July 4, 2016

For today’s lecture, we let V' be a finite-dimensional vector space over R, with positive-
definite inner product. Let ® be a root system in V' with simple system A, and let W =
W(®) = (so | @ € ®). Let II = & N R>pA be the unique positive system in ¢ containing
A.

Recall Notation 56 and Proposition 67:

(=) B i — (—1)I8]
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Continuing Example 16 with n = 4, write W = Gy, s; = s,
S = {51, S9, 53}. Then

—eipy Tori = 1,2,3, so that
Wy(t) =1,
W{si}(t) =t+1,
Wisrs2y (1) = (L +1)(E + 1+ 1),
If we compute W;(t) for all I G S, then (92) can be used to determine W (t) and, in
particular, |W|.
Define
C={ eV ]|\a)>0VaeA)},
D={ eV |(\a)>0(VYaeA)}.

Lemma 68. For each \ € V, there exist w € W such that wh € D. Moreover, in this case,
WA — N\ € RZ()A.

Proof. Let A € V. Define a partial order on the set WA = {w\ | w € W} by setting
p=p = @ —peRA  (u,p' € WA).
Since W A is finite, so is its subset
M={peWX|u>A}

The set M is non-empty since A € M. Thus, there exists a maximal element y in M. Since
i = wA for some w € Wand p — A € R>oA, it remains to show p € D.

Suppose, to the contrary, 1 ¢ D. Then there exists « € A such that (i, a) < 0. By the
definition of a reflection, we have s, — 1 € Ry, so

Saft = A= (Saft — p) + (1 = A)
€ R>001 + RZOA
C R>oA\ {0}.

This implies s, > X and s,u # A. Moreover, s,u = sqawA € W . Therefore, s u € M,
and this contradicts maximality of y in M. ]
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Notation 69. For a subset U of V, define
Staby (U) ={w e W |wA =X (VA e U)}.
Lemma70. (i) If\ € D, then
Staby ({A}) = (sa | @ € A, s,A = A).

() If\,p € D, w e W and w\ = p, then A\ = p.
(iii) If X € C, then Staby ({\}) = {1}.
@iv) If X € V, then
Staby ({A}) = (sa | @ € @, s,A = A).
Proof. First we prove, for w € W,

MUED, wh=p = A=p, weE (54| €A, s,A=N\), (93)
AeCopeD, wh=p = w=1 (94)

by induction on n(w) = |wIl N (=II)|. If n(w) = 0, then ¢(w) = 0 by Corollary 49,
hence w = 1. Then (93) holds. Suppose n(w) > 0. Then there exists § € II such that

wf € —II. Since IT C RxoA, this implies wR>0A N R<pA # (), which in turn implies
wA N (—II) # 0. Suppose wy € —II, where v € A. Then by Lemma 47,

l(wsy) = l(w) — 1
=n(w)—1 (by Corollary 49)
< n(w). 95)
Since ¢ € D and —wy € II C R>pA, we have

0 < (1, —wy)
=—(w ')
If A € C, this is impossible. This implies that (94) holds. If A € D, then this forces

(A,7) = 0, implying s, € Staby ({\}). Now, we have ws,A = p and (95), so we can
apply inductive hypothesis to conclude A = p and

WSy € (S | @ €A, SuA = N).

Thus (93) holds.

Now (ii) follows from (93), while (i) and (iii) follow from (93) and (94), respectively,
by setting A = p.

Finally we prove (iv). Let A € V. Clearly,

Staby ({A}) D (84 | @ € @, s, A = A).
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To prove the reverse containment, observe that, by Lemma 68, there exists z € W such
that z\A € D. Then

Staby ({A\}) = {w e W | wA = A}
={w e W | 2wz"'2) = 22}
={z'rz € W | 22\ = 2)\}
= 27 Staby ({zA})z

=2"sp | BEA, sgzA=2)\)2 (by (i)

= (z'sgz | BEA, 27 552X = \)

= (s,-15| B €A, s,-15\ =) (by Lemma 12)
C (So | 0 € B, s, A = N).

]

The following property of the set D is referred to as D being a fundamental domain for
the action of W on V.

Theorem 71. For each A € V,

WAND|=1.

Proof. By Lemma 68, we have WAND # (). Suppose p, i/ € WAND. Then Lemma 70(ii)
implies u = p'. Il
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