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We assume the reader is familiar with linear algebra, for example, finite-dimensional real
vector spaces, the standard inner product, subspaces, direct sums, the matrix representation
of a linear transformation.

Let α ∈ R2 be a nonzero vector. The set of vectors orthogonal to α form a line L, and
R2 = Rα⊕ L holds. Given λ ∈ R2 can be expressed as

λ = cα + µ for some c ∈ R and µ ∈ L. (1)

Since (µ, α) = 0, we have

c =
(cα + µ, α)

(α, α)

=
(λ, α)

(α, α)
(by (1)).

The reflection of λ with respect to the line L is obtained by negating the 〈α〉-component of
λ in (1), that is,

−cα + µ = λ− 2cα

= λ− 2(λ, α)

(α, α)
α.

Let sα : R2 → R2 denote the mapping defined by the above formula, that is,

sα(λ) = λ− 2(λ, α)

(α, α)
α (λ ∈ R2). (2)

It is clear that sα is a linear transformation of R2. This means that there exists a 2 × 2
matrix Sα such that

sα(λ) = Sαλ (λ ∈ R2). (3)

To find Sα, recall that L is the line orthogonal to α. Let

µ =

[
cos θ
sin θ

]
be a vector of length 1 in L. The vector

ν =

[
− sin θ
cos θ

]
is orthogonal to µ, hence in Rα. This implies that

sα(µ) = µ,

sα(ν) = −ν.
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Thus
Sα

[
µ ν

]
=
[
µ −ν

]
,

which implies

Sα =
[
µ −ν

] [
µ ν

]−1

=

[
cos θ sin θ
sin θ − cos θ

] [
cos θ − sin θ
sin θ cos θ

]−1

=

[
cos θ sin θ
sin θ − cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ − sin2 θ 2 sin θ cos θ
2 sin θ cos θ −(cos2 θ − sin2)

]
=

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

This is the matrix representation of a reflection on the plane R2.
We next consider the composition of two reflections. Let sα and Sα be as before, and

let sβ be another reflection, with matrix representation

Sβ =

[
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
.

Then

SαSβ =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] [
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
=

[
cos 2(θ − ϕ) − sin 2(θ − ϕ)
sin 2(θ − ϕ) cos 2(θ − ϕ)

]
=

[
cos 2(θ − ϕ) cos(2(θ − ϕ) + π

2
)

sin 2(θ − ϕ) sin(2(θ − ϕ) + π
2
)

]
.

This matrix maps the standard basis vector[
1
0

]
=

[
cos 0
sin 0

]
,

[
0
1

]
=

[
cos π

2

sin π
2

]
to [

cos 2(θ − ϕ)
sin 2(θ − ϕ)

]
,

[
cos(2(θ − ϕ) + π

2
)

sin(2(θ − ϕ) + π
2
)

]
,

meaning that both vectors are rotated 2(θ − ϕ). Therefore, the product of two reflection is
a rotation.

We are interested in the case where the resulting rotation is of finite order, that is,
2(θ − ϕ) is a rational multiple of 2π. For brevity, write s = sα, t = sβ and id = 1. In this
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case, there exists a positive integer m such that (st)m = 1. We may assume s 6= t, so that
st 6= 1. We may choose minimal such m, so that

st, (st)2, . . . , (st)m−1 6= 1.

Writing r = st, this implies

1, r, r2, . . . , rm−1 are pairwise distinct. (4)

We aim to determine the set 〈s, t〉 of all linear transformations expressible as a product of
s, t. We have already seen that this set contains at least m distinct elements (4). Since
s2 = t2 = 1, possible product of s, t are one of the following four forms:

stst · · · st, (5)
stst · · · sts, (6)
tsts · · · ts, (7)
tsts · · · tst. (8)

Products of the form (5) are precisely described in (4). Products of the form (6) are

s, rs, r2s, . . . , rm−1s, (9)

and these are distinct by (4). Since ts = t−1s−1 = (st)−1 = r−1, products of the form (7)
are nothing but those in (4). Finally, since rt = s, products of the form (8) are then those in
(9). Therefore, 〈s, t〉 consists of 2m elements described in (4) and (9). To show that these
2m elements are distinct, it suffices to show that there is no common element in (4) and
(9), which follows immediately from the fact that det r = 1 and det s = −1.

It is important to note that this last part of reasoning, except the distinctness, follows
only from the transformation rule

s2 = t2 = 1, (st)m = 1. (10)

Setting r = st, we have rm = 1 and srs = r−1. Written in terms of r and s, we can also
say that the determination of all elements in 〈s, t〉 follows only from the transformation rule

s2 = rm = 1, sr = r−1s. (11)

Indeed, one can always rewrite sr to rm−1s, so every element in 〈s, r〉 is of the form rksj

with 0 ≤ k < m and j ∈ {0, 1}.
In the next lecture, we will discuss a rigorous way of dealing with words in formal

symbol subject to relations such as (10) and (11). In addition to this formal aspect, we will
discuss explicit realizations of these symbols as linear transformation.

Definition 1. A linear transformation s : Rn → Rn is called a reflection if there exists a
nonzero vector α such that s(α) = −α and s(h) = h for all h ∈ (Rα)⊥.
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Note that, since Rn = Rα ⊕ (Rα)⊥, the linear transformation is determined uniquely
by the conditions s(α) = −α and s(h) = h for all h ∈ (Rα)⊥, so we denote this reflection
by sα. Moreover, any nonzero scalar multiple of α defines the same reflection, that is,
sα = scα for any c ∈ R with c 6= 0.

Lemma 2. Let s : Rn → Rn be a reflection. Then the matrix representation S of s is
diagonalizable by an orthogonal matrix:

P−1SP =


−1

1
. . .

1


for some orthogonal matrix P . Conversely, if the matrix representation of s is of this form
for some orthogonal matrix P , then s is a reflection.

Proof. Let s = sα. We may assume without loss of generality (α, α) = 1. Let β2, . . . , βn

be an orthonormal basis of (Rα)⊥. Then α, β2, . . . , βn is an orthonormal basis of Rn. Let

P =
[
α β2 · · · βn

]
.

Then P is an orthogonal matrix, and

SP = P


−1

1
. . .

1

 .

To prove the converse, let α be the first column of P . Then clearly s(α) = −α and
s(h) = h for any h ∈ (Rα)⊥. Thus s = sα.
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Lemma 2 shows that S itself is also an orthogonal matrix. It is well known that this is
equivalent to s being an orthogonal transformation, that is,

(s(λ), s(µ)) = (λ, µ) (λ, µ ∈ Rn). (12)

This can be directly verified as follows. First, let s = sα with α 6= 0 and set

π(λ) = λ− (λ, α)

(α, α)
α.

Then (π(λ), α) = 0, so

λ =
(λ, α)

(α, α)
α + π(λ)

is the representation of λ as an element of Rα ⊕ (Rα)⊥. By the definition of a reflection,
we obtain

sα(λ) = − (λ, α)

(α, α)
α + π(λ)

= λ− 2(λ, α)

(α, α)
α.

Note that this is a direct generalization of our formula (2) originally established in R2 only.
Now

(sα(λ), sα(µ)) = (λ− 2(λ, α)

(α, α)
α, µ− 2(µ, α)

(α, α)
α)

= (λ, µ)− (λ,
2(µ, α)

(α, α)
α)− (µ,

2(λ, α)

(α, α)
α) + (

2(λ, α)

(α, α)
α,

2(µ, α)

(α, α)
α)

= (λ, µ)− 2(µ, α)

(α, α)
(λ, α)− 2(λ, α)

(α, α)
(µ, α) +

2(λ, α)

(α, α)

2(µ, α)

(α, α)
(α, α)

= (λ, µ)− 2(λ, α)(µ, α)

(α, α)
− 2(λ, α)(µ, α)

(α, α)
+

4(λ, α)(µ, α)

(α, α)

= (λ, µ).

Therefore, sα is an orthogonal transformation.
For a real vector space V with an inner product, the set of orthogonal transformation

is denoted by O(V ). Thus, every reflection in V is an element of O(V ). It is necessary to
consider a more general vector space V than just Rn, since we sometimes need to consider
linear transformation defined on a subspace of Rn.

Let us recall how the transformation rule (10) was used to derive every word in 〈s, t〉
is one of the 2m possible forms. We now formalize this by ignoring the fact that s, t are
reflections. Instead we only assume s2 = t2 = 1. In order to facilitate this, we consider
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a set of formal symbols X and consider the set of all words of length n. This is the set of
sequence of length n, so it can be regarded as the cartesian product

Xn = X ×X × · · · ×X︸ ︷︷ ︸
n

.

Then we can form a disjoint union

X∗ =
∞⋃
n=0

Xn,

where X0 consists of a single element called the empty word, denoted by 1.
A word x = (x1, x2, . . . , xn) ∈ Xn is said to be reduced if xi 6= xi+1 for 1 ≤ i < n.

By definition, the word 1 of length 0 is reduced, and every word of length 1 is reduced. For
brevity, we write x = x1x2 · · · xn ∈ Xn instead of x = (x1, x2, . . . , xn) ∈ Xn. We denote
the set of all reduced words by F (X).

We can define a binary operation µ : F (X)× F (X) → F (X) as follows.

µ(1, x) = µ(x, 1) = x (x ∈ F (X)), (13)

and for x = x1 · · ·xm ∈ Xm ∩ F (X) and y = y1 · · · yn ∈ Xn ∩ F (X) with m,n ≥ 1, we
define

µ(x, y) =

{
x1 · · ·xmy1 · · · yn ∈ Xm+n if xm 6= y1,
µ(x1 · · ·xm−1, y2 · · · yn) otherwise.

(14)

This is a recursive definition. Note that if xm 6= y1, then x1 · · ·xmy1 · · · yn is a reduced
word. Note also that there is no guarantee that x1 · · ·xm−1y2 · · · yn is a reduced word. If it
is not, then xm−1 = y2, so we define this to be µ(x1 · · ·xm−2, y3 · · · yn). Since the length
is finite, we eventually reach the case where the last symbol of x is different from the first
symbol of y, or one of x, y is 1.

Definition 3. A set G with binary operation µ : G×G → G is said to be a group if

(i) µ is associative, that is, µ(µ(a, b), c) = µ(a, µ(b, c)) for all a, b, c ∈ G,

(ii) there exists an element 1 ∈ G such that µ(1, a) = µ(a, 1) = a for all a ∈ G,

(iii) for each a ∈ G, there exists an element a′ ∈ G such that µ(a, a′) = µ(a′, a) = 1.

The element 1 is called the identity of G, and a′ is called the inverse of a.

Theorem 4. The set of reduced words F (X) forms a group under the binary operation µ
defined by (13)–(14).

Proof. Clearly, the empty word 1 is the identity in F (X), i.e.,

µ(1, a) = µ(a, 1) = a (a ∈ F (X)). (15)
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Next we prove associativity (i), by a series of steps.
Step 1.

µ(µ(a, x), µ(x, b)) = µ(a, b) (a, b ∈ F (X), x ∈ X). (16)

Indeed, denote by a−1 the last entry of a, and by b1 the first entry of b. Write

a = a′x if a−1 = x,
b = xb′ if b1 = x.

Since

ax ∈ F (X) if a−1 6= x,
xb ∈ F (X) if b1 6= x,

we have

µ(µ(a, x), µ(x, b)) =


µ(a′, b′) if a−1 = x, b1 = x,
µ(a′, xb) if a−1 = x, b1 6= x,
µ(ax, b′) if a−1 6= x, b1 = x,
µ(ax, xb) if a−1 6= x, b1 6= x

= µ(a, b).

Step 2.
µ(x, µ(x, c)) = c (c ∈ F (X), x ∈ X). (17)

Indeed,

µ(x, µ(x, c)) = µ(µ(1, x), µ(x, c)) (by (13))
= µ(1, c) (by (16))
= c (by (13)).

Step 3.
µ(x, µ(b, c)) = µ(µ(x, b), c) (b, c ∈ F (X), x ∈ X). (18)

Assume b ∈ Xm. We prove (18) by induction on m. If m = 0, then b = 1, so

µ(x, µ(b, c)) = µ(x, µ(1, c))

= µ(x, c) (by (15))
= µ(µ(x, 1), c) (by (15))
= µ(µ(x, b), c).

Next assume m > 0. If b = xb′, then

µ(x, µ(b, c)) = µ(x, µ(µ(x, b′), c))

= µ(x, µ(x, µ(b′, c))) (by induction)
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= µ(b′, c) (by (17))
= µ(µ(x, b), c).

If b = b′y and c = yc′ for some b′, c′ ∈ F (X) and y ∈ X , then

µ(x, µ(b, c)) = µ(x, µ(b′, c′)) (by (14))
= µ(µ(x, b′), c′) (by induction)
= µ(µ(µ(x, b′), y), µ(y, c′)) (by (16))
= µ(µ(µ(x, b′), y), c)

= µ(µ(x, µ(b′, y)), c) (by induction)
= µ(µ(x, b), c).

Finally, if b1 6= x and b−1 6= c1, then µ(x, b) = xb and µ(b, c) = bc, and xbc ∈ F (X). Thus

µ(x, µ(b, c)) = µ(x, bc)

= xbc

= µ(xb, c)

= µ(µ(x, b), c).

This completes the proof of (18).
Now we prove

µ(a, µ(b, c)) = µ(µ(a, b), c) (a, b, c ∈ F (X)). (19)

by induction on n, where a ∈ Xn. The cases n = 0 is trivial because of (15). Assume
a = a′x, where a′ ∈ F (X) and x ∈ X . Then

µ(a, µ(b, c)) = µ(µ(a′, x), µ(b, c))

= µ(a′, µ(x, µ(b, c))) (by induction)
= µ(a′, µ(µ(x, b), c)) (by (18))
= µ(µ(a′, µ(x, b)), c) (by induction)
= µ(µ(µ(a′, x), b), c) (by induction)
= µ(µ(a, b), c).

Therefore, we have proved associativity.
If a = x1 · · ·xn ∈ F (X) ∩Xn, then the reversed word a′ = xn · · ·x1 ∈ F (X) ∩Xn is

the inverse of a.

We call F (X) the free group generated by the set of involutions X . From now on, we
omit µ to denote the binary operation in F (X) by juxtaposition. So we write ab instead of
µ(a, b) for a, b ∈ F (X). Also, for a = x1 · · ·xn ∈ F (X) ∩ Xn, its inverse xn · · ·x1 will
be denoted by a−1.
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Let s and t be the linear transformation of R2 represented by the matrices[
1 0
0 −1

]
and

[
cos 2π

m
sin 2π

m

sin 2π
m

− cos 2π
m

]
,

respectively. Let G = 〈s, t〉 be the set of all linear transformation expressible as a product
of s and t. We know

G = {(st)j | 0 ≤ j < m} ∪ {(st)js | 0 ≤ j < m}.

and |G| = 2m. The product of linear transformations defines a binary operation on G, and
G forms a group under this operation. This group is called the dihedral group of order 2m.
In order to connect the dihedral group with a free group, we make a definition.

Definition 5. Let G1 and G2 be groups. A mapping f : G1 → G2 is called a homomor-
phism if

f(ab) = f(a)f(b) (∀a, b ∈ G1), (20)

where the product ab is computed under the binary operation in G1, the product f(a)f(b)
is computed under the binary operation in G2. A bijective homomorphism is called an iso-
morphism. The groups G1 and G2 are said to be isomorphic if there exists an isomorphism
from G1 to G2.

Let X = {x, y} be a set of two distinct formal symbols. Clearly, there is a homomor-
phism f : F (X) → G with f(x) = s and f(y) = t, where G = 〈s, t〉 is the dihedral group
of order 2m defined above. Note that f((xy)m) = (st)m = 1, but (xy)m ∈ F (X) is not the
identity. This suggests introducing another transformation rule (xy)m = 1, in addition to
x2 = y2 = 1 as we adopted when constructing the group F (X). We do this by introducing
an equivalence relation on F (X). Let a, b ∈ F (X). If there exists c ∈ F (X) such that
a = bc−1(xy)mc, then f(a) = f(b) holds. So we write a ∼ b if there is a finite sequence
a = a0, a1, . . . , an = b ∈ F (X) such that for each i ∈ {1, 2, . . . , n}, ai is obtained by
multiplying ai−1 by an element of the form c−1(xy)mc for some c ∈ F (X). Then ∼ is
an equivalence relation, since a = bc−1(xy)mc implies b = a(xc)−1(xy)m(xc). Clearly,
a ∼ b implies f(a) = f(b). In other words, f induces a mapping from the set of equiva-
lence classes to G. In fact, the set of equivalence classes forms a group under the binary
operation inherited from F (X). We can now make this more precise.
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Definition 6. Let X be a set of formal symbols, and let F (X) be the free group generated
by the set of involutions X . Let R ⊂ F (X). Let N be the subgroup generated by the set

{c−1r±1c | c ∈ F (X), r ∈ R}. (21)

In other words, N is the set of elements of F (X) expressible as a product of elements in
the set (21). The set

F (X)/N = {aN | a ∈ F (X)},

where aN = {ab | b ∈ N} for a ∈ F (X), forms a group under the binary operation

F (X)/N × F (X)/N → F (X)/N
(aN, bN) 7→ abN

and it is called the group with presentation 〈X | R〉.

In view of Definition 6, we show that the dihedral group G of order 2m is isomorphic
to the the group with presentation 〈x, y | (xy)m〉. Indeed, we have seen that there is a
homomorphism f : F (X) → G with f(x) = s and f(y) = t. In our case, R = {(xy)m}
which is mapped to 1 under f . So f is constant on each equivalence class, and hence f
induces a mapping f : F (X)/N → G defined by f(aN) = f(a) (a ∈ F (X)). This
mapping f is a homomorphism since

f((aN)(bN)) = f(abN)

= f(ab)

= f(a)f(b)

= f(aN)f(bN).

Moreover, it is clear that both f and f are surjective, since G = 〈s, t〉 = 〈f(x), f(y)〉. The
most important part of the proof is injectivity of f . The argument on the transformation
rule defined by (xy)m shows

F (X)/N = {(xy)jN | 0 ≤ j < m} ∪ {(xy)jxN | 0 ≤ j < m}.

In particular, |F (X)/N | ≤ 2m = |G|. Since f is surjective, equality and injectivity of f
are forced.

Definition 7. Let V be a finite-dimensional vector space over R with positive definite inner
product. The set O(V ) of orthogonal linear transformations of V forms a group under
composition. We call O(V ) the orthogonal group of V .

Definition 8. Let V be a finite-dimensional vector space over R with positive definite inner
product. A subgroup W of the group O(V ) is said to be a finite reflection group if

(i) W 6= {idV },
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(ii) W is finite,

(iii) W is generated by a set of reflections.

For example, the dihedral group G of order 2m is a finite reflection group, since G ⊂
O(R2), |G| = 2m is neither 1 nor infinite, and G is generated by two reflections. We have
seen that G has presentation 〈s, t | (st)m〉. One of the goal of these lectures is to show that
every finite reflection group has presentation 〈s1, . . . , sn | R〉, where R ⊂ F ({s1, . . . , sn})
is of the form {(sisj)mij | 1 ≤ i, j ≤ n}.

Let n ≥ 2 be an integer, and let Sn denote the symmetric group of degree n. In other
words, Sn consists of all permutations of the set {1, 2, . . . , n}. Since permutations are
bijections from {1, 2, . . . , n} to itself, Sn forms a group under composition. Let ε1, . . . , εn
denote the standard basis of Rn. For each σ ∈ Sn, we define gσ ∈ O(Rn) by setting

gσ(
n∑

i=1

ciεi) =
n∑

i=1

ciεσ(i),

and set
Gn = {gσ | σ ∈ Sn}.

It is easy to verify that Gn is a subgroup of O(V ) and, the mapping Sn → Gn defined by
σ 7→ gσ is an isomorphism. We claim that gσ is a reflection if σ is a transposition; more
precisely,

gσ = sεi−εj if σ = (i j). (22)

Indeed, for k ∈ {1, 2, . . . , n},

sεi−εj(εk) = εk −
2(εk, εi − εj)

(εi − εj, εi − εj)
(εi − εj)

= εk − (εk, εi − εj)(εi − εj)

=


εi − (εi − εj) if k = i,
εj + (εi − εj) if k = j,
εk otherwise

=


εj if k = i,
εi if k = j,
εk otherwise

= εσ(k)

= gσ(εk).

It is well known that Sn is generated by its set of transposition. Via the isomorphism
σ 7→ gσ, we see that Gn is generated by the set of reflections

{sεi−εj | 1 ≤ i < j ≤ n}.
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Therefore, Gn is a finite reflection group.
Observe that G3 has order 6, and we know another finite reflection group of order 6,

namely, the dihedral group of order 6. Although G3 ⊂ O(R3) while the dihedral group is
a subgroup of O(R2), these two groups are isomorphic. In order to see their connection,
we make a definition.

Definition 9. Let V be a finite-dimensional vector space over R with positive definite inner
product. Let W ⊂ O(V ) be a finite reflection group. We say that W is not essential if there
exists a nonzero vector λ ∈ V such that tλ = λ for all t ∈ W . Otherwise, we say that W
is essential.

For example, the dihedral group G of order 2m ≥ 6 is essential. Indeed, G contains a
rotation t whose matrix representation is[

cos 2π
m

− sin 2π
m

sin 2π
m

cos 2π
m

]
. (23)

There exists no nonzero vector λ ∈ V such that tλ = λ since the matrix (23) does not have
1 as an eigenvalue: ∣∣∣∣cos 2π

m
− 1 − sin 2π

m

sin 2π
m

cos 2π
m

− 1

∣∣∣∣ = 2(1− cos
2π

m
) 6= 0.

On the other hand, the group Gn which is isomorphic to Sn is not essential. Indeed,
the vector λ =

∑n
i=1 εi is fixed by every t ∈ Gn. In order to find connections between the

dihedral group of order 6 and the group G3, we need a method to produce an essential finite
reflection group from non-essential one.

Given a finite reflection group W ⊂ O(V ), let

U = {λ ∈ V | ∀t ∈ W, tλ = λ}.

It is easy to see that U is a subspace of V . Let U ′ be the orthogonal complement of U in V .
Since tU = U for all t ∈ W , we have tU ′ = U ′ for all t ∈ W . This allows to construct the
restriction homomorphism W → O(U ′) defined by t 7→ t|U ′ .

Exercise 10. Show that the above restriction homomorphism is injective, and the image
W |U ′ is an essential finite reflection group in O(U ′).

For the group G3, we have

U = R(ε1 + ε2 + ε3),

U ′ = R(ε1 − ε2) +R(ε2 − ε3)

= Rη1 +Rη2,

where

η1 =
1√
2
(ε1 − ε2),

η2 =
1√
6
(ε1 + ε2 − 2ε3)

is an orthonormal basis of U ′.
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Exercise 11. Compute the matrix representations of g(1 2) and g(2 3) with respect to the
basis {η1, η2}. Show that they are reflections whose lines of symmetry form an angle π/3.

As a consequence of Exercise 10, we see that the group G3, restricted to the subspace
U ′ so that it becomes essential, is nothing but the dihedral group of order 6.
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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Recall that for 0 6= α ∈ V , sα ∈ O(V ) denotes the reflection

sα(λ) = λ− 2(λ, α)

(α, α)
α (λ ∈ V ). (24)

Lemma 12. For t ∈ O(V ) and 0 6= α ∈ V , we have tsαt
−1 = stα.

Proof. For λ ∈ V , we have

tsα(λ) = t

(
λ− 2(λ, α)

(α, α)
α

)
(by (24))

= tλ− 2(λ, α)

(α, α)
tα

= tλ− 2(tλ, tα)

(tα, tα)
tα

= stα(tλ).

This implies tsα = stαt, and the result follows.

For example, if sα is a reflection in a dihedral group G, and t ∈ G is a rotation, then sα
and t are not necessarily commutative, but rotating before reflecting can be compensated
by reflecting with respect to another line afterwards.

Proposition 13. Let W ⊂ O(V ) be a finite reflection group, and let 0 6= α ∈ V . If
w, sα ∈ W , then swα ∈ W .

Proof. By Lemma 12, we have swα = wsαw
−1 ∈ W .

Definition 14. Let Φ be a nonempty finite set of nonzero vectors in V . We say that Φ is a
root system if

(R1) Φ ∩Rα = {α,−α} for all α ∈ Φ,

(R2) sαΦ = Φ for all α ∈ Φ.

Proposition 15. Let Φ be a root system in V . Then the subgroup

W (Φ) = 〈sα | α ∈ Φ〉

of O(V ) is a finite reflection group. Moreover, W (Φ) is essential if and only if Φ spans V .
Conversely, for every finite reflection group W ⊂ O(V ), there exists a root system Φ ⊂ V
such that W = W (Φ).
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Proof. Since Φ 6= ∅, the group W (Φ) contains at least one reflection. In particular,
W (Φ) 6= {idV }. By construction, W is generated by reflections. In order to show that
W is finite, let U be the subspace of V spanned by Φ. Since U⊥ ⊂ (Rα)⊥ for all α ∈ Φ,
we have sα(λ) = λ for all α ∈ Φ and λ ∈ U⊥. This implies that

w|U⊥ = idU⊥ (w ∈ W ). (25)

In particular, W leaves U⊥ invariant. Since W ⊂ O(V ), W also leaves U invariant.
We can form the restriction homomorphism W → O(U) which is injective. Indeed, if
an element w ∈ W is in the kernel of the restriction homomorphism, then w|U = idU .
Together with (25), we see w = idV . By (R2), W permutes the finite set Φ, hence there is
a homomorphism f from W to the symmetric group on Φ. An element w ∈ Ker f fixes
every element of Φ, in particular, a basis of U . This implies that w is in the kernel of the
restriction homomorphism, and hence w = idV . We have shown that f is an injection from
W to the symmetric group of Φ which is finite. Therefore W is finite. This completes the
proof of the first part.

Moreover, W (Φ) is not essential if and only if there exists a nonzero vector λ ∈ V such
that tλ = λ for all t ∈ W (Φ). Since W (Φ) is generated by {sα | α ∈ Φ},

tλ = λ (∀t ∈ W (Φ)) ⇐⇒ sαλ = λ (∀α ∈ Φ)

⇐⇒ (λ, α) = 0 (∀α ∈ Φ)

⇐⇒ λ ∈ U⊥.

Thus, W (Φ) is not essential if and only if U⊥ 6= 0, or equivalently, Φ does not span V .
Conversely, let W ⊂ O(V ) be a finite reflection group, and let S be the set of all

reflections of W . By Definition 8(iii), W is generated by S. Define

Φ = {α ∈ V | sα ∈ S, ‖α‖ = 1}. (26)

Observe
S = {sα | α ∈ Φ}. (27)

We claim that Φ is a root system. First, since W 6= {idV }, we have Φ 6= ∅. Let α ∈ Φ.
Since sα = s−α and ‖α‖ = ‖ − α‖, we see that Φ satisfies (R1). For β ∈ Φ, we have
‖sα(β)‖ = ‖β‖ = 1, and ssα(β) ∈ W by Proposition 13, since sα, sβ ∈ W . This implies
sα(β) ∈ Φ, and hence sα(Φ) = Φ. Therefore, Φ is a root system. It remains to show that
W = W (Φ). But this follows immediately from (27) since W = 〈S〉.

Example 16. We have seen that the group Gn generated by reflections

{sεi−εj | 1 ≤ i < j ≤ n}, (28)

where ε1, . . . , εn is the standard basis of Rn, is a finite reflection group which is abstractly
isomorphic to the symmetric group of degree n. The set

Φ = {±(εi − εj) | 1 ≤ i < j ≤ n} (29)

is a root system. Indeed, Φ clearly satisfies (R1). It is also clear that gσΦ = Φ for all
σ ∈ Sn, so in particular, (R2) holds.
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Exercise 17. Show that (28) is precisely the set of reflections in Gn. In other words, show
that gσ is a reflection if and only if σ is a transposition.

Definition 18. A total ordering of V is a transitive relation on V (denoted <) satisfying
the following axioms.

(i) For each pair λ, µ ∈ V , exactly one of λ < µ, λ = µ, µ < λ holds.

(ii) For all λ, µ, ν ∈ V , µ < ν implies λ+ µ < λ+ ν.

(iii) Let µ < ν and c ∈ R. If c > 0 then cµ < cν, and if c < 0 then cν < cµ.

For convenience, we write λ > µ if µ < λ. By (ii), λ > 0 implies 0 > −λ. Thus

V = V+ ∪ {0} ∪ V− (disjoint), (30)

where

V+ = {λ ∈ V | λ > 0}, (31)
V− = {λ ∈ V | λ < 0}. (32)

We say that λ ∈ V+ is positive, and λ ∈ V− is negative.

Example 19. Let λ1, . . . , λn be a basis of V . Define the lexicographic ordering of V with
respect to λ1, . . . , λn by

n∑
i=1

aiλi <

n∑
i=1

biλi ⇐⇒ ∃k ∈ {1, 2, . . . , n}, a1 = b1, . . . , ak−1 = bk−1, ak < bk.

Clearly, this is a total ordering of V . Note that λi > 0 for all i ∈ {1, . . . , n}. For n = 2, we
have

V+ = {c1λ1 + c2λ2 | c1 > 0, c2 ∈ R} ∪ {c2λ2 | c2 > 0}.

Lemma 20. Let < be a total ordering of V , and let λ, µ ∈ V .

(i) If λ, µ > 0, then λ+ µ > 0.

(ii) If λ > 0, c ∈ R and c > 0, then cλ > 0.

(iii) If λ > 0, c ∈ R and c < 0, then cλ < 0. In particular, −λ < 0.

Proof. (i) By Definition 18(ii), we have λ+ µ > λ > 0.
(ii) By Definition 18(iii), we have cλ > c · 0 = 0.
(iii) By Definition 18(iii), we have cλ < c · 0 = 0. Taking c = −1 gives the second

statement.

Definition 21. Let Φ be a root system in V . A subset Π of Φ is called a positive system if
there exists a total ordering < of V such that

Π = {α ∈ Φ | α > 0}. (33)
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Since a total ordering of V always exists by Example 19, and every total ordering of
V defines a positive system of a root system Φ in V , according to Definition 21, there are
many positive systems in Φ.

Example 22. Continuing Example 16, let < be the total ordering defined by the basis
ε1, . . . , εn. Then εi > εj if i < j. Thus, according to (33),

Π = {εi − εj | 1 ≤ i < j ≤ n}.

Lemma 23. If Π is a positive system in a root system Φ, then Φ = Π ∪ (−Π) (disjoint),
where

−Π = {−α | α ∈ Π}. (34)

In particular,
−Π = {α ∈ Φ | α < 0}. (35)

Proof. We have

Π ∩ (−Π) = ∅ (by Lemma 20(iii)),
Π ⊂ Φ (by Definition 21),

−Π ⊂ Φ (by Definition 14(R1)).

Thus, it remains to show Φ ⊂ Π ∪ (−Π). Suppose α ∈ Φ \ Π. Then

α /∈ Π =⇒ α 6> 0 (by (33))
=⇒ α < 0 (since 0 /∈ Φ)
=⇒ 0 < −α (by Definition 18(ii)
=⇒ −α ∈ Π (by (33))
=⇒ α ∈ −Π (by (34)).

This proves Φ \ Π ⊂ (−Π), proving Φ ⊂ Π ∪ (−Π).
Since Φ = Π ∪ (−Π) (disjoint) and 0 /∈ Φ, (33) implies (35).

Definition 24. Let Π be a positive system in a root system Φ. We call −Π defined by (34)
the negative system in Φ with respect to Π.

Definition 25. Let ∆ be a subset of a root system Φ. We call ∆ a simple system if ∆ is a
basis of the subspace spanned by Φ, and if moreover each α ∈ Φ is a linear combination of
∆ with coefficients all of the same sign (all nonnegative or all nonpositive). In other words,

Φ ⊂ R≥0∆ ∪R≤0∆, (36)

where
R≥0∆ = {

∑
α∈∆

cαα | cα ≥ 0 (α ∈ ∆)}.

If ∆ is a simple system, we call its elements simple roots.
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Example 26. Continuing Example 22,

∆ = {εi − εi+1 | 1 ≤ i < n} (37)

is a simple system. Indeed, for εi − εj ∈ Φ, we have

εi − εj =

{∑j−1
k=i(εk − εk+1) ∈ R≥0∆ if i < j,∑i−1
k=j(−(εj − εj+1)) ∈ R≤0∆ otherwise.
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May 16, 2016
For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product.

Recall that a total ordering < of V partitions V into three parts

V = V+ ∪ {0} ∪ (−V+),

such that

V+ + V+ ⊂ V+, (38)
R≥0V+ ⊂ V+ ∪ {0}. (39)

Lemma 27. Let ∆ be a finite set of nonzero vectors in V+. If (α, β) ≤ 0 for any distinct
α, β ∈ ∆, then ∆ consists of linearly independent vectors.

Proof. Let ∑
α∈∆

aαα = 0, (40)

and define
σ =

∑
α∈∆
aα>0

aαα.

Then

0 ≤ (σ, σ)

= (
∑
α∈∆
aα>0

aαα,
∑
α∈∆

aαα−
∑
β∈∆
aβ<0

aββ)

= (
∑
α∈∆
aα>0

aαα,−
∑
β∈∆
aβ<0

aββ) (by (40))

= −
∑
α∈∆
aα>0

∑
β∈∆
aβ<0

aαaβ(α, β)

≤ 0.

This forces σ = 0, so there is no α ∈ ∆ with aα > 0. Similarly, we can show that there is
no α ∈ ∆ with aα < 0. Therefore, aα = 0 for all α ∈ ∆.

Lemma 28. Let ∆ ⊂ V+ be a subset, and let α, β ∈ ∆ be linearly independent. If
α ∈ R>0β +R≥0∆, then α ∈ R≥0(∆ \ {α}).

Proof. Since

α ∈ R>0β +R≥0∆
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= R>0β +R≥0α +R≥0β +R≥0(∆ \ {α, β})
= R≥0α +R>0β +R≥0(∆ \ {α, β})
⊂ R≥0α + V+ ∩R≥0(∆ \ {α}),

there exists a ∈ R≥0 such that

α ∈ aα + V+ ∩R≥0(∆ \ {α}). (41)

Thus

(1− a)α ∈ V+, (42)
(1− a)α ∈ R≥0(∆ \ {α}). (43)

By (42), we have 1− a > 0. The result then follows from (43).

For a root system Φ in V , we denote by P(Φ) and S(Φ), the set of positive systems and
that of simple systems, respectively, in Φ. More specifically,

P(Φ) = {{α ∈ Φ | α > 0} | “>” is a total ordering of V },
S(Φ) = {∆ ⊂ Φ | Φ ⊂ R≥0∆ ∪R≤0∆, ∆ is linearly independent}.

It is clear that P(Φ) is non-empty, since V can be given a total ordering. We show that
S(Φ) is non-empty by establishing a bijection between S(Φ) and P(Φ), which is defined
by

π : S(Φ) → P(Φ)
∆ 7→ Φ ∩R≥0∆.

(44)

Lemma 29. Let Φ be a root system in V . If ∆ is a simple system contained in a positive
system Π, then

(i) Π = Φ ∩R≥0∆,

(ii) ∆ = {α ∈ Π | α /∈ R≥0(Π \ {α})}.

Proof. (i) Since ∆ is a simple system, we have

Φ ⊂ R≥0∆ ∪R≤0∆. (45)

Since ∆ ⊂ Π ⊂ V+ for some total ordering of V , we have

R≥0∆ ⊂ V+ ∪ {0}, (46)
R≤0∆ ⊂ V− ∪ {0}. (47)

Thus

Π = Φ ∩ V+

= Φ ∩ (R≥0∆ ∪R≤0∆) ∩ V+ (by (45))
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= Φ ∩R≥0∆ ∩ V+ (by (47))
= Φ ∩ (R≥0∆ \ {0}) (by (46))
= Φ ∩R≥0∆.

(ii) If α ∈ Π \∆, then ∆ ⊂ Π \ {α}, so R≥0(Π \ {α}) ⊃ R≥0∆ 3 α. This proves

∆ ⊃ {α ∈ Π | α /∈ R≥0(Π \ {α})}.

Conversely, suppose α ∈ Π and α ∈ R≥0(Π \ {α}). Then there exists β ∈ Π \ {α}
such that

α ∈ R>0β +R≥0(Π \ {α, β})
⊂ R>0β +R≥0Π

= R>0β +R≥0∆ (by (i)).

Since β ∈ Π \ {α} ⊂ R≥0∆ \R≥0α, there exists δ ∈ ∆ \ {α} such that

β ∈ R>0δ +R≥0∆.

Thus α ∈ R>0δ+R≥0∆, and hence {α}∪∆ is linearly dependent. This implies α /∈ ∆.

Recall that for 0 6= α ∈ V , sα ∈ O(V ) denotes the reflection

sα(λ) = λ− 2(λ, α)

(α, α)
α (λ ∈ V ). (48)

Theorem 30. Let Φ be a root system in V . Then the mapping π : S(Φ) → P(Φ) defined
by (44) is a bijection whose inverse is given by

π−1 : P(Φ) → S(Φ)
Π 7→ {α ∈ Π | α /∈ R≥0(Π \ {α})}. (49)

Moreover,

(i) for every simple system ∆ in Φ, π(∆) is the unique positive system containing ∆,

(ii) for every positive system Π in Φ, π−1(Π) is the unique simple system contained in Π.

Proof. If ∆ ∈ S(Φ), then ∆ is a basis of the subspace spanned by Φ, so there exists a basis
∆̃ of V containing ∆. By Example 19, there exists a total ordering < of V such that α > 0
for all α ∈ ∆̃. Then

π(∆) = Φ ∩R≥0∆

= Φ ∩ (R≥0∆ ∪R≤0∆) ∩ V+

= Φ ∩ V+

is a positive system containing ∆.

21



Next we show that π is injective. Suppose ∆,∆′ ∈ S(Φ) and π(∆) = π(∆′). Then
both ∆ and ∆′ are simple system contained in Π = π(∆). By Lemma 29(ii), we have

∆ = {α ∈ Π | α /∈ R≥0(Π \ {α})} = ∆′.

Therefore, π is injective. Note that this shows

π−1(Π) ⊂ {{α ∈ Π | α /∈ R≥0(Π \ {α})}}. (50)

Next we show that π is surjective. Suppose Π ∈ P(Φ). Define D by

D = {∆ ⊂ Π | Π ⊂ R≥0∆}. (51)

Since Φ is a finite set, so are Π and D. Since Π ∈ D, D is non-empty. Thus, there exists a
minimal member ∆ of D. This means

Π ⊂ R≥0∆, (52)
∀α ∈ ∆, Π 6⊂ R≥0(∆ \ {α}). (53)

Since Π is a positive system, there exists a total ordering of V such that Π = Φ ∩ V+. In
particular, ∆ ⊂ V+. We claim

(α, β) ≤ 0 for all pairs α 6= β in ∆. (54)

Indeed, suppose, to the contrary, (α, β) > 0 for some distinct α, β ∈ ∆. Since ±sα(β) ∈
Φ = Π ∪ (−Π), in view of (48), we may assume without loss of generality α ∈ R>0β +
R≥0∆. Then by Lemma 28, we obtain α ∈ R≥0(∆ \ {α}). Now

R≥0(∆ \ {α}) = R≥0α +R≥0(∆ \ {α})
= R≥0∆

⊃ Π,

contradicting (53). This proves (54). Now, by Lemma 27, ∆ consists of linearly indepen-
dent vectors. We have shown that ∆ is a simple system, and by construction, ∆ ⊂ Π.
Lemma 29(i) then implies Π = π(∆). Therefore, π is surjective. This also implies that
equality holds in (50), which shows that the inverse π−1 is given by (49).

Finally, (i) follows from Lemma 29(i), while (ii) follows from Lemma 29(ii).
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May 30, 2016
For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. We also let Φ be a root system in V . Recall that P(Φ) and S(Φ)
denote the set of positive systems and that of simple systems, respectively, in Φ. Define

π : S(Φ) → P(Φ)
∆ 7→ Φ ∩R≥0∆.

Theorem 30 is proved in an awkward manner, in the sense that π−1(Π) ∈ S(Φ) for Π ∈
P(Φ) is not explicitly shown. Lemma 29(ii) shows that the existence of a simple system
in Π does imply π−1(Π) ∈ S(Φ), but showing the existence of a simple system in Π is a
separate problem. Here is how one can show π−1(Π) ∈ S(Φ) directly. We need a lemma.

Lemma 31. Suppose that V is given a total ordering, let A ⊂ V+ be a subset, α1, . . . , αn ∈
V+, and β ∈ V+ \

⋃n
i=1Rαi. If

αi ∈ R≥0(A ∪ {β}), (55)
β ∈ R≥0(A ∪ {α1, . . . , αn}), (56)

then α1, . . . , αn, β ∈ R≥0A.

Proof. Let A = R≥0A, A+ = A \ {0}. By the assumption, we have A+ ⊂ V+. Then it
suffices to show

β ∈ A (57)

only, since αi ∈ A follows immediately from (55) and (57).
By (55), there exist bi ∈ R≥0 and λi ∈ A such that

αi = biβ + λi. (58)

Since β /∈ Rαi, we have λi 6= 0, i.e.,

λi ∈ A+. (59)

By (56), there exist a1, . . . , an ∈ R≥0 such that

β ∈
n∑

i=1

aiαi +A. (60)

If ai = 0 for all i, then (57) holds, so we may assume ai > 0 for some i. Then (59) implies
n∑

i=1

aiλi ∈ A+. (61)

By (58) and (60), we obtain

β ∈
n∑

i=1

ai(biβ + λi) +A
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=
n∑

i=1

aibiβ +
n∑

i=1

aiλi +A

⊂
n∑

i=1

aibiβ +A+ (by (61))

=
n∑

i=1

aibiβ + V+ ∩ A.

This implies (
1−

n∑
i=1

aibi

)
β ∈ V+, (62)(

1−
n∑

i=1

aibi

)
β ∈ A. (63)

By (62), we have 1−
∑n

i=1 aibi > 0. Then (57) follows from (63).

Proposition 32. Let Π ∈ P(Φ), and set

∆ = {α ∈ Π | α /∈ R≥0(Π \ {α})}.

Then

(i) (α, β) ≤ 0 for all α 6= β in ∆,

(ii) ∆ is a simple system in Φ.

Proof. (i) Suppose, to the contrary, (α, β) > 0 for some distinct α, β ∈ ∆. Since ±sα(β) ∈
Φ = Π ∪ (−Π), in view of (48), we may assume without loss of generality α ∈ R>0β +
R≥0Π. By Lemma 28, we obtain α ∈ R≥0(Π \ {α}), which contradicts α ∈ ∆.

(ii) By (i) and Lemma 27, ∆ consists of linearly independent vectors. It remains to
show Π ⊂ R≥0∆. We consider the set

B = {B ⊂ Π \∆ | B ⊂ R≥0(Π \B)}.

For all α ∈ Π \∆, we have α ∈ R≥0(Π \ {α}). Thus {α} ∈ B, and hence B 6= ∅.
Let B = {α1, . . . , αn} be a maximal member of B. Suppose B ( Π \ ∆. Then there

exists β ∈ Π \ (B ∪ ∆). Set A = Π \ (B ∪ {β}). Then (55) holds since B ∈ B, while
(56) holds since β /∈ ∆. Lemma 31 then implies α1, . . . , αn, β ∈ R≥0(Π\ (B∪{β}). This
implies B ∪{β} ∈ B, contradicting maximality of B. Therefore, B = Π \∆. This implies
Π \ ∆ ∈ B, which in turn implies Π \ ∆ ⊂ R≥0∆. Since ∆ ⊂ R≥0∆ holds trivially, we
obtain Π ⊂ R≥0∆. This completes the proof of (ii).

Recall
W (Φ) = 〈sα | α ∈ Φ〉.

By Definition 14(R2), we have

wΦ = Φ (w ∈ W (Φ)). (64)
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Lemma 33. Let w ∈ W (Φ). Then

(i) w∆ ∈ S(Φ) and π(w∆) = wπ(∆) for all ∆ ∈ S(Φ),

(ii) wΠ ∈ P(Φ) and π−1(wΠ) = wπ−1(Π) for all Π ∈ P(Φ).

Proof. (i) Clear from (64) and (44).
(ii) For Π ∈ P(Φ), let ∆ = π−1(Π) ∈ S(Φ). Then wΠ = wπ(∆) = π(w∆) ∈

π(S(Φ)) = P(Φ) by (i). Also, π−1(wΠ) = w∆ = wπ−1(Π).

Lemma 34. Let α ∈ ∆ ∈ S(Φ) and Π = π(∆). Then sα(Π \ {α}) = Π \ {α}.

Proof. Let β ∈ Π \ {α}, and write β =
∑

γ∈∆ cγγ. Then

∃γ ∈ ∆ \ {α}, cγ > 0. (65)

Set

c =
2(β, α)

(α, α)
,

so that

sαβ = β − cα

=
∑
γ∈∆

cγγ − cα

=
∑

γ∈∆\{α}

cγγ + (cα − c)α.

Since sαβ ∈ Φ ⊂ R≥0∆ ∪ R≤0∆, (65) implies sαβ ∈ Φ ∩ R≥0∆ = π(∆) = Π. Since
β ∈ Π 63 −α, we have β 6= −α = sαα. Thus sαβ 6= α. Therefore, sαβ ∈ Π \ {α}.

Definition 35. Let G be a group, and let Ω be a set. We say that G acts on Ω if there is a
mapping

G× Ω → Ω
(g, α) 7→ g.α

(g ∈ G, α ∈ Ω)

such that

(i) 1.α = α for all α ∈ Ω,

(ii) g.(h.α) = (gh).α for all g, h ∈ G and α ∈ Ω.

We say that G acts transitively on Ω, or the action of G is transitive, if

∀α, β ∈ Ω, ∃g ∈ G, g.α = β.

Observe, by Lemma 23,

|Π| = 1

2
|Φ| (Π ∈ P(Φ)). (66)
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Theorem 36. The group W (Φ) acts transitively on both P(Φ) and S(Φ).

Proof. First we show that

∀Π,Π′ ∈ P(Φ), ∃w ∈ W (Φ), wΠ = Π′ (67)

by induction on r = |Π ∩ (−Π′)|. If r = 0, then Π ⊂ Π′, and we obtain Π = Π′ by (66).
If r > 0, then Π 6= Π′. Let ∆ = π−1(Π). Then ∆ 6= π−1(Π′), so ∆ is not contained

in Π′ by Theorem 30(ii). This implies ∆ ∩ (−Π′) 6= ∅ since Φ = Π′ ∪ (−Π′). Choose
α ∈ ∆ ∩ (−Π′). Then

−α /∈ −Π′. (68)

Since

sαΠ = sα({α} ∪ (Π \ {α}))
= {sαα} ∪ (sα(Π \ {α}))
= {−α} ∪ sα(Π \ {α})
= {−α} ∪ (Π \ {α}) (by Lemma 34),

we have

|sαΠ ∩ (−Π′)| = |({−α} ∪ (Π \ {α})) ∩ (−Π′)|
= |(Π \ {α}) ∩ (−Π′)| (by (68))
= |(Π ∩ (−Π′)) \ {α}|
= r − 1.

Since sαΠ ∈ P(Φ) by Lemma 33(ii), the inductive hypothesis applied to the pair sαΠ,Π′

implies that there exists w ∈ W (Φ) such that wsαΠ = Π′. Therefore, we have proved (67),
which implies that W (Φ) acts transitively on P(Φ). The transitivity of W (Φ) on S(Φ)
now follows immediately from Lemma 33 using the fact that π is a bijection from S(Φ) to
P(Φ).

Definition 37. Let ∆ ∈ S(Φ). For β =
∑

α∈∆ cαα ∈ Φ, the height of β relative to ∆,
denoted ht(β), is defined as

ht(β) =
∑
α∈∆

cα.

Example 38. Continuing Example 26, let

∆ = {εi − εi+1 | 1 ≤ i < n} ∈ S(Φ),

where
Φ = {±(εi − εj) | 1 ≤ i < j ≤ n}.

Then for i < j,

ht(εi − εj) = ht(

j−1∑
k=i

(εk − εk+1)) = j − i.
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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. We also let Φ be a root system in V , and fix a simple system ∆ in
Φ. Let Π = Φ ∩R≥0∆ be the unique positive system containing ∆. Recall

W (Φ) = 〈sα | α ∈ Φ〉,

which we denote by W for brevity.

Lemma 39. If β ∈ Π\∆, then there exists α ∈ ∆ such that sαβ ∈ Π and ht(β) > ht(sαβ).

Proof. Write β =
∑

α∈∆ cαα, where cα ∈ R≥0 for α ∈ ∆. Since

0 < (β, β)

=
∑
α∈∆

cα(α, β),

there exists α ∈ ∆ such that cα(α, β) > 0. In particular, as cα ≥ 0, we have

c =
2(α, β)

(α, α)
> 0.

Since

sαβ = β − cα

=
∑

γ∈∆\{α}

cγγ + (cα − c)α,

we have ht(sαβ) = ht(β) − c < ht(β). Since β ∈ Π \∆ ⊂ Π \ {α}, Lemma 34 implies
sαβ ∈ Π.

Lemma 40. If β ∈ Φ, then there exists a sequence α1, . . . , αm of elements in ∆ such that
sα1 · · · sαmβ ∈ ∆.

Proof. We first prove the assertion for β ∈ Π. Suppose there exists β ∈ Π such that
the assertion does not hold. Then clearly β /∈ ∆. We may assume that β has minimal
height among such elements. By Lemma 39, there exists α ∈ ∆ such that sαβ ∈ Π
and ht(β) > ht(sαβ). By the minimality of ht(β), there exists a sequence α1, . . . , αm of
elements of ∆ such that sα1 · · · sαm(sαβ) ∈ ∆. This is a contradiction.

If β ∈ −Π, then −β ∈ Π, so there exist α, α1, . . . , αm ∈ ∆ such that

α = sα1 · · · sαm(−β).

Then

sαsα1 · · · sαmβ = −sαsα1 · · · sαm(−β)
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= −sαα

= α

∈ ∆.

Theorem 41. If ∆ is a simple system in a root system Φ, then W = 〈sα | α ∈ ∆〉.

Proof. Let β ∈ Φ. By Lemma 40, there exist α0, α1, . . . , αm ∈ ∆ such that sα1 · · · sαmβ =
α0. Then

sβ = s(sα1 ···sαm )−1α0

= (sα1 · · · sαm)
−1sα0sα1 · · · sαm (by Lemma 12)

= sαm · · · sα1sα0sα1 · · · sαm

∈ 〈sα | α ∈ ∆〉.

Definition 42. For w ∈ W , we define the length of w, denoted `(w), to be

`(w) = min{r ∈ Z | r ≥ 0, ∃α1, . . . , αr ∈ ∆, w = sα1 · · · sαr}.

By convention, `(1) = 0.

Clearly, `(w) = 1 if and only if w = sα for some α ∈ ∆. It is also clear that `(w) =
`(w−1).

Lemma 43. For w ∈ W , det(w) = (−1)`(w).

Proof. Since det(sα) = −1 for all α ∈ Φ, the result follows immediately.

Lemma 44. For w ∈ W and α ∈ ∆, `(sαw) = `(w) + 1 or `(w)− 1.

Proof. It is clear from the definition that `(sαw) ≤ `(w) + 1. Switching the role of w and
sαw, we obtain `(sαw) ≥ `(w)− 1. Thus

`(sαw) ∈ {`(w)− 1, `(w), `(w) + 1}.

Since

(−1)`(sαw) = det(sαw) (by Lemma 43)
= − detw

= −(−1)`(w) (by Lemma 43).

This implies `(sαw) 6= `(w).
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Notation 45. For w ∈ W , we write

n(w) = |Π ∩ w−1(−Π)|.

Lemma 46. For w ∈ W , n(w−1) = n(w).

Proof.

n(w−1) = |Π ∩ w(−Π)|
= |w−1Π ∩ (−Π)|
= |w−1(−Π) ∩ Π|
= n(w).

Lemma 47. For w ∈ W and α ∈ ∆, the following statements hold:

(i) wα > 0 =⇒ n(wsα) = n(w) + 1.

(ii) wα < 0 =⇒ n(wsα) = n(w)− 1.

(iii) w−1α > 0 =⇒ n(sαw) = n(w) + 1.

(iv) w−1α < 0 =⇒ n(sαw) = n(w)− 1.

Proof. (i) Since wα ∈ Π, we have α ∈ w−1Π. Thus

α /∈ w−1(−Π), (69)

and

α = −sαα

∈ −sαw
−1Π

= sαw
−1(−Π). (70)

Thus

n(wsα) = |Π ∩ (wsα)
−1(−Π)|

= |Π ∩ sαw
−1(−Π)|

= |(Π \ {α}) ∩ sαw
−1(−Π)|+ 1 (by (70))

= |sα(Π \ {α}) ∩ sαw
−1(−Π)|+ 1 (by Lemma 34)

= |(Π \ {α}) ∩ w−1(−Π)|+ 1

= |Π ∩ w−1(−Π)|+ 1 (by (69))
= n(w) + 1.
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(ii) Since wα ∈ −Π, we have

α ∈ w−1(−Π), (71)

and α /∈ w−1Π, so

α = −sαα

/∈ −sαw
−1Π

= sαw
−1(−Π). (72)

Thus

n(wsα) = |Π ∩ (wsα)
−1(−Π)|

= |Π ∩ sαw
−1(−Π)|

= |(Π \ {α}) ∩ sαw
−1(−Π)| (by (72))

= |sα(Π \ {α}) ∩ sαw
−1(−Π)| (by Lemma 34)

= |(Π \ {α}) ∩ w−1(−Π)|
= |Π ∩ w−1(−Π)| − 1 (by (71))
= n(w)− 1.

(iii) and (iv)

n(sαw) = n((sαw)
−1) (by Lemma 46)

= n(w−1sα)

=

{
n(w−1) + 1 if w−1α > 0,
n(w−1)− 1 if w−1α < 0

=

{
n(w) + 1 if w−1α > 0,
n(w)− 1 if w−1α < 0

(by Lemma 46).

Theorem 48. Let ∆ be a simple system in a root system Φ. Let α1, . . . , αr ∈ ∆ and
w = s1 · · · sr ∈ W , where si = sαi

for 1 ≤ i ≤ r. If n(w) < r, then there exist i, j with
1 ≤ i < j ≤ r satisfying the following conditions:

(i) αi = si+1 · · · sj−1αj ,

(ii) si+1si+2 · · · sj = sisi+1 · · · sj−1,

(iii) w = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sr.

In particular, n(w) ≥ `(w).
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Proof. (i) Setting w = 1 in Lemma 47(i), we find n(sα) = 1 for every α ∈ ∆. This implies
that, if r = 1, then n(w) = 1. Therefore, we may assume r ≥ 2.

We claim that there exists j with 2 ≤ j ≤ r such that s1 · · · sj−1αj < 0. Suppose, to
the contrary,

s1 · · · sj−1αj > 0 (73)

for all j with 2 ≤ j ≤ r. Since α1 > 0, (73) holds also for j = 1. By Lemma 47(i),
we obtain n(s1 · · · sj) = n(s1 · · · sj−1) + 1 for 1 ≤ j ≤ r. By using induction, we obtain
n(w) = r, contrary to our hypothesis.

Since αj > 0, there exists i with 1 ≤ i < j such that

si+1 · · · sj−1αj > 0,

sisi+1 · · · sj−1αj < 0.

Thus

sisi+1 · · · sj−1αj ∈ siΠ ∩ (−Π)

= sαi
((Π \ {αi}) ∪ {αi}) ∩ (−Π)

= ((Π \ {αi}) ∪ {−αi}) ∩ (−Π) (by Lemma 34)
= {−αi}
= {si(αi)}.

This implies si+1 · · · sj−1αj = αi.
(ii)

si+1 · · · sj = si+1 · · · sj−1sαj
(si+1 · · · sj−1)

−1(si+1 · · · sj−1)

= ssi+1···sj−1αj
(si+1 · · · sj−1) (by Lemma 12)

= sαi
(si+1 · · · sj−1) (by (i))

= sisi+1 · · · sj−1.

(iii)

w = s1 · · · sr
= s1 · · · si−1(si · · · sj−1)sj · · · sr
= s1 · · · si−1(si+1 · · · sj)sj · · · sr (by (ii))
= s1 · · · si−1si+1 · · · sj−1sj+1 · · · sr.

In particular, n(w) < r implies r 6= `(w). Thus n(w) ≥ `(w).

Corollary 49. If w ∈ W , then n(w) = `(w).

Proof. From the last part of Theorem 48, it suffices to prove

n(w) ≤ `(w) (w ∈ W ). (74)
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By the definition of `(w), there exists α1, . . . , α`(w) ∈ ∆ such that w = sα1 · · · sα`(w)
. We

prove (74) by induction on m = `(w). If m = 0, then w = 1, and n(w) = 0 = `(w).
Assume the result holds for up to m− 1. Then

n(sα1 · · · sα`(w)−1
) ≤ `(sα1 · · · sα`(w)−1

)

≤ `(w)− 1. (75)

n(w) = n((sα1 · · · sα`(w)−1
)sα`(w)

)

≤ n(sα1 · · · sα`(w)−1
) + 1 (by Lemma 47(i),(ii))

≤ `(w) (by (75)).
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Lemma 50. With reference to Definition 6, if a, b, x, y ∈ F (X) and xN = yN , then
axbN = aybN .

Proof.

xN = yN =⇒ x−1y ∈ N

=⇒ b−1x−1yb ∈ N

=⇒ xbN = ybN

=⇒ axbN = aybN.

Lemma 51. With reference to Definition 6, suppose t1, . . . , tr ∈ X . If there exist i, j with
1 ≤ i < j ≤ r such that

ti · · · tj−1tjtj−1 · · · ti+1 ∈ N,

then
t1 · · · trN = t1 · · · t̂i · · · t̂j · · · trN,

where the hat denotes omission.

Proof. Setting a = t1 · · · ti, b = ti+1 · · · tr, x = 1 and y = ti · · · tj−1tjtj−1 · · · ti+1 in
Lemma 50 gives the result.

Theorem 52. Let ∆ be a simple system in a root system Φ. For α, β ∈ ∆, let m(α, β)
denote the order of sαsβ , that is, the least positive integer k such that (sαsβ)k = 1 holds.
Then the group W = W (Φ) has presentation 〈X | R〉, where

X = {tα | α ∈ ∆} (a set of formal symbols),

R = {(tαtβ)m(α,β) | α, β ∈ ∆, α 6= β}.

Proof. As in Definition 6, let F (X) denote the free group generated by the set of involu-
tions X . Let N be the subgroup generated by the set

{c−1r±1c | c ∈ F (X), r ∈ R}. (76)

We need to show that W is isomorphic to F (X)/N .
Clearly, there is a homomorphism from F (X) to W mapping tα to sα for all α ∈ ∆.

By Theorem 41, this homomorphism is surjective. Moreover, since the set (76) is mapped
to 1 by this homomorphism, there exists a surjective homomorphism f : F (X)/N → W
satisfying f(tαN) = sα for all α ∈ ∆. We need to show that f is injective. This will follow
if

t1, . . . , tr ∈ T, f(t1 · · · trN) = 1 =⇒ t1 · · · tr ∈ N. (77)
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We prove this by induction on r. First we note that r is even. Indeed, f(t1 · · · trN) = 1
implies

s1 · · · sr = 1, (78)

where si = f(tiN) ∈ {sα | α ∈ ∆} is a reflection. Thus det si = −1, so (−1)r = 1. This
implies that r is even. Clearly, (77) holds for r = 0. Also, if r = 2, then s1s2 = 1. This
implies s1 = s2, so t1 = t2. Thus t1t2 = 1 ∈ N .

Now assume r = 2q, where q ≥ 2. We first prove the special case where

t1 = t3 = · · · = t2q−1, t2 = t4 = · · · = t2q. (79)

In this case, let t1 = tα and t2 = tβ . then (78) implies (sαsβ)q = 1, which in turn implies
m(α, β) | q. Thus

t1 · · · t2q = ((tαtβ)
m(α,β))q/m(α,β) ∈ N.

Next we prove another special case where

1 ≤ ∃i < ∃j ≤ 2q, j − i < q, s1 · · · ŝi · · · ŝj · · · s2q = 1. (80)

Indeed, comparing this with (78) yields

si · · · sj = si+1 · · · sj−1,

or equivalently,
f(ti · · · tj−1tjtj−1 · · · ti+1N) = 1.

Since j − i < q, we can apply the inductive hypothesis to conclude

ti · · · tj−1tjtj−1 · · · ti+1 ∈ N.

Using Lemma 51, we obtain

t1 · · · t2qN = t1 · · · t̂i · · · t̂j · · · t2qN. (81)

Together with the assumption of (77), we obtain

f(t1 · · · t̂i · · · t̂j · · · t2qN) = 1,

which, by the inductive hypothesis, shows

t1 · · · t̂i · · · t̂j · · · t2q ∈ N.

The result then follows from (81).
Before proceeding to the general case, observe

s1 · · · sr = 1 ⇐⇒ si · · · srs1 · · · si−1 = 1,

t1 · · · tr ∈ N ⇐⇒ ti · · · trt1 · · · ti−1 ∈ N.
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Define sr+i = si for 1 ≤ i ≤ r and tr+i = ti for 1 ≤ i ≤ r. Then the second special case
treated above actually takes care of the case:

1 ≤ ∃i < ∃j ≤ 4q, j − i < q, si · · · sj = si+1 · · · sj−1. (82)

Also, since the first special case has already been established, we may assume that there
exists i with 1 ≤ i ≤ 2q such that ti 6= ti+2. Without loss of generality, we may assume
t1 6= t3, so

s1 6= s3. (83)

Since
sksk+1 · · · sk+q = sk+2q−1sk+2q−2 · · · sk+q+1 (1 ≤ k ≤ 2q),

we have
`(sksk+1 · · · sk+q) ≤ q − 1 < q + 1.

Theorem 48(iii) implies that there exist i, j with k ≤ i < j ≤ k + q such that

sksk+1 · · · sk+q = sk · · · ŝi · · · ŝj · · · sk+q,

or equivalently,
si · · · sj = si+1 · · · sj−1.

Since the second special case includes (82), we may assume k = i and j = k + q, that is,

sksk+1 · · · sk+q = sk+1 · · · sk+q−1 (1 ≤ k ≤ 2q).

In particular, as q ≥ 2,

s1s2 · · · sq+1 = s2 · · · sq, (84)
s2s3 · · · sq+2 = s3 · · · sq+1,

s3s4 · · · sq+3 = s4 · · · sq+2,

or equivalently,

s1s2 · · · sq = s2 · · · sq+1,

s2s3 · · · sq+1 = s3 · · · sq+2, (85)
s3s4 · · · sq+2 = s4 · · · sq+3. (86)

By (85), we have
s3(s2 · · · sq+1)(sq+2 · · · s4) = 1. (87)

In particular,
`(s3(s2 · · · sq+1)) ≤ q − 1 < q + 1.

If
s3(s2 · · · sq+1) = s2 · · · sq, (88)
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then (84) implies s1 = s3, contradicting (83). Thus s3(s2 · · · sq+1) 6= s2 · · · sq, and hence
Theorem 48(iii) implies that we are in the second special case for the relation (87), and
hence

t3(t2 · · · tq+1)(tq+2 · · · t4) ∈ N.

This implies
t2 · · · tq+1tq+2tq+1 · · · t3 ∈ N.

By Lemma 51, we obtain

t1 · · · t2qN = t1t̂2 · · · t̂q+2 · · · t2qN. (89)

Together with the assumption of (77), we obtain

f(t1t̂2 · · · t̂q+2 · · · t2qN) = 1,

which, by the inductive hypothesis, shows

t1t̂2 · · · t̂q+2 · · · t2q ∈ N.

The result then follows from (89).
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Definition 53. Let G be a group acting on a set Ω. We say that G acts simply transitively
on Ω if

(i) G acts transitively on Ω,

(ii) for every pair α, β of elements in Ω, there exists a unique element g ∈ G such that
g.α = β.

Lemma 54. Let G be a finite group acting transitively on a set Ω. Let Gα denote the
stabilizer of α in G, that is,

Gα = {g ∈ G | g.α = α}.

Then the following are equivalent:

(i) G acts simply transitively on Ω,

(ii) for every α ∈ Ω, Gα = {1},

(iii) for some α ∈ Ω, Gα = {1},

(iv) |G| = |Ω|.

Proof. (i) =⇒ (ii): Immediate from Definition 53(ii) by setting α = β.
(ii) =⇒ (iii): Trivial.
(iii) =⇒ (iv): The mapping φ : G → Ω defined by g 7→ g.α is a bijection. Indeed, φ is

surjective since G is transitive. If φ(g) = φ(h), then g.α = h.α, hence g−1h ∈ Gα = {1}.
This implies g = h. Thus φ is injective.

(iv) =⇒ (i): Let α ∈ Ω. Then

|G| = |Ω|

=
∑
β∈Ω

1

≤
∑
β∈Ω

|{g ∈ G | g.α = β}|

= |
⋃
β∈Ω

{g ∈ G | g.α = β}|

= |{g ∈ G | g.α ∈ Ω}|
= |G|.

This forces
|{g ∈ G | g.α = β}| = 1 (∀β ∈ Ω).

Since α ∈ Ω was arbitrary, we obtain (i).
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For the remainder of today’s lecture, we let Φ be a root system.

Theorem 55. The group W (Φ) acts simply transitively on P(Φ) and S(Φ).

Proof. By Theorem 36, W (Φ) acts transitively on P(Φ) and S(Φ). Let w ∈ W (Φ) and
Π ∈ P(Φ), and suppose wΠ = Π. Let ∆ be the unique simple system contained in Π.
Then by Corollary 49 and Notation 45,

`(w) = n(w)

= |Π ∩ w−1(−Π)|
= |Π ∩ (−w−1Π)|
= |Π ∩ (−Π)|
= |∅|
= 0.

Thus w = 1. Therefore, W (Φ) acts simply transitively on P(Φ).
Next suppose w∆ = ∆. Then by Lemma 33(i), we obtain wΠ = Π, and hence w = 1.

Therefore, W (Φ) acts simply transitively on S(Φ).

In what follows, we fix a simple system ∆ ∈ S(Φ). Let Π = Φ ∩R≥0∆ be the unique
positive system in Φ containing ∆.

Notation 56. Let S = {sα | α ∈ ∆}. For I ⊂ S, we define

WI = 〈I〉,
∆I = {α ∈ ∆ | sα ∈ I},
VI = R∆I ,

ΦI = Φ ∩ VI ,

ΠI = Π ∩ VI .

Lemma 57. For w ∈ 〈sα | α ∈ ΦI〉, we have

(i) wVI = VI ,

(ii) w(Π \ ΠI) = Π \ ΠI .

Proof. It suffices to show (i) and (ii) for w = sα with α ∈ ΦI . Let α ∈ ΦI .
(i) For β ∈ ∆I ⊂ VI , sαβ ∈ Rα + Rβ ⊂ VI . Thus sα∆I ⊂ VI , and this implies

sαVI = VI .
(ii) Let β ∈ Π \ ΠI . Then β /∈ VI = R∆I , so there exists γ ∈ ∆ \∆I such that

β ∈ R>0γ +R≥0∆.
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Since α ∈ ΦI ⊂ VI = R∆I , we have

sαβ = β − 2(β, α)

(α, α)
α

∈ R>0γ +R≥0∆+Rα

⊂ R>0γ +R≥0∆+R∆I .

Since γ /∈ ∆I , the coefficient of γ in the expansion of sαβ is positive. This implies sαβ ∈
Φ ∩R≥0∆ = Π. Since β ∈ Π \ ΠI was arbitrary, we obtain sα(Π \ ΠI) ⊂ Π. Since

sα(Π \ ΠI) ∩ VI = sα(Π \ VI) ∩ VI

= sα(Π \ VI) ∩ sαVI (by (i))
= sα((Π \ VI) ∩ VI)

= ∅,

we have sα(Π \ΠI) ⊂ Π \VI = Π \ΠI . Since sα is a bijection, we conclude sα(Π \ΠI) =
Π \ ΠI .

Proposition 58. Let I ⊂ S.

(i) ΦI is a root system with simple system ∆I .

(ii) ΠI is the unique positive system of ΦI containing the simple system ∆I .

(iii) W (ΦI) = WI .

(iv) Let ` be the length function of W with respect to ∆. Then the restriction of ` to WI

coincides with the length function `I of WI with respect to the simple system ∆I .

Proof. (i) For α ∈ ΦI ⊂ VI ,

Rα ∩ ΦI = (Rα ∩ Φ) ∩ VI

= {α,−α} ∩ VI

= {α,−α}.

Since

sαΦI = sαΦ ∩ sαVI

= Φ ∩ VI (by Lemma 57(i))
= ΦI .

we see that ΦI is a root system. Since ∆ is linearly independent, so is ∆I . Since

ΦI = Φ ∩ VI

⊂ (R≥0∆ ∪R≤0∆) ∩R∆I
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= (R≥0∆ ∩R∆I) ∪ (R≤0∆ ∩R∆I)

= (R≥0∆I) ∪ (R≤0∆I),

we see that ∆I is a simple system in ΦI .
(ii) Since

ΠI = Π ∩ VI

= Φ ∩R≥0∆ ∩ VI

= Φ ∩ VI ∩R≥0∆ ∩R∆I

= ΦI ∩R≥0∆I ,

the result follows from Lemma 29(i).
(iii)

W (ΦI) = 〈sα | α ∈ ∆I〉 (by Theorem 41)
= 〈I〉
= WI .

(iv) Let w ∈ WI = W (Φ). Then by Lemma 57(i), we have

wΦI = ΦI . (90)

and by Lemma 57(ii), we have w(Π\ΠI) = Π\ΠI ⊂ Π. This implies w(Π\ΠI)∩(−Π) =
∅. Thus

wΠ ∩ (−Π) = w(ΠI ∪ (Π \ ΠI)) ∩ (−Π)

= (wΠI ∪ w(Π \ ΠI)) ∩ (−Π)

= (w(ΠI) ∩ (−Π)) ∪ (w(Π \ ΠI) ∩ (−Π))

= w(ΠI) ∩ (−Π)

= w(Π ∩ VI) ∩ (−Π)

= wΠ ∩ wVI ∩ VI ∩ (−Π)

= w(Π ∩ VI) ∩ (−Π ∩ VI)

= w(ΠI) ∩ (−ΠI) (by (90)). (91)

Therefore,

`(w) = |Π ∩ w−1(−Π)| (by Corollary 49)
= |wΠ ∩ (−Π)|
= |w(ΠI) ∩ (−ΠI)| (by (91))
= |ΠI ∩ w−1(−ΠI)|
= `I(w) (by Corollary 49).
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For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Let Φ be a root system in V with simple system ∆. Let W =
W (Φ) = 〈sα | α ∈ Φ〉. Recall Notation 56.

Lemma 59. Let I ⊂ S. If u ∈ W satisfies

`(u) = min{`(x) | x ∈ uWI},

then
`(uv) = `(u) + `(v) (∀v ∈ WI).

Proof. Let q = `(u). Then there exist s1, . . . , sq ∈ S such that

u = s1 · · · sq.

Let v ∈ WI . Then by Proposition 58(iv), we have `(v) = `I(v). This implies that there
exist sq+1, . . . , sq+r ∈ I such that

v = sq+1 · · · sq+r,

where r = `(v). Then uv = s1 · · · sq+r, hence `(uv) ≤ q + r.
Suppose `(w) < q + r. Then by Theorem 48, there exist i, j with 1 ≤ i < j ≤ q + r

such that
uv = s1 · · · ŝi · · · ŝj · · · sq+r.

If i < j ≤ q, then
uv = s1 · · · ŝi · · · ŝj · · · sqv,

hence u = s1 · · · ŝi · · · ŝj · · · sq, contradicting `(u) = q. Similarly, if q + 1 ≤ i < j, then

uv = usq+1 · · · ŝi · · · ŝj · · · sq+r,

hence v = sq+1 · · · ŝi · · · ŝj · · · sq+r, contradicting `(v) = r. Thus

1 ≤ i ≤ q < j ≤ q + r.

Setting

u′ = s1 · · · ŝi · · · sq,
v′ = sq+1 · · · ŝj · · · sq+r ∈ WI ,

we have u′v′ = uv, and hence u′ = uvv′−1 ∈ uWI . But `(u′) < q = `(u), contrary to the
minimality of `(u). Therefore, we conclude `(w) = q + r = `(u) + `(v).

Notation 60. For I ⊂ S, we define

W I = {w ∈ W | `(ws) > `(w) for all s ∈ I}.
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Lemma 61. Let I ⊂ S and w ∈ W . If u0 ∈ wWI satisfies

`(u0) = min{`(x) | x ∈ wWI},

and u1 ∈ W I ∩ wWI , then u0 = u1. In particular,

(i) W I ∩ wWI consists of a single element,

(ii) min{`(x) | x ∈ wWI} is achieved by a unique element,

and the elements described in (i) and (ii) coincide.

Proof. Since u1 ∈ wWI = u0WI , there exists v ∈ WI such that u1 = u0v. Suppose v 6= 1.
Then there exists s ∈ I such that `(vs) < `(v). This implies

`(u1s) = `(u0vs)

= `(u0) + `(vs) (by Lemma 59)
< `(u0) + `(v)

= `(u0v) (by Lemma 59)
= `(u1).

This contradicts u1 ∈ W I . Thus, we conclude v = 1, or equivalently, u1 = u0. The rest of
the statements are immediate.

Lemma 62. Let I ⊂ S. The mapping φ : W I × WI → W defined by φ(u, v) = uv is a
bijection, and it satisfies

`(φ(u, v)) = `(u) + `(v) (u ∈ W I , v ∈ WI).

Proof. Let w ∈ W . Choose u0 = u1 ∈ W I ∩ wWI as in Lemma 61. Then there exists
v ∈ WI such that u0 = wv. Then w = φ(u0, v

−1). Thus φ is surjective.
Suppose (u, v), (u′, v′) ∈ W I × WI and φ(u, v) = φ(u′, v′). Then uv = u′v′. Thus

u, u′ ∈ W I ∩ uWI , which forces u = u′ by Lemma 61(i). Then we also have v = v′. Thus
φ is injective.

Finally, for u ∈ W I , we have u ∈ W I ∩uWI , so Lemma 61 implies `(u) = min{`(x) |
x ∈ uWI}. Then by Lemma 59, we have `(uv) = `(u) + `(v) for all v ∈ WI .

Notation 63. Let t be an indeterminate over Q, or in other words, consider the polynomial
ring Q[t] (or its field of fractions Q(t)). For a subset X of W , write

X(t) =
∑
w∈X

t`(w).

Definition 64. The Poincaré polynomial W (t) of W is defined as

W (t) =
∑
w∈W

t`(w).
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We remark that W (t) is independent of the choice of a simple system, even though the
length function ` does depend on it. Indeed, let ∆′ be another simple system. Then there
exists z ∈ W such that ∆′ = z∆ by Theorem 36. Let

S = {sα | α ∈ ∆},
S ′ = {sα | α ∈ ∆′}.

Then

zSz−1 = {zsαz−1 | α ∈ ∆}
= {szα | α ∈ ∆} (by Lemma 12)
= {sα | α ∈ z∆}
= {sα | α ∈ ∆′}
= S ′.

If we denote by the length function with respect to ∆ and ∆′ by `∆ and `∆′ , respectively,
then `∆(w) = `∆′(zwz−1) for all w ∈ W . Thus∑

w∈W

t`∆(w) =
∑
w∈W

t`∆′ (zwz−1) =
∑
w∈W

t`∆′ (w).

Lemma 65. For I ⊂ S,
W (t) = W I(t)WI(t).

Proof. By Lemma 62,

W (t) =
∑
w∈W

t`(w)

=
∑

(u,v)∈W I×WI

t`(φ(u,v))

=
∑
u∈W I

∑
v∈WI

t`(u)+`(v)

=
∑
u∈W I

t`(u)
∑
v∈WI

t`(v)

= W I(t)WI(t).

Lemma 66. Let Π be the unique positive system containing ∆. For w ∈ W , set

K(w) = {s ∈ S | `(ws) > `(w)}.

Then the following are equivalent:

(i) K(w) = ∅,
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(ii) wΠ = −Π,

(iii) `(w) = |Π|.
Moreover, there exists a unique w ∈ W satisfying these conditions.

Proof. Equivalence of (ii) and (iii) follows from Corollary 49.

(i) ⇐⇒ `(ws) < `(w) (∀s ∈ S)

⇐⇒ w∆ ⊂ −Π (by Lemma 47)
⇐⇒ wΠ ⊂ −Π

⇐⇒ (ii).

The uniqueness of w follows from Theorem 55.

Proposition 67. Then∑
I⊂S

(−1)|I|
W (t)

WI(t)
=
∑
I⊂S

(−1)|I|W I(t) = t|Π|.

Proof. The first equality follows immediately from Lemma 65. For I ⊂ S, we have

w ∈ W I ⇐⇒ K(w) ⊃ I.

Thus ∑
I⊂S

(−1)|I|W I(t) =
∑
I⊂S

(−1)|I|
∑

w∈W I

t`(w)

=
∑
w∈W

∑
I⊂S

w∈W I

(−1)|I|t`(w)

=
∑
w∈W

∑
I⊂K(w)

(−1)|I|t`(w)

=
∑
w∈W

t`(w)

|K(w)|∑
i=0

∑
I⊂K(w)
|I|=i

(−1)i

=
∑
w∈W

t`(w)

|K(w)|∑
i=0

(−1)i
(
|K(w)|

i

)
=

∑
w∈W

|K(w)|=0

t`(w) +
∑
w∈W

|K(w)|≥1

t`(w)(1 + (−1))|K(w)|

=
∑
w∈W

K(w)=∅

t`(w)

= t|Π|

by Lemma 66.
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July 4, 2016
For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Let Φ be a root system in V with simple system ∆, and let W =
W (Φ) = 〈sα | α ∈ Φ〉. Let Π = Φ ∩R≥0∆ be the unique positive system in Φ containing
∆.

Recall Notation 56 and Proposition 67:∑
I$S

(−1)|I|

WI(t)
=

t|Π| − (−1)|S|

W (t)
. (92)

Continuing Example 16 with n = 4, write W = G4, si = sεi−εi+1
for i = 1, 2, 3, so that

S = {s1, s2, s3}. Then

W∅(t) = 1,

W{si}(t) = t+ 1,

W{s1,s2}(t) = (t+ 1)(t2 + t+ 1).

If we compute WI(t) for all I $ S, then (92) can be used to determine W (t) and, in
particular, |W |.

Define

C = {λ ∈ V | (λ, α) > 0 (∀α ∈ ∆)},
D = {λ ∈ V | (λ, α) ≥ 0 (∀α ∈ ∆)}.

Lemma 68. For each λ ∈ V , there exist w ∈ W such that wλ ∈ D. Moreover, in this case,
wλ− λ ∈ R≥0∆.

Proof. Let λ ∈ V . Define a partial order on the set Wλ = {wλ | w ∈ W} by setting

µ � µ′ ⇐⇒ µ′ − µ ∈ R≥0∆ (µ, µ′ ∈ Wλ).

Since Wλ is finite, so is its subset

M = {µ ∈ Wλ | λ � µ}.

The set M is non-empty since λ ∈ M . Thus, there exists a maximal element µ in M . Since
µ = wλ for some w ∈ W and µ− λ ∈ R≥0∆, it remains to show µ ∈ D.

Suppose, to the contrary, µ /∈ D. Then there exists α ∈ ∆ such that (µ, α) < 0. By the
definition of a reflection, we have sαµ − µ ∈ R>0α ⊂ R≥0∆, so µ � sαµ and µ 6= sαµ.
Since λ � µ, we have λ � sαµ. Moreover, sαµ = sαwλ ∈ Wλ. Therefore, sαµ ∈ M , and
this contradicts maximality of µ in M .

Notation 69. For a subset U of V , define

StabW (U) = {w ∈ W | wλ = λ (∀λ ∈ U)}.
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Lemma 70. (i) If λ ∈ D, then

StabW ({λ}) = 〈sα | α ∈ ∆, sαλ = λ〉.

(ii) If λ, µ ∈ D, w ∈ W and wλ = µ, then λ = µ.

(iii) If λ ∈ C, then StabW ({λ}) = {1}.

(iv) If λ ∈ V , then
StabW ({λ}) = 〈sα | α ∈ Φ, sαλ = λ〉.

Proof. First we prove, for w ∈ W ,

λ, µ ∈ D, wλ = µ =⇒ λ = µ, w ∈ 〈sα | α ∈ ∆, sαλ = λ〉, (93)
λ ∈ C, µ ∈ D, wλ = µ =⇒ w = 1 (94)

by induction on n(w) = |wΠ∩ (−Π)|. If n(w) = 0, then `(w) = 0 by Corollary 49, hence
w = 1. Then (93) and (94) hold. Suppose n(w) > 0. Then there exists β ∈ Π such that
wβ ∈ −Π. Since Π ⊂ R≥0∆, this implies wR≥0∆ ∩R≤0∆ % {0}, which in turn implies
w∆ ∩ (−Π) 6= ∅. Suppose wγ ∈ −Π, where γ ∈ ∆. Then by Lemma 47,

`(wsγ) = `(w)− 1

= n(w)− 1 (by Corollary 49)
< n(w). (95)

Since µ ∈ D and −wγ ∈ Π ⊂ R≥0∆, we have

0 ≤ (µ,−wγ)

= −(w−1µ, γ)

= −(λ, γ).

If λ ∈ C, this is impossible. This implies that (94) holds. If λ ∈ D, then this forces
(λ, γ) = 0, implying sγ ∈ StabW ({λ}). Now, we have wsγλ = µ and (95), so we can
apply inductive hypothesis to conclude λ = µ and

wsγ ∈ 〈sα | α ∈ ∆, sαλ = λ〉.

Thus (93) holds.
Now (ii) follows from (93), while (i) and (iii) follow from (93) and (94), respectively,

by setting λ = µ.
Finally we prove (iv). Let λ ∈ V . Clearly,

StabW ({λ}) ⊃ 〈sα | α ∈ Φ, sαλ = λ〉.

To prove the reverse containment, observe that, by Lemma 68, there exists z ∈ W such
that zλ ∈ D. Then

StabW ({λ}) = {w ∈ W | wλ = λ}
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= {w ∈ W | zwz−1zλ = zλ}
= {z−1xz ∈ W | xzλ = zλ}
= z−1 StabW ({zλ})z
= z−1〈sβ | β ∈ ∆, sβzλ = zλ〉z (by (i))
= 〈z−1sβz | β ∈ ∆, z−1sβzλ = λ〉
= 〈sz−1β | β ∈ ∆, sz−1βλ = λ〉 (by Lemma 12)
⊂ 〈sα | α ∈ Φ, sαλ = λ〉.

The following property of the set D is referred to as D being a fundamental domain for
the action of W on V .

Theorem 71. For each λ ∈ V , |Wλ ∩D| = 1.

Proof. By Lemma 68, we have Wλ∩D 6= ∅. Suppose µ, µ′ ∈ Wλ∩D. Then Lemma 70(ii)
implies µ = µ′.
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July 11, 2016
For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Let Φ be a root system in V with simple system ∆, and let W =
W (Φ) = 〈sα | α ∈ Φ〉.

Notation 72. Let α ∈ Φ. We define

Hα = {λ ∈ V | (α, λ) = 0},
H+

α = {λ ∈ V | (α, λ) > 0},
H−

α = {λ ∈ V | (α, λ) < 0},

so that V = H+
α ∪Hα ∪H−

α (disjoint).

Recall

C =
⋂
α∈∆

H+
α ,

D =
⋂
α∈∆

(H+
α ∪Hα).

Lemma 73. For w ∈ W and α ∈ Φ,

wHα = Hwα, (96)
wH±

α = H±
wα. (97)

In particular,

sαH
±
α = H∓

α , (98)⋃
α∈Φ

Hα = w
⋃
α∈Φ

Hα. (99)

Proof. Observe

wHα = {wλ | λ ∈ V, (α, λ) = 0}
= {µ | µ ∈ V, (wα, µ) = 0}
= Hwα.

This proves (96). Replacing “=” by “>” or “<”, we obtain (97). Moreover, (97) implies

sαH
±
α = H±

sαα

= H±
−α

= H∓
α ,

while (96) implies

w
⋃
α∈Φ

Hα =
⋃
α∈Φ

wHα
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=
⋃
α∈Φ

Hwα

=
⋃

α∈wΦ

Hα

=
⋃
α∈Φ

Hα.

Lemma 74. If U is a linear subspace of V such that Φ ∩ U 6= ∅, then Φ ∩ U is a root
system.

Proof. Clearly, Φ ∩ U satisfies (R1) of Definition 14. As for (R2), let α, β ∈ Φ ∩ U .
Then sαβ ∈ Φ ∩ (Rα + Rβ) ⊂ Φ ∩ U . Thus sα(Φ ∩ U) ⊂ Φ ∩ U . This implies
sα(Φ ∩ U) = Φ ∩ U .

Lemma 75. If U is a linear subspace of V , then

StabW (U) =

{
W (Φ ∩ U⊥) if Φ ∩ U⊥ 6= ∅,
{1} otherwise.

Proof. We prove the assertion by induction on dimU . The assertion is trivial if dimU = 0.
If dimU = 1, then write U = Rλ. We have

StabW (U) = StabW ({λ})
= 〈sα | α ∈ Φ, sαλ = λ〉 (by Lemma 70(iv))
= 〈sα | α ∈ Φ, (α, λ) = 0〉
= 〈sα | α ∈ Φ ∩ (Rλ)⊥〉

=

{
W (Φ ∩ U⊥) if Φ ∩ U⊥ 6= ∅,
{1} otherwise,

since Φ ∩ U⊥ is a root system by Lemma 74 as long as it is nonempty.
Now assume dimU ≥ 2. Then there exist nonzero subspaces U1, U2 of U such that

U = U1 ⊕ U2. Then

U⊥
1 ∩ U⊥

2 = (U1 ⊕ U2)
⊥

= U⊥. (100)

Since dimU1, dimU2 < dimU , the inductive hypothesis implies

StabW (Ui) =

{
W (Φ ∩ U⊥

i ) if Φ ∩ U⊥
i 6= ∅,

{1} otherwise
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for i = 1, 2. Suppose first that Φ ∩ U⊥
1 = ∅. Then Φ ∩ U⊥ = ∅, and

StabW (U) ⊂ StabW (U1)

= {1}.

Next suppose that Φ ∩ U⊥
1 6= ∅. Then

StabW (U) = StabW (U1) ∩ StabW (U2)

= W (Φ ∩ U⊥
1 ) ∩ StabW (U2)

= StabW (Φ∩U⊥
1 )(U2)

=

{
W (Φ ∩ U⊥

1 ∩ U⊥
2 ) if Φ ∩ U⊥

1 ∩ U⊥
2 6= ∅,

{1} otherwise

=

{
W (Φ ∩ U⊥) if Φ ∩ U⊥ 6= ∅,
{1} otherwise

(by (100)).

Proposition 76. If U is a subset of V , then

StabW (U) = 〈sα | α ∈ Φ, sα ∈ StabW (U)〉.

Proof. Replacing U by its span, we may assume without loss of generality U is a linear
subspace of V . Then by Lemma 75, we have

StabW (U) =

{
W (Φ ∩ U⊥) if Φ ∩ U⊥ 6= ∅,
{1} otherwise

= 〈sα | α ∈ Φ ∩ U⊥〉
= 〈sα | α ∈ Φ, ∀λ ∈ U, (α, λ) = 0〉
= 〈sα | α ∈ Φ, ∀λ ∈ U, sαλ = λ〉
= 〈sα | α ∈ Φ, sα ∈ StabW (U)〉.

Definition 77. The members of the family

{wC | w ∈ W}

are called chambers.

Lemma 78. Let Π = Φ ∩R≥0∆ be the unique positive system containing ∆. Then

C =
⋂
α∈Π

H+
α . (101)

In particular,
C ⊂ V \

⋃
β∈Φ

Hβ. (102)
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Proof. If λ ∈ C, then (λ, α) > 0 for all α ∈ ∆. Since Φ ⊂ (R≥0∆) ∪ (R≤0∆) \ {0}, we
see that (λ, β) > 0 for all β ∈ Π. This implies (101). Since Φ = Π ∪ (−Π), we see that
(λ, β) 6= 0 for all β ∈ Φ. This implies λ /∈

⋃
β∈ΦHβ , proving (102).

Lemma 79. If w ∈ W and wC ∩ C 6= ∅, then w = 1. In particular, the group W acts
simply transitively on the set of chambers.

Proof. Suppose w ∈ W satisfies wC ∩ C 6= ∅. Then there exists λ, µ ∈ C such that
wλ = µ. This implies {λ, µ} ⊂ Wλ∩C ⊂ Wλ∩D. By Theorem 71, we conclude λ = µ.
This also implies w ∈ StabW ({λ}), hence w = 1 by Lemma 70(iii). In particular, wC = C
implies w = 1. This shows that W acts simply transitively on the set of chambers.

Proposition 80.
V \

⋃
α∈Φ

Hα =
⋃
w∈W

wC (disjoint).

Proof. By Lemma 79, the chambers are disjoint from each other. Observe

wC ⊂ V \ w
⋃
α∈Φ

Hα (by Lemma 78)

= V \
⋃
α∈Φ

Hα (by (99)).

Thus
V \

⋃
α∈Φ

Hα ⊃
⋃
w∈W

wC (disjoint).

Conversely, let λ ∈ V \
⋃

α∈ΦHα. By Theorem 71, there exists w ∈ W such that
wλ ∈ D, or equivalently, λ ∈ w−1D. We claim λ ∈ w−1C. Indeed, if λ /∈ w−1C, then

wλ ∈ D \ C
= {µ ∈ V | (µ, α) ≥ 0 (∀α ∈ ∆), (µ, β) ≤ 0 (∃β ∈ ∆)}
⊂ {µ ∈ V | (µ, β) = 0 (∃β ∈ ∆)}

=
⋃
β∈∆

Hβ

⊂
⋃
β∈Φ

Hβ

= w
⋃
β∈Φ

Hβ (by (99)).

This implies λ ∈
⋃

β∈ΦHβ which is absurd. This proves the claim, and hence

V \
⋃
α∈Φ

Hα ⊂
⋃
w∈W

wC.
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July 25, 2016
For today’s lecture, we let V be a finite-dimensional vector space over R, with positive-
definite inner product. Let Φ be a root system in V , and let W = W (Φ) = 〈sα | α ∈ Φ〉.
Fix a simple system ∆ in Φ.

Definition 81. Let α ∈ Φ and w ∈ W . The hyperplane Hα is called a wall of a chamber
wC if α ∈ w∆.

Notation 82. For λ ∈ V and ε > 0, denote by B(λ, ε) the ε-ball centered at λ:

B(λ, ε) = {λ+ µ | µ ∈ V, ‖µ‖ < ε}.

Lemma 83. Let λ ∈ V and ε > 0. If w is an orthogonal transformation of V , then
wB(λ, ε) = B(wλ, ε).

Proof.

wB(λ, ε) = {w(λ+ µ) | µ ∈ V, ‖µ‖ < ε}
= {wλ+ wµ | µ ∈ V, ‖wµ‖ < ε}
= {wλ+ µ | µ ∈ V, ‖µ‖ < ε}
= B(wλ, ε).

Lemma 84. Let α ∈ Φ and λ ∈ H+
α . Then there exists ε > 0 such that B(λ, ε) ⊂ H+

α .

Proof. Since λ ∈ H+
α , we have (λ, α) > 0. Set

ε =
(λ, α)

2‖α‖
.

Then for µ ∈ V with ‖µ‖ < ε, we have

(λ+ µ, α) = (λ, α) + (µ, α)

≥ (λ, α)− |(µ, α)|
≥ (λ, α)− ‖µ‖‖α‖
> (λ, α)− ε‖α‖

=
(λ, α)

2
> 0.

Thus λ+ µ ∈ H+
α . This implies B(λ, ε) ⊂ H+

α .

Lemma 85. Let α ∈ Φ and λ, µ ∈ H+
α . Then for 0 ≤ t ≤ 1, tλ+ (1− t)µ ∈ H+

α .

52



Proof. We have

(tλ+ (1− t)µ, α) = t(λ, α) + (1− t)(µ, α) > 0.

Proposition 86. For α ∈ Φ and w ∈ W , the following are equivalent:

(i) Hα is a wall of wC,

(ii) there exist λ ∈ Hα and ε > 0 such that Hα ∩B(λ, ε) ⊂ wD.

Proof. First we prove the assertion for w = 1. Suppose Hα is a wall of C. Then α ∈ ∆.
Then by Lemma 34,

sα(Π \ {α}) = Π \ {α}. (103)

Let
C ′ =

⋂
β∈Π\{α}

H+
β .

Then C ⊂ C ′, and

sαC =
⋂
β∈Π

sαH
+
β

=
⋂
β∈Π

H+
sαβ

(by (97))

⊂
⋂

β∈Π\{α}

H+
sαβ

=
⋂

β∈sα(Π\{α})

H+
β

=
⋂

β∈Π\{α}

H+
β (by (103))

= C ′.

Thus
C ∪ sαC ⊂ C ′. (104)

Let λ1 ∈ C. Then sαλ1 ∈ sαC. Set λ = 1
2
(λ1 + sαλ1). Then (λ, α) = 0, so λ ∈ Hα.

Since λ1, sαλ1 ∈ C ′ by (104), Lemma 85 implies λ ∈ C ′. Then by Lemma 84, for each
β ∈ Π \ {α}, there exists εβ > 0 such that B(λ, εβ) ⊂ H+

β . Setting

ε = min{εβ | β ∈ Π \ {α}},

we obtain B(λ, ε) ⊂ C ′. Thus

Hα ∩B(λ, ε) ⊂ Hα ∩ C ′
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= Hα ∩

 ⋂
β∈Π\{α}

H+
β


⊂ (H+

α ∪Hα) ∩

 ⋂
β∈Π\{α}

(H+
β ∪Hβ)


= D.

Conversely, suppose there exist λ ∈ Hα and ε > 0 such that Hα ∩ B(λ, ε) ⊂ D. Since
sαλ = λ, we have sαB(λ, ε) = B(λ, ε) by Lemma 83. This, together with sαHα = Hα

implies
Hα ∩B(λ, ε) ⊂ sαD.

Thus
Hα ∩B(λ, ε) ⊂ D ∩ sαD. (105)

We aim to show α ∈ ∆. Suppose, by way of contradiction, α /∈ ∆. Then n(sα) > 1, so
Π∩ sα(−Π) % {α}. This implies that there exists β ∈ Π \ {α} such that sαβ ∈ −Π. Thus
−sαβ ∈ Π, and hence

D ⊂ H+
−sαβ

∪H−sαβ

= H−
sαβ

∪Hsαβ. (106)

Also, since β ∈ Π, we have

sαD ⊂ sα(H
+
β ∪Hβ)

= H+
sαβ

∪Hsαβ (by (96),(97)). (107)

Thus, combining (105)–(107), we find

Hα ∩B(λ, ε) ⊂ Hsαβ. (108)

Since β 6= ±α, we have sαβ 6= ±α. Thus Hsαβ 6= Hα, which implies that there exists
µ ∈ Hα \Hsαβ . We may assume ‖µ‖ < ε. Then

λ+ µ ∈ B(λ, ε) ∩Hα

⊂ Hsαβ (by (108)). (109)

Since

λ ∈ B(λ, ε) ∩Hα

⊂ Hsαβ (by (108)),

while µ /∈ Hsαβ , we obtain λ+ µ /∈ Hsαβ . This contradicts (109).
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We have shown that the assertion holds for w = 1. We next consider the general case.
Let α ∈ Φ and w ∈ W . Then

(i) ⇐⇒ α ∈ w∆

⇐⇒ w−1α ∈ ∆

⇐⇒ Hw−1α is a wall of C
⇐⇒ ∃λ ∈ Hw−1α, ∃ε > 0, Hw−1α ∩B(λ, ε) ⊂ D

⇐⇒ ∃λ ∈ w−1Hα, ∃ε > 0, w−1Hα ∩B(λ, ε) ⊂ D (by (96))
⇐⇒ ∃λ ∈ w−1Hα, ∃ε > 0, w−1Hα ∩ w−1B(wλ, ε) ⊂ D (by Lemma 83)
⇐⇒ ∃µ ∈ Hα, ∃ε > 0, Hα ∩B(µ, ε) ⊂ wD

⇐⇒ (ii).

Proposition 87. If s ∈ W is a reflection, then there exists α ∈ Φ such that s = sα.

Proof. Since s is a reflection, s fixes a hyperplane H . Let H⊥ = Rβ, where 0 6= β ∈ V .
Then s = sβ . Since s ∈ StabW (H), we have

{1} 6= StabW (H)

= 〈sα | α ∈ Φ, sα ∈ StabW (H)〉 (by Proposition 76).

This implies that there exists α ∈ Φ such that sα ∈ StabW (H). The latter implies sα =
sβ = s.

Note that Proposition 15 implies that the mapping which sends a root system to a re-
flection group is a surjection, the following proposition implies that it is essentially an
injection.

Proposition 88. If Φ and Φ′ are root systems in V such that W (Φ) = W (Φ′), then

{Hα | α ∈ Φ} = {Hα′ | α′ ∈ Φ′},

or equivalently,
{Rα | α ∈ Φ} = {Rα′ | α′ ∈ Φ′}.

Proof. If α ∈ Φ, then sα is a reflection in W (Φ) = W (Φ′). By Proposition 87, there exists
α′ ∈ Φ′ such that sα = sα′ . This implies Hα = Hα′ . Therefore, we have shown

{Hα | α ∈ Φ} ⊂ {Hα′ | α′ ∈ Φ′}.

The reverse containment can be shown in a similar manner.
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August 1, 2016
Today, we describe briefly how to classify essential finite reflection groups. We have shown
that every finite reflection group W comes from some root system, in the sense that W =
W (Φ) for some root system Φ. Since W (Φ) is unchanged if we replace α ∈ Φ by any
nonzero scalar multiple, we assume Φ consists of vectors of length 1. We also assume that
a root system spans the underlying vector space.

First, we consider the case dimV = 2. A finite reflection group is of the form W (Φ)
for some root system Φ ⊂ V . Let ∆ be a simple system in Φ. Then |∆| = dimV = 2. Let
∆ = {α, β}. By Theorem 41, we have W (Φ) = 〈sα, sβ〉. Since W (Φ) is finite, there exists
a positive integer m such that (sαsβ)m = 1. We choose minimal such m, which is called
the order of sαsβ . Then from the lecture on April 11, sαsβ is a rotation. By the minimality
of m, W (Φ) is the dihedral group of order m. Writing r = st where s = sα and t = sβ ,
W (Φ) consists of m rotations

1, r, r2, . . . , rm−1,

and m other elements
s, rs, r2s, . . . , rm−1s

which are reflections since

s = sα, rs = ssαβ, r
2s = ssαsβα, . . . .

By Proposition 87, the root system Φ consists of 2m vertices of regular 2m-gons. It follows
from the definition of a simple system that the angle formed by α and β is π − π

m
. In

particular,
(α, β) = − cos

π

m
. (110)

Lemma 89. Let Φ be a root system with a simple system ∆, and let α, β ∈ ∆. If α 6= ±β
and sαsβ has order m, then (110) holds.

Proof. Let I = {sα, sβ}. Then WI = 〈I〉 is a dihedral group of order 2m, and ΦI is a root
system in the 2-dimensional space VI = Rα +Rβ. By Proposition 58(iii), WI = W (ΦI),
so ΦI consists of 2m vertices of regular 2m-gons. As shown above, ∆I = {α, β} consists
of vectors α, β which satisfy (110).

Lemma 90. Let Φ and Φ′ be root systems in Rn, with respective simple systems ∆ and ∆′.
Then the following are equivalent:

(i) there exists t ∈ O(V ) such that W (Φ′) = tW (Φ)t−1,

(ii) ∆ = {α1, . . . , αn}, ∆′ = {α′
1, . . . , α

′
n} such that (αi, αj) = (α′

i, α
′
j) for all i, j ∈

{1, . . . , n}.

Proof. Suppose first (i) holds. Then W (Φ′) = W (tΦ). Thus, by Proposition 88, we obtain
Φ′ = tΦ. Since t is an orthogonal transformation, (ii) holds.
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Next suppose (ii) holds. Let C and C ′ be square matrices whose column vectors are
αi’s and α′

i’s, respectively. Then C>C = C ′>C ′, hence t = C ′C−1 is an orthogonal matrix.
Clearly, ∆′ = t∆, hence

W (Φ′) = 〈sα | α ∈ ∆′〉 (by Theorem 41)
= 〈sα | α ∈ t∆〉
= 〈stα | α ∈ ∆〉
= 〈tsαt−1 | α ∈ ∆〉
= t〈sα | α ∈ ∆〉t−1

= tW (Φ)t−1 (by Theorem 41).

Combining Lemmas 89 and 90, we see that a finite reflection group in Rn is completely
described by n(n−1)/2 integers mij ≥ 2 (1 ≤ i < j ≤ n), where the corresponding simple
system is {α1, . . . , αn} with

(αi, αj) = − cos
π

mij

. (111)

When n = 2, every integer m12 ≥ 2 gives a finite reflection group, namely, the dihedral
group Dm12 . However, for higher dimensions, mij’s are not arbitrary; rather quite restricted.

Lemma 91. Let B be a real symmetric n× n matrix. Then the following are equivalent:

(i) B is positive definite,

(ii) there exist linearly independent vectors α1, . . . , αn ∈ Rn such that (αi, αj) = Bij

for 1 ≤ i < j ≤ n.

Proof. Suppose first (ii) holds. Let C be the n × n matrix whose column vectors are
α1, . . . , αn. Then C>C = B. This implies that B is positive definite.

Next suppose (i) holds. Then there exists an orthogonal matrix P such that P>BP is
a diagonal matrix with positive diagonal entries. This implies that there exists a diagonal
matrix D with positive diagonal entries such that P>BP = D2. Set C = DP>. Then
C>C = B, hence the column vectors α1, . . . , αn of C have the property required in (ii).

Let ∆ = {α1, . . . , αn} be a simple system, and define integers mij by (111). Then the
real symmetric matrix B defined by

Bij =

{
1 if i = j,
− cos π

mij
otherwise

is positive definite. It turns out that this is the only condition needed to classify root systems
or finite reflection groups, but it is already quite strong. For example, n = 3, m12 = m13 =
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m23 = 4 fails to satisfy this condition, since 1 − 1√
2

− 1√
2

− 1√
2

1 − 1√
2

− 1√
2

− 1√
2

1


is not positive definite. For n = 3, unless B is block diagonal, we have only three possibil-
ities:

(m12,m13,m23) = (2, 3, 3), (2, 3, 4), (2, 3, 5).
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