Exercise 10. Given a finite reflection group W C O(V'), let
U={\eV|VteW, tA =)}

Let U’ denote the orthogonal complement of U in V. Then show that the restriction homo-
morphism W — O(U’) defined by t — t|y is injective, and the image W |y is an essential
finite reflection group in O(U").

Proof. For notational convenience, let ¢ : W — O(U’) denote the restriction homomor-
phism, that is, ¢(t) = t|y fort € W.

First we show that ¢ is injective. Suppose s,t € W and ¢(s) = ¢(t). Given A € V,
there exist vectors \; € U and Ay € U’ such that A = \; + A, since U’ is the orthogonal
complement of U in V. Then

sA = s(A1 + A2)

= S\ + Sy

= A + s\ (by Ay € U)

=AM +th (by Ay € U and ¢(s) = ¢(t))
=t + Ao (by A\ € U)

=t(A1 4+ A\2)

=t

Therefore s = ¢, so that the restriction homomorphism is injective.
Next we show that the image W |y is a finite reflection group in O(U’). It is clearly a
subgroup of O(U’) by its construction. Since W is a finite reflection group W,

(1) W # {idv},
(1) W is finite,
(111) W is generated by a set of reflections.

Since the restriction homomorphism ¢ is injective, (i) implies Wy # {idy }, while W|y
is finite by (ii). To see that V| is generated by a set of reflections, because of (iii), it
suffices show that ¢(s) is a reflection for whenever s € W is a reflection. If s € W is a
reflection, then there exists a nonzero vector « € V such that s« = —« and sh = h for all
h € (Ra)*. This implies U C (Ra)*, and hence a € U'. In particular, (s) is a reflection
in U’. We have now proved that the image W |y is a finite reflection group in O(U’).
Finally we show that the image W | is essential. Suppose that A € U’ satisfies ¢’ A = A
for all ' € W|y. Then tA = X for all t € W, which implies A € U. Therefore, A €
U NU" = {0}. This proves that the image |- is essential. O



Exercise 11. Let S3 denote the symmetric group of order 3 and 51, €9, €3 denote the stan-
dard basis of R3. For each o € Ss, we define g, € O(R3) by gg(zi_ Cig;) = Z?Zl Ci€o(i)s
and set G5 = {g, | 0 € S3}. Moreover we set n, = \/5(51 £9) and ng = \/Lg(sl +e9—2¢3).
Compute the matrix representations of g 2y and g 3) with respect to the basis {1, 1}
Show that they are reflections whose lines of symmetry form an angle 7 /3.

Proof. By definition,
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Hence the matrix representations of g ) and g, 3y with respect to the basis {7;,7} is

given by
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respectively.
It is easy to see that g(; o) is a reflection with respect to the y-axis which forms an angle
7/2 with the z-axis. Indeed,
-1 0\ [cosm sinm
0 1) \sinm —cosm/)’

Similarly, g(, 3) is a reflection with respect to a line L which forms an angle /6 with the

r-axis, since
1 B ™ T
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Moreover, the y axis and the line L form an angle
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