July 25, 2016

For today’s lecture, we let V' be a finite-dimensional vector space over R, with positive-
definite inner product. Let ® be a root system in V, and let W = W (®) = (s, | a € ®).
Fix a simple system A in ®.

Definition 81. Let « € ® and w € W. The hyperplane H, is called a wall of a chamber
wC if a € wA.

Notation 82. For A\ € V and € > 0, denote by B(), ) the e-ball centered at \:
B\e) = A+ | pe v, <.

Lemma 83. Let A\ € V and ¢ > 0. If w is an orthogonal transformation of V, then
wB(\ e) = B(w), e).

Proof.

wB(\e) ={wA+p) | peV, [|ul <e}
={wA+wp | p eV, |lupll <e}
={wA+p|lpeV, |ul <c}

= B(w),¢).
O]
Lemma 84. Let v € ® and \ € H. Then there exists ¢ > 0 such that B(\,e) C H}.
Proof. Since A € H}, we have (A, ) > 0. Set
A
€= Ka) ,a)‘
2|l
Then for © € V with ||u|| < €, we have
A+ p,0) = (N, o) + (1, a)
> (A @) = [(n, @)
> (A @) = [lullfle]
> (A a) —ellall
_ (Ao
2
>0
Thus A + p € H} . This implies B(\,e) C H. O

Lemma 85. Letrav € Pand \,pn € HY. Thenfor0 <t <1, tA+ (1 —t)u € H.
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Proof. We have

A+ (1 —t)p,a) =t(N\, ) + (1 —t)(u, ) > 0.

Proposition 86. For o € ® and w € W, the following are equivalent:
(1) H, is awall of wC,
(ii) there exist A € H, and € > 0 such that H, N B(\,e) C wD.

Proof. First we prove the assertion for w = 1. Suppose H,, is a wall of C'. Then o € A.
Then by Lemma 34,

sa(IT\ {a}) = T\ {a}. (103)

r_ +
c'= () Hi.
pem\{o}

Let

Then C' C C’, and
$,C = ﬂ SQHEr
Bell

=) B, (by (97))

Bell

+
c () His
Bell\{a}

= N

Besa(\{a})

= () Hi (by (103))
Bell\{a}
="

Thus
Cus,C ccC. (104)

Let A\; € C. Then soA; € 5,C. Set A = (A + s, A1). Then (A, &) = 0,50 A € H,.
Since A\, soA1 € C' by (104), Lemma 85 implies A € C’. Then by Lemma 84, for each
B € 11\ {a}, there exists €5 > 0 such that B(\,eg) C Hj . Setting

e =min{eg [ 5 € T\ {a}},
we obtain B(\,e) C C’. Thus

H,NB(\e)C H,NC'
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=H,n| () Hj
pem\{o}

C(HFUH)N| () (HfUHjg)
Bem\{a}
= D.

Conversely, suppose there exist A € H, and ¢ > 0 such that H, N B(\,&) C D. Since
SaA = A, we have s,B()\, ) = B(\,¢) by Lemma 83. This, together with s, H, = H,
implies

H,NB(\e) C s,D.

Thus
H,NB(\e) C DNs,D. (105)

We aim to show o € A. Suppose, by way of contradiction, @ ¢ A. Then n(s,) > 1, so
TN s4(—IT) 2 {a}. This implies that there exists 3 € IT\ {a} such that 5,3 € —II. Thus
—so3 € 11, and hence

D C Hj—saﬁ U H—sa,B
— H,UH,;. (106)

Also, since ( € II, we have

saD C so(Hy U Hg)
= H;;B UH;, s (by (96),(97)). (107)

Thus, combining (105)—(107), we find
H, N B(\¢e) C Hp. (108)

Since 8 # +a, we have s, # *a. Thus H, g # H,, which implies that there exists
€ Hy, \ H, 3. We may assume ||u|| < e. Then

A+p e B(\e)NH,
C Hs 5 (by (108)). (109)

Since

A€ B(\e)NH,
C Hs.3 (by (108)),

while 1 ¢ H,_ 3, we obtain A\ + p ¢ H,_s. This contradicts (109).

54



We have shown that the assertion holds for w = 1. We next consider the general case.
Let o € ® and w € W. Then

(i) <— acwA

— wlaeA

<~ H,-1,isawall of C

< INE€ Hy1y, 3 >0, Hy1,NB(N\e)C D

«— Ncw'H, Ie>0, w'H,NB(\e)CD (by (96))

<~ INcw'H,, I3 >0, w'H,Nnw 'B(w\e)CD (by Lemma 83)
< Ju€H,, >0, H,N B(u,e) CwD

— (ii).

Proposition 87. If s € W is a reflection, then there exists o € ® such that s = s,,.

Proof. Since s is a reflection, s fixes a hyperplane H. Let H- = Rf3, where 0 # 3 € V.
Then s = sg. Since s € Staby (H), we have

{1} # Staby (H)
= (54 | 0 € D, s, € Staby (H)) (by Proposition 76).

This implies that there exists & € ® such that s, € Staby/(H). The latter implies s, =
53 = 5. [

Note that Proposition 15 implies that the mapping which sends a root system to a re-
flection group is a surjection, the following proposition implies that it is essentially an
injection.

Proposition 88. If & and ¢’ are root systems in' V' such that W(®) = W(d’), then
{Hy|a € ®} ={Hy | o' € D'},

or equivalently,
{Ra|ae®}={Rd | € d'}.

Proof. If a € O, then s, is a reflection in W (®) = W (®'). By Proposition 87, there exists
o' € @' such that s, = s,. This implies H, = H,.. Therefore, we have shown

{H,|a€e®} C{Hy | €D}

The reverse containment can be shown in a similar manner. O]
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