 0.$$

Since

$$s_{\alpha}\beta = \beta - c\alpha$$
$$= \sum_{\gamma \in \Delta \setminus \{\alpha\}} c_{\gamma}\gamma + (c_{\alpha} - c)\alpha,$$

we have $\operatorname{ht}(s_{\alpha}\beta) = \operatorname{ht}(\beta) - c < \operatorname{ht}(\beta)$. Since $\beta \in \Pi \setminus \Delta \subset \Pi \setminus \{\alpha\}$, Lemma 34 implies $s_{\alpha}\beta \in \Pi$.

Lemma 40. If $\beta \in \Phi$, then there exists a sequence $\alpha_1, \ldots, \alpha_m$ of elements in Δ such that $s_{\alpha_1} \cdots s_{\alpha_m} \beta \in \Delta$.

Proof. We first prove the assertion for $\beta \in \Pi$. Suppose there exists $\beta \in \Pi$ such that the assertion does not hold. Then clearly $\beta \notin \Delta$. We may assume that β has minimal height among such elements. By Lemma 39, there exists $\alpha \in \Delta$ such that $s_{\alpha}\beta \in \Pi$ and $\operatorname{ht}(\beta) > \operatorname{ht}(s_{\alpha}\beta)$. By the minimality of $\operatorname{ht}(\beta)$, there exists a sequence $\alpha_1, \ldots, \alpha_m$ of elements of Δ such that $s_{\alpha_1} \cdots s_{\alpha_m}(s_{\alpha}\beta) \in \Delta$. This is a contradiction.

If $\beta \in -\Pi$, then $-\beta \in \Pi$, so there exist $\alpha, \alpha_1, \dots, \alpha_m \in \Delta$ such that

$$\alpha = s_{\alpha_1} \cdots s_{\alpha_m}(-\beta).$$

Then

$$s_{\alpha}s_{\alpha_1}\cdots s_{\alpha_m}\beta = -s_{\alpha}s_{\alpha_1}\cdots s_{\alpha_m}(-\beta)$$

$$= -s_{\alpha}\alpha$$
$$= \alpha$$
$$\in \Delta.$$

Theorem 41. If Δ is a simple system in a root system Φ , then $W = \langle s_{\alpha} \mid \alpha \in \Delta \rangle$.

Proof. Let $\beta \in \Phi$. By Lemma 40, there exist $\alpha_0, \alpha_1, \ldots, \alpha_m \in \Delta$ such that $s_{\alpha_1} \cdots s_{\alpha_m} \beta = \alpha_0$. Then

$$\begin{split} s_{\beta} &= s_{(s_{\alpha_{1}} \cdots s_{\alpha_{m}})^{-1} \alpha_{0}} \\ &= (s_{\alpha_{1}} \cdots s_{\alpha_{m}})^{-1} s_{\alpha_{0}} s_{\alpha_{1}} \cdots s_{\alpha_{m}} \\ &= s_{\alpha_{m}} \cdots s_{\alpha_{1}} s_{\alpha_{0}} s_{\alpha_{1}} \cdots s_{\alpha_{m}} \\ &\in \langle s_{\alpha} \mid \alpha \in \Delta \rangle. \end{split}$$
 (by Lemma 12)

Definition 42. For $w \in W$, we define the *length* of w, denoted $\ell(w)$, to be

$$\ell(w) = \min\{r \in \mathbf{Z} \mid r \ge 0, \ \exists \alpha_1, \dots, \alpha_r \in \Delta, \ w = s_{\alpha_1} \cdots s_{\alpha_r}\}.$$

By convention, $\ell(1) = 0$.

Clearly, $\ell(w) = 1$ if and only if $w = s_{\alpha}$ for some $\alpha \in \Delta$. It is also clear that $\ell(w) = \ell(w^{-1})$.

Lemma 43. For $w \in W$, $det(w) = (-1)^{\ell(w)}$.

Proof. Since $det(s_{\alpha}) = -1$ for all $\alpha \in \Phi$, the result follows immediately.

Lemma 44. For $w \in W$ and $\alpha \in \Delta$, $\ell(s_{\alpha}w) = \ell(w) + 1$ or $\ell(w) - 1$.

Proof. It is clear from the definition that $\ell(s_{\alpha}w) \leq \ell(w) + 1$. Switching the role of w and $s_{\alpha}w$, we obtain $\ell(s_{\alpha}w) \geq \ell(w) - 1$. Thus

$$\ell(s_{\alpha}w) \in {\{\ell(w) - 1, \ell(w), \ell(w) + 1\}}.$$

Since

$$(-1)^{\ell(s_{\alpha}w)} = \det(s_{\alpha}w)$$
 (by Lemma 43)
= $-\det w$
= $-(-1)^{\ell(w)}$ (by Lemma 43).

This implies $\ell(s_{\alpha}w) \neq \ell(w)$.

Notation 45. For $w \in W$, we write

$$n(w) = |\Pi \cap w^{-1}(-\Pi)|.$$

Lemma 46. For $w \in W$, $n(w^{-1}) = n(w)$.

Proof.

$$n(w^{-1}) = |\Pi \cap w(-\Pi)|$$

= $|w^{-1}\Pi \cap (-\Pi)|$
= $|w^{-1}(-\Pi) \cap \Pi|$
= $n(w)$.

Lemma 47. For $w \in W$ and $\alpha \in \Delta$, the following statements hold:

(i)
$$w\alpha > 0 \implies n(ws_{\alpha}) = n(w) + 1$$
.

(ii)
$$w\alpha < 0 \implies n(ws_{\alpha}) = n(w) - 1$$
.

(iii)
$$w^{-1}\alpha > 0 \implies n(s_{\alpha}w) = n(w) + 1.$$

(iv)
$$w^{-1}\alpha < 0 \implies n(s_{\alpha}w) = n(w) - 1.$$

Proof. (i) Since $w\alpha \in \Pi$, we have $\alpha \in w^{-1}\Pi$. Thus

$$\alpha \notin w^{-1}(-\Pi),\tag{69}$$

and

$$\alpha = -s_{\alpha}\alpha$$

$$\in -s_{\alpha}w^{-1}\Pi$$

$$= s_{\alpha}w^{-1}(-\Pi). \tag{70}$$

Thus

$$n(ws_{\alpha}) = |\Pi \cap (ws_{\alpha})^{-1}(-\Pi)|$$

$$= |\Pi \cap s_{\alpha}w^{-1}(-\Pi)|$$

$$= |(\Pi \setminus \{\alpha\}) \cap s_{\alpha}w^{-1}(-\Pi)| + 1 \qquad \text{(by (70))}$$

$$= |s_{\alpha}(\Pi \setminus \{\alpha\}) \cap s_{\alpha}w^{-1}(-\Pi)| + 1 \qquad \text{(by Lemma 34)}$$

$$= |(\Pi \setminus \{\alpha\}) \cap w^{-1}(-\Pi)| + 1$$

$$= |\Pi \cap w^{-1}(-\Pi)| + 1 \qquad \text{(by (69))}$$

$$= n(w) + 1.$$

(ii) Since $w\alpha \in -\Pi$, we have

$$\alpha \in w^{-1}(-\Pi),\tag{71}$$

and $\alpha \notin w^{-1}\Pi$, so

$$\alpha = -s_{\alpha}\alpha$$

$$\notin -s_{\alpha}w^{-1}\Pi$$

$$= s_{\alpha}w^{-1}(-\Pi).$$
(72)

Thus

$$n(ws_{\alpha}) = |\Pi \cap (ws_{\alpha})^{-1}(-\Pi)|$$

$$= |\Pi \cap s_{\alpha}w^{-1}(-\Pi)|$$

$$= |(\Pi \setminus \{\alpha\}) \cap s_{\alpha}w^{-1}(-\Pi)| \qquad \text{(by (72))}$$

$$= |s_{\alpha}(\Pi \setminus \{\alpha\}) \cap s_{\alpha}w^{-1}(-\Pi)| \qquad \text{(by Lemma 34)}$$

$$= |(\Pi \setminus \{\alpha\}) \cap w^{-1}(-\Pi)|$$

$$= |\Pi \cap w^{-1}(-\Pi)| - 1 \qquad \text{(by (71))}$$

$$= n(w) - 1.$$

(iii) and (iv)

$$\begin{split} n(s_{\alpha}w) &= n((s_{\alpha}w)^{-1}) & \text{(by Lemma 46)} \\ &= n(w^{-1}s_{\alpha}) \\ &= \begin{cases} n(w^{-1}) + 1 & \text{if } w^{-1}\alpha > 0, \\ n(w^{-1}) - 1 & \text{if } w^{-1}\alpha < 0 \end{cases} \\ &= \begin{cases} n(w) + 1 & \text{if } w^{-1}\alpha > 0, \\ n(w) - 1 & \text{if } w^{-1}\alpha < 0 \end{cases} \end{aligned} \tag{by Lemma 46)}.$$

Theorem 48. Let Δ be a simple system in a root system Φ . Let $\alpha_1, \ldots, \alpha_r \in \Delta$ and $w = s_1 \cdots s_r \in W$, where $s_i = s_{\alpha_i}$ for $1 \le i \le r$. If n(w) < r, then there exist i, j with $1 \le i < j \le r$ satisfying the following conditions:

(i)
$$\alpha_i = s_{i+1} \cdots s_{i-1} \alpha_i$$
,

(ii)
$$s_{i+1}s_{i+2}\cdots s_j = s_is_{i+1}\cdots s_{j-1}$$
,

(iii)
$$w = s_1 \cdots s_{i-1} s_{i+1} \cdots s_{j-1} s_{j+1} \cdots s_r$$
.

In particular, $n(w) \ge \ell(w)$.

Proof. (i) Setting w=1 in Lemma 47(i), we find $n(s_{\alpha})=1$ for every $\alpha \in \Delta$. This implies that, if r=1, then n(w)=1. Therefore, we may assume $r\geq 2$.

We claim that there exists j with $2 \le j \le r$ such that $s_1 \cdots s_{j-1} \alpha_j < 0$. Suppose, to the contrary,

$$s_1 \cdots s_{j-1} \alpha_j > 0 \tag{73}$$

for all j with $2 \le j \le r$. Since $\alpha_1 > 0$, (73) holds also for j = 1. By Lemma 47(i), we obtain $n(s_1 \cdots s_j) = n(s_1 \cdots s_{j-1}) + 1$ for $1 \le j \le r$. By using induction, we obtain n(w) = r, contrary to our hypothesis.

Since $\alpha_i > 0$, there exists i with $1 \le i < j$ such that

$$s_{i+1} \cdots s_{j-1} \alpha_j > 0,$$

$$s_i s_{i+1} \cdots s_{j-1} \alpha_j < 0.$$

Thus

$$s_{i}s_{i+1}\cdots s_{j-1}\alpha_{j} \in s_{i}\Pi \cap (-\Pi)$$

$$= s_{\alpha_{i}}((\Pi \setminus \{\alpha_{i}\}) \cup \{\alpha_{i}\}) \cap (-\Pi)$$

$$= ((\Pi \setminus \{\alpha_{i}\}) \cup \{-\alpha_{i}\}) \cap (-\Pi)$$

$$= \{-\alpha_{i}\}$$

$$= \{s_{i}(\alpha_{i})\}.$$
(by Lemma 34)

This implies $s_{i+1} \cdots s_{j-1} \alpha_j = \alpha_i$.

(ii)

$$\begin{split} s_{i+1} \cdots s_{j} &= s_{i+1} \cdots s_{j-1} s_{\alpha_{j}} (s_{i+1} \cdots s_{j-1})^{-1} (s_{i+1} \cdots s_{j-1}) \\ &= s_{s_{i+1} \cdots s_{j-1} \alpha_{j}} (s_{i+1} \cdots s_{j-1}) \\ &= s_{\alpha_{i}} (s_{i+1} \cdots s_{j-1}) \\ &= s_{i} s_{i+1} \cdots s_{j-1}. \end{split} \tag{by (i)}$$

(iii)

$$w = s_1 \cdots s_r$$

$$= s_1 \cdots s_{i-1} (s_i \cdots s_{j-1}) s_j \cdots s_r$$

$$= s_1 \cdots s_{i-1} (s_{i+1} \cdots s_j) s_j \cdots s_r$$

$$= s_1 \cdots s_{i-1} s_{i+1} \cdots s_{j-1} s_{j+1} \cdots s_r.$$
(by (ii))

In particular, n(w) < r implies $r \neq \ell(w)$. Thus $n(w) \geq \ell(w)$.

Corollary 49. If $w \in W$, then $n(w) = \ell(w)$.

Proof. From the last part of Theorem 48, it suffices to prove

$$n(w) \le \ell(w) \quad (w \in W). \tag{74}$$

By the definition of $\ell(w)$, there exists $\alpha_1,\ldots,\alpha_{\ell(w)}\in\Delta$ such that $w=s_{\alpha_1}\cdots s_{\alpha_{\ell(w)}}$. We prove (74) by induction on $m=\ell(w)$. If m=0, then w=1, and $n(w)=0=\ell(w)$. Assume the result holds for up to m-1. Then

$$n(s_{\alpha_1} \cdots s_{\alpha_{\ell(w)-1}}) \le \ell(s_{\alpha_1} \cdots s_{\alpha_{\ell(w)-1}})$$

$$\le \ell(w) - 1. \tag{75}$$

$$\begin{split} n(w) &= n((s_{\alpha_1} \cdots s_{\alpha_{\ell(w)-1}}) s_{\alpha_{\ell(w)}}) \\ &\leq n(s_{\alpha_1} \cdots s_{\alpha_{\ell(w)-1}}) + 1 \\ &\leq \ell(w) \end{split} \tag{by Lemma 47(i),(ii)} \\ &\leq b(w) \tag{by (75)}. \end{split}$$