June 20, 2016

Definition 53. Let G be a group acting on a set Ω . We say that G acts *simply transitively* on Ω if

- (i) G acts transitively on Ω ,
- (ii) for every pair α, β of elements in Ω , there exists a unique element $g \in G$ such that $g.\alpha = \beta$.

Lemma 54. Let G be a finite group acting transitively on a set Ω . Let G_{α} denote the stabilizer of α in G, that is,

$$G_{\alpha} = \{ g \in G \mid g . \alpha = \alpha \}.$$

Then the following are equivalent:

- (i) G acts simply transitively on Ω ,
- (ii) for every $\alpha \in \Omega$, $G_{\alpha} = \{1\}$,
- (iii) for some $\alpha \in \Omega$, $G_{\alpha} = \{1\}$,
- (iv) $|G| = |\Omega|$.

Proof. (i) \implies (ii): Immediate from Definition 53(ii) by setting $\alpha = \beta$.

(ii) \implies (iii): Trivial.

(iii) \implies (iv): The mapping $\phi : G \to \Omega$ defined by $g \mapsto g.\alpha$ is a bijection. Indeed, ϕ is surjective since G is transitive. If $\phi(g) = \phi(h)$, then $g.\alpha = h.\alpha$, hence $g^{-1}h \in G_{\alpha} = \{1\}$. This implies g = h. Thus ϕ is injective.

(iv) \Longrightarrow (i): Let $\alpha \in \Omega$. Then

$$\begin{split} |G| &= |\Omega| \\ &= \sum_{\beta \in \Omega} 1 \\ &\leq \sum_{\beta \in \Omega} |\{g \in G \mid g.\alpha = \beta\}| \\ &= |\bigcup_{\beta \in \Omega} \{g \in G \mid g.\alpha = \beta\}| \\ &= |\{g \in G \mid g.\alpha \in \Omega\}| \\ &= |G|. \end{split}$$

This forces

$$\{g \in G \mid g.\alpha = \beta\}| = 1 \quad (\forall \beta \in \Omega).$$

Since $\alpha \in \Omega$ was arbitrary, we obtain (i).

For the remainder of today's lecture, we let Φ be a root system.

Theorem 55. The group $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$.

Proof. By Theorem 36, $W(\Phi)$ acts transitively on $\mathcal{P}(\Phi)$ and $\mathcal{S}(\Phi)$. Let $w \in W(\Phi)$ and $\Pi \in \mathcal{P}(\Phi)$, and suppose $w\Pi = \Pi$. Let Δ be the unique simple system contained in Π . Then by Corollary 49 and Notation 45,

$$\ell(w) = n(w) = |\Pi \cap w^{-1}(-\Pi)| = |\Pi \cap (-w^{-1}\Pi)| = |\Pi \cap (-\Pi)| = |\emptyset| = 0.$$

Thus w = 1. Therefore, $W(\Phi)$ acts simply transitively on $\mathcal{P}(\Phi)$.

Next suppose $w\Delta = \Delta$. Then by Lemma 33(i), we obtain $w\Pi = \Pi$, and hence w = 1. Therefore, $W(\Phi)$ acts simply transitively on $S(\Phi)$.

In what follows, we fix a simple system $\Delta \in \mathcal{S}(\Phi)$. Let $\Pi = \Phi \cap \mathbf{R}_{\geq 0}\Delta$ be the unique positive system in Φ containing Δ .

Notation 56. Let $S = \{s_{\alpha} \mid \alpha \in \Delta\}$. For $I \subset S$, we define

$$W_{I} = \langle I \rangle,$$

$$\Delta_{I} = \{ \alpha \in \Delta \mid s_{\alpha} \in I \},$$

$$V_{I} = \mathbf{R}\Delta_{I},$$

$$\Phi_{I} = \Phi \cap V_{I},$$

$$\Pi_{I} = \Pi \cap V_{I}.$$

Lemma 57. For $w \in \langle s_{\alpha} \mid \alpha \in \Phi_I \rangle$, we have

- (i) $wV_I = V_I$,
- (ii) $w(\Pi \setminus \Pi_I) = \Pi \setminus \Pi_I$.

Proof. It suffices to show (i) and (ii) for $w = s_{\alpha}$ with $\alpha \in \Phi_I$. Let $\alpha \in \Phi_I$.

(i) For $\beta \in \Delta_I \subset V_I$, $s_{\alpha}\beta \in \mathbf{R}\alpha + \mathbf{R}\beta \subset V_I$. Thus $s_{\alpha}\Delta_I \subset V_I$, and this implies $s_{\alpha}V_I = V_I$.

(ii) Let $\beta \in \Pi \setminus \Pi_I$. Then $\beta \notin V_I = \mathbf{R}\Delta_I$, so there exists $\gamma \in \Delta \setminus \Delta_I$ such that

$$\beta \in \mathbf{R}_{>0}\gamma + \mathbf{R}_{>0}\Delta.$$

Since $\alpha \in \Phi_I \subset V_I = \mathbf{R}\Delta_I$, we have

$$s_{\alpha}\beta = \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)}\alpha$$

$$\in \mathbf{R}_{>0}\gamma + \mathbf{R}_{\geq 0}\Delta + \mathbf{R}\alpha$$

$$\subset \mathbf{R}_{>0}\gamma + \mathbf{R}_{\geq 0}\Delta + \mathbf{R}\Delta_{I}$$

Since $\gamma \notin \Delta_I$, the coefficient of γ in the expansion of $s_{\alpha}\beta$ is positive. This implies $s_{\alpha}\beta \in \Phi \cap \mathbf{R}_{\geq 0}\Delta = \Pi$. Since $\beta \in \Pi \setminus \Pi_I$ was arbitrary, we obtain $s_{\alpha}(\Pi \setminus \Pi_I) \subset \Pi$. Since

$$s_{\alpha}(\Pi \setminus \Pi_{I}) \cap V_{I} = s_{\alpha}(\Pi \setminus V_{I}) \cap V_{I}$$

= $s_{\alpha}(\Pi \setminus V_{I}) \cap s_{\alpha}V_{I}$ (by (i))
= $s_{\alpha}((\Pi \setminus V_{I}) \cap V_{I})$
= \emptyset ,

we have $s_{\alpha}(\Pi \setminus \Pi_I) \subset \Pi \setminus V_I = \Pi \setminus \Pi_I$. Since s_{α} is a bijection, we conclude $s_{\alpha}(\Pi \setminus \Pi_I) = \Pi \setminus \Pi_I$.

Proposition 58. *Let* $I \subset S$ *.*

- (i) Φ_I is a root system with simple system Δ_I .
- (ii) Π_I is the unique positive system of Φ_I containing the simple system Δ_I .
- (iii) $W(\Phi_I) = W_I$.
- (iv) Let ℓ be the length function of W with respect to Δ . Then the restriction of ℓ to W_I coincides with the length function ℓ_I of W_I with respect to the simple system Δ_I .
- *Proof.* (i) For $\alpha \in \Phi_I \subset V_I$,

$$\mathbf{R}\alpha \cap \Phi_I = (\mathbf{R}\alpha \cap \Phi) \cap V_I$$
$$= \{\alpha, -\alpha\} \cap V_I$$
$$= \{\alpha, -\alpha\}.$$

Since

$$s_{\alpha}\Phi_{I} = s_{\alpha}\Phi \cap s_{\alpha}V_{I}$$

= $\Phi \cap V_{I}$ (by Lemma 57(i))
= Φ_{I} .

we see that Φ_I is a root system. Since Δ is linearly independent, so is Δ_I . Since

$$\begin{split} \Phi_I &= \Phi \cap V_I \\ &\subset (\mathbf{R}_{\geq 0} \Delta \cup \mathbf{R}_{\leq 0} \Delta) \cap \mathbf{R} \Delta_I \end{split}$$

$$= (\mathbf{R}_{\geq 0}\Delta \cap \mathbf{R}\Delta_I) \cup (\mathbf{R}_{\leq 0}\Delta \cap \mathbf{R}\Delta_I)$$
$$= (\mathbf{R}_{\geq 0}\Delta_I) \cup (\mathbf{R}_{\leq 0}\Delta_I),$$

we see that Δ_I is a simple system in Φ_I .

(ii) Since

$$\Pi_{I} = \Pi \cap V_{I}$$

= $\Phi \cap \mathbf{R}_{\geq 0} \Delta \cap V_{I}$
= $\Phi \cap V_{I} \cap \mathbf{R}_{\geq 0} \Delta \cap \mathbf{R} \Delta_{I}$
= $\Phi_{I} \cap \mathbf{R}_{\geq 0} \Delta_{I}$,

the result follows from Lemma 29(i).

(iii)

$$W(\Phi_I) = \langle s_{\alpha} \mid \alpha \in \Delta_I \rangle$$
 (by Theorem 41)
= $\langle I \rangle$
= W_I .

(iv) Let $w \in W_I = W(\Phi)$. Then by Lemma 57(i), we have

$$w\Phi_I = \Phi_I. \tag{90}$$

and by Lemma 57(ii), we have $w(\Pi \setminus \Pi_I) = \Pi \setminus \Pi_I \subset \Pi$. This implies $w(\Pi \setminus \Pi_I) \cap (-\Pi) = \emptyset$. Thus

$$w\Pi \cap (-\Pi) = w(\Pi_{I} \cup (\Pi \setminus \Pi_{I})) \cap (-\Pi)$$

$$= (w\Pi_{I} \cup w(\Pi \setminus \Pi_{I})) \cap (-\Pi)$$

$$= (w(\Pi_{I}) \cap (-\Pi)) \cup (w(\Pi \setminus \Pi_{I}) \cap (-\Pi))$$

$$= w(\Pi_{I}) \cap (-\Pi)$$

$$= w(\Pi \cap V_{I}) \cap (-\Pi)$$

$$= w(\Pi \cap V_{I}) \cap (-\Pi \cap V_{I})$$

$$= w(\Pi_{I}) \cap (-\Pi_{I})$$
 (by (90)). (91)

Therefore,

$$\ell(w) = |\Pi \cap w^{-1}(-\Pi)| \qquad (by \text{ Corollary 49})$$
$$= |w\Pi \cap (-\Pi)|$$
$$= |w(\Pi_I) \cap (-\Pi_I)| \qquad (by (91))$$
$$= |\Pi_I \cap w^{-1}(-\Pi_I)|$$
$$= \ell_I(w) \qquad (by \text{ Corollary 49}).$$