July 11, 2016

For today’s lecture, we let V' be a finite-dimensional vector space over R, with positive-
definite inner product. Let ® be a root system in V' with simple system A, and let W =
W(®) = (sa | a € D).

Notation 72. Let o € ®. We define
H,={)eV|(a,\) =0},
Hf = {AeV | (a,)) > 0},
Hy = {Ae V| (a,\) <0},
sothat V = Hl U H, U H (disjoint).
Recall

C=()H,

aEA
D= () (HSUH,).
aEA
Lemma 73. Forw € W and o € ,
wHa - Hwou (96)
wHy = Hy,. ©7)
In particular,
soHF = HF, (98)
U H,=w U H,. (99)
aed acd

Proof. Observe

wHy ={wA | X €V, (a,\) =0}
={u|peV, (wa,p) =0}
= Hyq.
This proves (96). Replacing “="" by “>" or “<”, we obtain (97). Moreover, (97) implies

+ +
saH, = HSaa

=H*
= H7F,

while (96) implies

wUHa:UwHa

acd aced
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Lemma 74. If U is a linear subspace of V such that ® N U # (), then ® N U is a root
system.

Proof. Clearly, ® N U satisfies (R1) of Definition 14. As for (R2), let o, 3 € & N U.
Then s, € N (Ra+RB) € ®NU. Thus s,(PNU) C &N U. This implies
So(@NU)=dNU. O

Lemma 75. If U is a linear subspace of V, then

W(@nUY) ifenU*+ #£40,
{1} otherwise.

Staby, (U) = {

Proof. We prove the assertion by induction on dim U. The assertion is trivial if dim U = 0.
If dim U = 1, then write U = R\. We have

Staby (U) = Staby ({A\})
= (Sa | €D, sS,A =) (by Lemma 70(iv))
= (Sa | €D, (a,\) =0)
= (54 | € ®N(RA)F)
W(@nUt) ifenU £,
B {{1} otherwise,

since ® N U~ is a root system by Lemma 74 as long as it is nonempty.
Now assume dim U > 2. Then there exist nonzero subspaces Uy, U, of U such that
U= U1 D Uz. Then

U nU;s = (U, @ Uy)*t
=Ut. (100)

Since dim Uy, dim U; < dim U, the inductive hypothesis implies

W(@NUt) if®dNU- £,
{1} otherwise

Stabw(Ul) = {
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for i = 1,2. Suppose first that ® N U- = (). Then ® N U+ = (), and
Staby (U) C Staby (Uy)
= {1}.
Next suppose that ® N Uit # (). Then
Staby (U) = Staby (Uy) N Staby (Us)

= W(®NU;") N Staby (Uy)

= StabW(qull)(U?)

_{w«¢mUﬁm%w if & NULNUL £ 0,

{1} otherwise

(by (100)).

_w(@nUt) ifenUt #0,
{1} otherwise

Proposition 76. If U is a subset of V, then
Staby (U) = (sa | @ € @, s, € Staby (U)).

Proof. Replacing U by its span, we may assume without loss of generality U is a linear
subspace of V. Then by Lemma 75, we have

&%W“OI{MN¢QUH ﬁ@myi¢&
{1} otherwise

= (84| @€ ®@NU"Y)

= (sq | € ®, YAEU, (a,\) =0)
=(sq | €D, VAU, suA =\
= (So | @ € D, s, € Staby (U)).

[
Definition 77. The members of the family
{wC | we W}
are called chambers.
Lemma 78. Let II = ® N R>¢A be the unique positive system containing A. Then
C=()HS (101)
a€cll
In particular,
CcV\|JHs (102)
ped
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Proof. If A € C, then (A, «) > 0 for all « € A. Since ® C (R>0A) U (R<oA) \ {0}, we
see that (A, ) > 0 for all 8 € II. This implies (101). Since ® = IT U (—II), we see that
(A, B) # 0 forall 3 € . This implies A ¢ (Jzq Hp, proving (102). O

Lemma 79. If w € W and wC N C # (), then w = 1. In particular, the group W acts
simply transitively on the set of chambers.

Proof. Suppose w € W satisfies wC' N C' # (). Then there exists A\, u € C such that
wA = p. This implies {\, u} € WANC € WAND. By Theorem 71, we conclude A = .
This also implies w € Staby ({\}), hence w = 1 by Lemma 70(iii). In particular, wC' = C
implies w = 1. This shows that W acts simply transitively on the set of chambers. U

Proposition 80.
VA J Ha= | wC (disjoiny).

aed weW

Proof. By Lemma 79, the chambers are disjoint from each other. Observe

wC CV\w U H, (by Lemma 78)
acd
=V\ | H. (by (99)).
acd
Thus
VA JHoD | wC  (disjoino).
acd weWw
Conversely, let A € V' \ [J,cq Ho- By Theorem 71, there exists w € W such that

w\ € D, or equivalently, A € w™!D. We claim A\ € w™!C. Indeed, if A ¢ w™'C, then

wh € D\ C
={peV|(a)=20(NVaeA), (n,B) <03}
Cl{peV|(n,B)=0(38€A)}

=w| ) Hy (by (99)).

This implies A € |J 5 H g which is absurd. This proves the claim, and hence

VA [ JHac | we

acd weW
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