June 6, 2016

For today’s lecture, we let V' be a finite-dimensional vector space over R, with positive-
definite inner product. We also let ® be a root system in V', and fix a simple system A in
®. Let II = & N R>(A be the unique positive system containing A. Recall

W(®) = (s, | @ € D),
which we denote by IV for brevity.
Lemma 39. If § € II\ A, then there exists o € A such that s, € Il and ht(5) > ht(s.f).

Proof. Write # = ) A cav, Where ¢, € R for a € A. Since

2
_ 2 p) >0
(a, @)

Since

Sa = B — ca

= Z cyY + (ca — €y,
yeA\{a}

we have ht(s,/) = ht(5) — ¢ < ht(5). Since g € 11\ A C IT \ {a}, Lemma 34 implies
sof € 11 H
Lemma 40. If 3 € D, then there exists a sequence o, . . ., a,, of elements in /A such that

Say "'socmﬁ € A.

Proof. We first prove the assertion for § € II. Suppose there exists § € II such that
the assertion does not hold. Then clearly 5 ¢ A. We may assume that S has minimal
height among such elements. By Lemma 39, there exists &« € A such that s,0 € II
and ht(f) > ht(s,). By the minimality of ht(3), there exists a sequence «, ..., q,, of
elements of A such that s,, - - - s,,, (S/3) € A. This is a contradiction.

If 5 € —II, then —f € 1II, so there exist a, aq, . .., a,, € A such that

A= Say* Sap, (— )

Then
SaSal e Samﬁ - _SOLSQI e Sam(_/B)
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= —S,(

e A.

Theorem 41. If A is a simple system in a root system ®, then W = (s, | « € A).

Proof. Let $ € ®. By Lemma 40, there exist o, o, ..., € Asuchthat sy, -« 5,,,0 =
. Then

Sg = 8(801...5am)—1a0

- (Sal T Sam)_lsaosal Sa, (by Lemma 12)
= Sam " Sa1SapSar T Sam
€ (54 | @ € A).

Definition 42. For w € W, we define the length of w, denoted /(w), to be
lw)=min{r € Z|r >0, Jag,...,00 € A, W =54, - Sq, }
By convention, ¢(1) = 0.

Clearly, /(w) = 1 if and only if w = s, for some o € A. It is also clear that ¢(w) =
l(w™h).

Lemma 43. For w € W, det(w) = (—1)*™).
Proof. Since det(s,) = —1 for all o € P, the result follows immediately. O
Lemma 44. Forw € W and o € A, l(sqw) = l(w) + 1 or {(w) — 1.

Proof. 1t is clear from the definition that ¢(s,w) < ¢(w) + 1. Switching the role of w and
Sqw, we obtain £(s,w) > (w) — 1. Thus

lU(sqw) € {l(w) — 1,0(w), l(w) + 1}.

Since
(—1)%=®) = det(sqw) (by Lemma 43)
= —detw
= —(—1)"™ (by Lemma 43).
This implies /(s,w) # £(w). O
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Notation 45. For w € W, we write

n(w) = [ Nw (=1
Lemma 46. For w € W, n(w™') = n(w).
Proof.

n(w™") = [ITNw(-1I)

= |w™ ' N (—1I)]
= Jw (=) N 1I|
= n(w).

Lemma 47. For w € W and o € A, the following statements hold:

(i) wa >0 = n(ws,) =n(w) + 1.
(i) wa <0 = n(ws,) = n(w) —
(iii) wla >0 = n(saw) = n(w) +

n(
(iv) wla <0 = n(s,w) =n(w) —

Proof. (i) Since wa € 11, we have o € w~II. Thus

« §é wil(_H)a
and
o= —S,Q
€ —s w I
= sqw ' (—TI)
Thus

n(wsy) = [TIN (wsy) (—1T)|

= [T N sqw™ ! (~T1)|
= [(IT\ {a}) N sqw™ (~1T)| +1 (by (70))

= |so(IT\ {a}) N sqw ™ (~=1D)| + 1 (by Lemma 34)
— |0\ fa}) w0+ 1
= [INw™ ' (~1T)] +1 (by (69))
=n(w) + 1.
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(i1) Since wa € —II, we have

a € w (1), (71)
and o ¢ w I, so
o= —S,0
¢ —sow I
= sqw ' (—TI) (72)
Thus
n(wsy) = [ITN (wsy) H(—1I)|
= [N sew™ ! (~TI)|
= |(IT\ {a}) N sqw™ (~1D)] (by (72))
= [so(IT\ {a}) N sqw ™ (—IT)| (by Lemma 34)
= I\ {e}) Nw™ ' (-1D)]
= [MNw™'(-1T)] -1 (by (71))
=n(w) — 1.
(iii) and (iv)
n(sqw) = n((sqw) ™) (by Lemma 46)
=n(w 'sy)
a4+ 1 ifwla >0,
Cnw ) =1 ifwla<0
1 ifw™!
= n(w) + 1 wa>0, (by Lemma 46).
n(w)—1 ifwla<0
O
Theorem 48. Let A be a simple system in a root system ®. Let aq,...,a, € A and

w=S8---5 €W, where s; = so, for 1 <i <r. Ifn(w) < r, then there exist i, j with

1 <1 < j < rsatisfying the following conditions:
(1) a; =841 Sj—10,
(i1) Si418i42- " Sj = SiSi+1 " Sj—1»
(i) w =81 S_1Si41""" Sj—18j41 """ Sp

In particular, n(w) > £(w).
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Proof. (i) Setting w = 1 in Lemma 47(i), we find n(s,) = 1 for every o € A. This implies

that, if » = 1, then n(w) = 1. Therefore, we may assume r > 2.

We claim that there exists j with 2 < j < r such that s; ---s;_1a; < 0. Suppose, to

the contrary,
1 8j—10¢5 > 0

(73)

for all j with 2 < 5 < r. Since a; > 0, (73) holds also for j = 1. By Lemma 47(i),
we obtain n(sy - -+ s;) = n(sy---sj_1) + 1for 1 < j < r. By using induction, we obtain

n(w) = r, contrary to our hypothesis.
Since a; > 0, there exists ¢ with 1 <4 < j such that
Sit1 " Sj—10¢; > 0,

S§iSi+1 - Sj—10 < 0.
Thus

$iSiq1 - Sj—1a € sl N (—II)
= Sa, ((IT\ {}) U {e}) N (=1I)
= (M\ {eu}) U{~a;}) N (-1) (by Lemma 34)
= {—o}
= {si(a)}.

This 1mphes Si41 0 Sj—105 = Q.

(i1)
37;+1 e Sj — Si—i—l . Sj—lsaj(Si—&—l . Sj—1>_1(si+1 e Sj—l)
= Sspipsy_ra; (Sig1 7 8j-1) (by Lemma 12)
= S0, (Sip1° - 5j-1) (by (1))

= 8iSi41 " Sj-1-
(ii1)
W= 81" S
= 81 . .S’L’71(S’L' . .ijl)sj .. .ST‘

:81"'Si—l(si-f—l”'Sj)sj”'sT’ (by(ll))

=818 18i41 " 8j 18541 S
In particular, n(w) < r implies r # ¢(w). Thus n(w) > {(w).

Corollary 49. If w € W, then n(w) = {(w).

Proof. From the last part of Theorem 48, it suffices to prove

n(w) < l(w) (weW).
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By the definition of ¢(w), there exists as, ..., ) € A such that w = s,, -

.. Saz(u))‘

We

prove (74) by induction on m = f(w). If m = 0, then w = 1, and n(w) = 0 = {(w).

Assume the result holds for up to m — 1. Then

(Sar *** Sagy 1)

l
l(w) — 1.

n(sal PN So‘é(w)—l)

IA A

n(w) =n((sq, - sa£<w)71)sag(w))
< (8o Sagiy,) T 1 (by Lemma 47(i),(ii))
< {(w) (by (75)).
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