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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Let � be a root system in V with simple system �, and let W =

W (�) = hs↵ | ↵ 2 �i. Let ⇧ = � \R�0� be the unique positive system in � containing
�.

Recall Notation 56 and Proposition 67:
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Continuing Example 16 with n = 4, write W = G4, si = s"i�"i+1 for i = 1, 2, 3, so that
S = {s1, s2, s3}. Then

W;(t) = 1,

W{si}(t) = t+ 1,

W{s1,s2}(t) = (t+ 1)(t2 + t+ 1).

If we compute WI(t) for all I $ S, then (92) can be used to determine W (t) and, in
particular, |W |.

Define

C = {� 2 V | (�,↵) > 0 (8↵ 2 �)},
D = {� 2 V | (�,↵) � 0 (8↵ 2 �)}.

Lemma 68. For each � 2 V , there exist w 2 W such that w� 2 D. Moreover, in this case,

w�� � 2 R�0�.

Proof. Let � 2 V . Define a partial order on the set W� = {w� | w 2 W} by setting

µ � µ0 () µ0 � µ 2 R�0� (µ, µ0 2 W�).

Since W� is finite, so is its subset

M = {µ 2 W� | µ � �}.

The set M is non-empty since � 2 M . Thus, there exists a maximal element µ in M . Since
µ = w� for some w 2 W and µ� � 2 R�0�, it remains to show µ 2 D.

Suppose, to the contrary, µ /2 D. Then there exists ↵ 2 � such that (µ,↵) < 0. By the
definition of a reflection, we have s↵µ� µ 2 R>0↵, so

s↵µ� � = (s↵µ� µ) + (µ� �)

2 R>0↵ +R�0�

⇢ R�0� \ {0}.

This implies s↵µ � � and s↵µ 6= �. Moreover, s↵µ = s↵w� 2 W�. Therefore, s↵µ 2 M ,
and this contradicts maximality of µ in M .
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Notation 69. For a subset U of V , define

StabW (U) = {w 2 W | w� = � (8� 2 U)}.

Lemma 70. (i) If � 2 D, then

StabW ({�}) = hs↵ | ↵ 2 �, s↵� = �i.

(ii) If �, µ 2 D, w 2 W and w� = µ, then � = µ.

(iii) If � 2 C, then StabW ({�}) = {1}.

(iv) If � 2 V , then

StabW ({�}) = hs↵ | ↵ 2 �, s↵� = �i.

Proof. First we prove, for w 2 W ,

�, µ 2 D, w� = µ =) � = µ, w 2 hs↵ | ↵ 2 �, s↵� = �i, (93)
� 2 C, µ 2 D, w� = µ =) w = 1 (94)

by induction on n(w) = |w⇧ \ (�⇧)|. If n(w) = 0, then `(w) = 0 by Corollary 49,
hence w = 1. Then (93) holds. Suppose n(w) > 0. Then there exists � 2 ⇧ such that
w� 2 �⇧. Since ⇧ ⇢ R�0�, this implies wR�0� \ R0� 6= ;, which in turn implies
w� \ (�⇧) 6= ;. Suppose w� 2 �⇧, where � 2 �. Then by Lemma 47,

`(ws�) = `(w)� 1

= n(w)� 1 (by Corollary 49)
< n(w). (95)

Since µ 2 D and �w� 2 ⇧ ⇢ R�0�, we have

0  (µ,�w�)

= �(w�1µ, �)

= �(�, �).

If � 2 C, this is impossible. This implies that (94) holds. If � 2 D, then this forces
(�, �) = 0, implying s� 2 StabW ({�}). Now, we have ws�� = µ and (95), so we can
apply inductive hypothesis to conclude � = µ and

ws� 2 hs↵ | ↵ 2 �, s↵� = �i.

Thus (93) holds.
Now (ii) follows from (93), while (i) and (iii) follow from (93) and (94), respectively,

by setting � = µ.
Finally we prove (iv). Let � 2 V . Clearly,

StabW ({�}) � hs↵ | ↵ 2 �, s↵� = �i.

46



To prove the reverse containment, observe that, by Lemma 68, there exists z 2 W such
that z� 2 D. Then

StabW ({�}) = {w 2 W | w� = �}
= {w 2 W | zwz�1z� = z�}
= {z�1xz 2 W | xz� = z�}
= z�1

StabW ({z�})z
= z�1hs� | � 2 �, s�z� = z�iz (by (i))
= hz�1s�z | � 2 �, z�1s�z� = �i
= hsz�1� | � 2 �, sz�1�� = �i (by Lemma 12)
⇢ hs↵ | ↵ 2 �, s↵� = �i.

The following property of the set D is referred to as D being a fundamental domain for
the action of W on V .

Theorem 71. For each � 2 V , |W� \D| = 1.

Proof. By Lemma 68, we have W�\D 6= ;. Suppose µ, µ0 2 W�\D. Then Lemma 70(ii)
implies µ = µ0.
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