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INTEGRAL REPRESENTATIONS

RINTARO OHNO

Abstract. There are several types of concave functions commonly known, which map
the unit disk onto a concave domain. Detailed proofs for some familiar inequalities as
well as integral representations for these functions and an application concerning the
residue are the matter of this article.
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1. Introduction

Let C be the complex plane, Ĉ the Riemann sphere and D = {z ∈ C : |z| < 1} the open
unit disk. In this article we consider univalent functions, which map D conformally onto

a simply connected domain in Ĉ. A univalent function f : D → Ĉ is said to be concave,
if f(D) is concave, i.e. C\f(D) is convex.

Concerning the characteristics and properties, there are several types of concave func-
tions:

(1) A meromorphic, univalent function f is said to be in the class Co0, if it is concave,
has a simple pole at the origin and the representation f(z) = 1

z
+
∑∞

n=0 anz
n.

(2) A meromorphic, univalent function f is said to be in the class Cop for p ∈ (0, 1),
if it is concave and has a simple pole at p. The normalization for this class can be
done by use of the Taylor series expansion at the origin with f(z) = z+

∑∞
n=2 anz

n.
(3) An analytic, univalent function f is said to be in the class Co(α), if it is concave,

satisfies f(1) =∞ with the representation f(z) = z+
∑∞

n=2 anz
n around the origin

and an opening angle of f(D) at ∞ less than or equal to απ with α ∈ (1, 2].

It is a well known fact, that the inequality

Re

(
1 + z

f ′′(z)

f ′(z)

)
> 0, z ∈ D

characterizes convex functions, mapping the unit disk onto a convex domain. Due to the
similarity, the inequality

Re

(
1 + z

f ′′(z)

f ′(z)

)
< 0, z ∈ D

is used - sometimes also as a definition - for concave functions f ∈ Co0 (see e.g. [5] and
others). Since a complete proof for this statement could not be found in the literature, we
are going to present the details in Section 2. Adaptations for the other classes considered
in this article were discussed e.g. by Miller in [4] and by Livingston in [3].

Using the given inequalities, several integral representations can be deduced for concave
functions. This was first analyzed by Pfaltzgraff and Pinchuk [5], who stated the following
for Co0.
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Theorem 1.1. [5] Let f : D → Ĉ, f(z) = 1
z

+
∑∞

n=0 anz
n be a meromorphic function.

Then f ∈ Co0, if and only if there exists a positive measure µ(t) with
∫ π
−π dµ(t) = 1 and∫ π

−π e
−itdµ(t) = 0, such that for z ∈ D

(1.1) f ′(z) = − 1

z2
exp

∫ π

−π
2 log(1− e−itz)dµ(t).

They used this expression in combination with a linear transformation T , to obtain a
characterization for concave functions with pole at p ∈ (0, 1).

Theorem 1.2. [5] For p ∈ (0, 1), f ∈ Cop if and only if there exists a positive measure
µ(t) with

∫ π
−π dµ(t) = 1 and

∫ π
−π T (eit)dµ(t) = 0, such that for z ∈ D

(1.2) f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ π

−π
2 log(1− e−itz)dµ(t).

We are going to show different representations for these classes in Section 3, which avoid
the use of logarithms and measures.

An analysis for functions in Co(α) was done by Avkhadiev and Wirths in [1]. The
connection to an inequality was discussed by Cruz and Pommerenke [2]. This paper
will also deal with the remaining integral representation, using methods presented by
Pfaltzgraff and Pinchuk.

As an application of the presented theorems, we will prove the following formula for
residues of functions in Cop.

Theorem 1.3. Let f(z) ∈ Cop be a concave function with a simple pole at some point
p ∈ (0, 1). Then the residue of this function f can be described by some function ϕ : D→
D, holomorphic in D and ϕ(p) = p, such that

(1.3) Resp f = − p2

(1− p2)2
exp

∫ p

0

−2ϕ(x)

1− xϕ(x)
dx.

A proof of this theorem will be given in Section 4, as well as some further analysis.

2. Characterizations for concave functions

In this section, we are going to present a variety of characterizations for the different
types of concave functions introduced in Section 1.

At first we consider functions in the class Co0, where the pole lies at the origin.

Theorem 2.1. Let f : D → Ĉ, f(z) = 1
z

+
∑∞

n=0 anz
n be a meromorphic function. The

function f is of class Co0, if and only if the inequality

(2.1) Re

(
1 + z

f ′′(z)

f ′(z)

)
< 0

holds for every z ∈ D.

A rough idea can be found in [7, p.47]. However, since the details are not carried out,
we give a complete presentation of the proof.

First we need the following Lemma.

Lemma 2.2. Let ∆ := {z ∈ Ĉ : 1 < |z|} be the exterior of the unit circle and f : ∆→ Ĉ
be a meromorphic univalent function, mapping ∆ onto the outside of a bounded Jordan
curve Γ and ∞ 7→ ∞. This curve Γ is analytic, if and only if f is analytic and univalent
for {z ∈ C : r < |z|} with some r < 1.



A similar statement can be found in [6, p.41] and the construction of the proof goes
accordingly.

Proof. If f is analytic and univalent in {z ∈ C : r < |z|}, the curve Γ is obviously analytic.
Therefore, let Γ be analytic. Then there exists a univalent function ϕ : {z ∈ C : ρ < |z| <
1
ρ
} → C with ρ < 1, such that ϕ(∂D) = Γ. Furthermore, there exists an r < 1, so that

h := ϕ−1 ◦ f is univalent in {z ∈ C : 1 < |z| < 1
r
} and 1 < |h(z)| < 1

ρ
. Since |h(z)| → 1 as

|z| → 1, we can apply the reflexion principle and it follows, that f can be extended to a
holomorphic function on r < |z| < 1

r
, where ρ < |h(z)| < 1

ρ
is satisfied. Thus f = ϕ ◦ h is

holomorphic on {z ∈ C : r < |z| < 1
r
} and therefore analytic and univalent on r < |z|. �

Proof of Theorem 2.1. We may assume that the nonempty compact convex set C\f̃(∆)

is not a line segment, since otherwise the theorem is trivial. Then C\f̃(∆) is a convex
closed Jordan domain bounded by a simple closed curve.

Let f(z) = 1
z

+
∑∞

n=0 anz
n ∈ Co0 for z ∈ D. Applying the transformation u : ∆ →

D, z 7→ 1
z

and setting f̃ := f◦u, we get a concave function, which maps ∆ conformally onto

the concave domain f(D)\{∞}. Therefore there exists a convex domain G = C\f̃(∆),
a curve Γ = ∂G and a convex function g : D → Int(Γ) by use of the Riemann mapping
theorem. The curves Γk = {g(z) : |z| = 1 − 1

k
}, k = 2, 3, . . . are analytic and convex

because of the properties of g.
Now let f̃k be the functions, which map ∆ onto Ext(Γk), such that f̃k(∞) = ∞ and

f̃ ′k(∞) > 0. Due to the definition of Γk and Lemma 2.2, each curve can also be described by

f̃k(e
iϑ) with ϑ ∈ [0, 2π). Since the interior of the curve Γk is convex, arg

(
f̃k(e

it)− f̃k(eiϑ)
)

is non-decreasing for t ∈ (ϑ, ϑ+ 2π). Therefore

∂targ
(
f̃k(e

it)− f̃k(eiϑ)
)

= ∂tIm log
(
f̃k(e

it)− f̃k(eiϑ)
)

= Im
ieitf̃ ′k(e

it)

f̃k(eit)− f̃k(eiϑ)

= Re
zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
≥ 0(2.2)

for z = eit 6= eiϑ = ζ and

(2.3) Re
ζ + z

ζ − z
= Re

eiϑ + eit

eiϑ − eit
= Re

1 + ei(t−ϑ)

1− ei(t−ϑ)
= 0

holds for the given z, ζ, t and ϑ.

Using the Taylor series expansion f̃k(ζ) =
∑∞

n=0

f̃
(n)
k (z)

n!
(ζ − z)n for z, ζ ∈ ∆, we obtain

2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+
ζ + z

ζ − z
=

2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+

2z

ζ − z
+ 1

= 1 + z
2
(
f̃ ′k(z)(ζ − z) + f̃k(z)− f̃k(ζ)

)
(f̃k(z)− f̃k(ζ))(ζ − z)

= 1 + z
−f̃ ′′k (z)(ζ − z)2 − 2

∑∞
n=3

f̃
(n)
k (z)

n!
(ζ − z)n

−f̃ ′k(z)(ζ − z)2 −
∑∞

n=2

f̃
(n)
k (z)

n!
(ζ − z)n+1



= 1 + z
f̃ ′′k (z) + 2

∑∞
n=3

f̃
(n)
k (z)

n!
(ζ − z)n−2

f̃ ′k(z) +
∑∞

n=2

f̃
(n)
k (z)

n!
(ζ − z)n−1

.

Since

lim
ζ→z

(
2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+
ζ + z

ζ − z

)
= 1 +

zf̃ ′′(z)

f̃ ′(z)

ζ = z is a removable singularity.
From (2.2) and (2.3) we obtain

Re

(
2zf̃ ′k(z)

f̃k(z)− f̃k(ζ)
+
ζ + z

ζ − z

)
≥ 0

for all |z| = |ζ| = 1. Applying the maximum principle first for |z| > 1 and then for |ζ| > 1
gives

Re

(
1 +

zf̃ ′′k (z)

f̃ ′k(z)

)
> 0

for all z ∈ ∆ and k = 2, 3, . . . .
Since convex curves Γk converge to Γ for k → ∞, f̃k converges locally uniformly to f̃

in ∆ due to the kernel theorem of Carathéodory. Therefore

(2.4) Re

(
1 +

zf̃ ′′(z)

f̃ ′(z)

)
> 0

for all z ∈ ∆.
Considering f̃ = f ◦ u with f̃ ′(z) = − 1

z2
f ′(u) and f̃ ′′(z) = 1

z4
f ′′(u) + 2

z3
f ′(u), we obtain

1 +
zf̃ ′′(z)

f̃ ′(z)
= 1 +

z
(

1
z4
f ′′(u) + 2

z3
f ′(u)

)
− 1
z4
f ′(u)

= 1−
1
z
f ′′(u) + 2f ′(u)

f ′(u)

= −1− uf ′′(u)

f ′(u)
,(2.5)

hence (2.1).
The second implication is the same as for the convex case, when one considers z ∈ ∆.

This can be found in various textbooks, see e.g. [7]. Applying transformation (2.5) yields
the statement. �

Remark 2.3. It is also

2zf̃ ′(z)

f̃(z)− f̃(ζ)
+
ζ + z

ζ − z
=

2z 1
z2
f̃ ′(u(z))

f(u(z))− f(u(ζ))
+

1
u(ζ)

+ 1
u(z)

1
u(ζ)
− 1

u(z)

= − 2u(z)f ′(u(z))

f(u(z))− f(u(ζ))
− u(ζ) + u(z)

u(ζ)− u(z)

for z, ζ ∈ ∆. Therefore we obtain

(2.6) Re

(
2zf ′(z)

f(z)− f(ζ)
+
ζ + z

ζ − z

)
≤ 0

for f ∈ Co0 and z, ζ ∈ D from the proof of Theorem 2.1.



Livingston [3] adapted the characterization for functions in Co0 for the class of concave
functions with pole at p ∈ (0, 1), using the transformation z 7→ z+p

1+pz
.

Theorem 2.4. [3] Let p ∈ (0, 1) and f be a meromorphic function. It is f ∈ Cop, if and
only if

(2.7) Re

(
1 + p2 − 2pz +

(z − p)(1− pz)f ′′(z)

f ′(z)

)
< 0

for z ∈ D.
From this theorem, we can obtain a statement similar to Remark 2.3 for functions in

Cop. It should be mentioned, that Theorem 2.4 and the following statements are valid
regardless of the normalization introduced for this class in Section 1.

Corollary 2.5. Let p ∈ (0, 1), f ∈ Cop and z, ζ ∈ D. Then

(2.8) Re

(
2zf ′(z)

f(z)− f(ζ)
+
ζ + z

ζ − z
+
z + p

z − p
− 1 + pz

1− pz

)
< 0.

Originally this was proved by Miller in [4]. Considering Livingston’s analysis in [3], we
can give an alternate proof.

Proof. Let

(2.9) P (z) := −1− p2 + 2pz − 2(z − p)(1− pz)
f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)
.

Using f(z) =
∑∞

n=−1 bn(z − p)n for ζ 6= p and

(z − p) f ′(z)

f(z)− f(ζ)
=

[−b−1(z − p)−1 + b1(z − p) + · · · ]
b−1(z − p)−1 + b0 + · · · − f(ζ)

=
[−b−1 + b1(z − p)2 + · · · ]

b−1 + b0(z − p) + · · · − f(ζ)(z − p)

we have

P (p) =− 1− p2 + 2p2 − 2(1− p2)
−b−1(ζ − p)
b−1(ζ − p)

= 1− p2.

Furthermore, observing that

zP (z) + pz2 − p = 3pz2 − z − p2z − p

− 2z(z − p)(1− pz)
f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

⇔ zP (z) + pz2 − p
(z − p)(1− pz)

=
2pz2 − 2p2z + p2z − z + pz2 − p

(z − p)(1− pz)

− 2z
f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

=
2pz

1− pz
− z + p

z − p
− 2z

f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

=
1 + pz

1− pz
− z + p

z − p
− 1− 2z

f ′(z)(ζ − z) + f(z)− f(ζ)

(f(z)− f(ζ))(ζ − z)

=
1 + pz

1− pz
− z + p

z − p
− 2zf ′(z)

f(z)− f(ζ)
− ζ + z

ζ − z
(2.10)



and defining

(2.11) Q(z) :=
zP (z) + pz2 − p
(z − p)(1− pz)

,

we obtain Q(p) = 1+p2

1−p2 and

lim
ζ→z

Q(z) = −1− zf ′′(z)

f ′(z)
+

1 + pz

1− pz
− z + p

z − p
.

Therefore the function

(2.12) F (z, ζ) =


1 +

zf ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz
, for z = ζ

2zf ′(z)

f(z)− f(ζ)
+
ζ + z

ζ − z
+
z + p

z − p
− 1 + pz

1− pz
, for z 6= ζ

is holomorphic for z, ζ ∈ D.
Considering Theorem 2.1, Remark 2.3 and the fact that

Re

(
z + p

z − p
− 1 + pz

1− pz

)
= 0,

we obtain (2.8) by the maximum principle. �

The case z = ζ in (2.12) was deduced by different means by Pfaltzgraff and Pinchuk
in [5]. ReF (z, z) < 0 for z ∈ D also holds as a necessary and sufficient condition for a
meromorphic function f to be in Cop.

Theorem 2.6. [5] Let f : D→ Ĉ be a meromorphic function. The function f is of class
Cop, if and only if for z ∈ D

(2.13) Re

(
1 +

zf ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz

)
< 0.

For the class Co(α), the following inequality can be deduced.

Theorem 2.7. [1, 2] Let απ, α ∈ (1, 2]. An analytic function f with f(0) = f ′(0)−1 = 0
is of class Co(α), if and only if for z ∈ D

(2.14) Re

(
1 + z

f ′′(z)

f ′(z)
− α + 1

2
· 1 + z

1− z

)
< 0.

Avkhadiev and Wirths considered this in [1] and Cruz and Pommerenke discussed a
variation of the theorem in detail in [2]. A factor 2

α−1
has to be added to the characteri-

zation in case a normalization is required.

3. Integral representations for concave functions

The inequalities from the previous section provide new representation formulas for
concave functions. These are equivalent to the already presented characterizations.

Theorem 3.1. Let f : D → Ĉ, f(z) = 1
z

+
∑∞

n=0 anz
n be a meromorphic function. If

f ∈ Co0, then a function ϕ : D→ D holomorphic in D with ϕ(0) = 0 exists, such that for
z ∈ D

(3.1) f ′(z) = − 1

z2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

On the other hand, for any holomorphic function ϕ mapping D→ D with ϕ(0) = 0, there
exists a function f ∈ Co0 described by (3.1).



Proof. It is known, that a function which maps D into the right half plane and the origin

to 1 can be expressed as 1+zϕ(z)
1−zϕ(z)

, where ϕ : D → D is a function holomorphic in D. We

combine this fact with Theorem 2.1. Therefore there exists a holomorphic function ϕ with
the given properties such that

1 + z
f ′′(z)

f ′(z)
= −1 + zϕ(z)

1− zϕ(z)
.

Hence it is also

2 + z
f ′′(z)

f ′(z)
= − 2zϕ(z)

1− zϕ(z)

⇔ 2

z
+
f ′′(z)

f ′(z)
=
−2ϕ(z)

1− zϕ(z)

⇔ d

dz
log
(
−z2f ′(z)

)
=
−2ϕ(z)

1− zϕ(z)

⇔ log
(
−z2f ′(z)

)
− log

(
−ζ2f ′(ζ)

)∣∣
ζ=0

=

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Using ζ2f ′(ζ) = ζ2 ·
(
−1
ζ2

+
∑∞

n=1 nanζ
n−1
)

= −1 + O(ζ2), with O being the Landau

symbol as in the proof of Corollary 2.5, we obtain

log
(
−z2f ′(z)

)
=

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

⇔ f ′(z) = − 1

z2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Since f ′ must not have a residue, it has to be(
z2 f ′(z)

)′∣∣∣
z=0

= 0.

Considering κ(z) :=
∫ z

0
−2ϕ(ζ)
1−ζϕ(ζ)

dζ and g(z) := z2 f ′(z) = −eκ(z), we obtain

g′(z)

g(z)
= κ′(z) =

ϕ(z)

1− zϕ(z)
.

Therefore it has to be ϕ(0) = 0.
Conversely, if ϕ : D→ D is a holomorphic function with ϕ(0) = 0, a function f defined

by

f ′(z) = − 1

z2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

does not have a residue of its own. Furthermore we obtain

1 + z
f ′′(z)

f ′(z)
= −1 + zϕ(z)

1− zϕ(z)
.

By the use of Theorem 2.1, concavity follows immediately. �

Using the inequality obtained from Theorem 2.6, it is possible to prove a similar state-
ment for the class Cop.



Theorem 3.2. Let p ∈ (0, 1). If a meromorphic function f : D→ Ĉ belongs to the class
Cop, then there exists a function ϕ : D → D, holomorphic in D with ϕ(p) = p, such that
the concave function can be represented as

(3.2) f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

for z ∈ D. Conversely, for any holomorphic function ϕ mapping D → D with ϕ(p) = p,
there exists a concave function of class Cop described by (3.2).

Proof. From Theorem 2.6 it is known, that f ∈ Cop is equivalent to

Re

(
1 + z

f ′′(z)

f ′(z)
+
z + p

z − p
− 1 + zp

1− zp

)
< 0

for p ∈ (0, 1). Therefore there exists a function ϕ : D→ D, holomorphic in D such that

1 + z
f ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz
= −1 + zϕ(z)

1− zϕ(z)

⇔ 1 + z
f ′′(z)

f ′(z)
+

(
2z

z − p
− 1

)
−
(

2pz

1− pz
+ 1

)
= −1− 2zϕ(z)

1− zϕ(z)

⇔ z
f ′′(z)

f ′(z)
+

2z

z − p
− 2pz

1− pz
= − 2zϕ(z)

1− zϕ(z)

⇔ f ′′(z)

f ′(z)
+

2

z − p
− 2p

1− pz
= − 2ϕ(z)

1− zϕ(z)

⇔ d

dz
(log(f ′(z)) + 2 log(z − p) + 2 log(1− pz)) = − 2ϕ(z)

1− zϕ(z)
.

Integration yields

log
(
f ′(z)(z − p)2(1− pz)2

)
− log p2 =− 2

∫ z

0

ϕ(ζ)

1− ζϕ(ζ)
dζ

⇔ f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Similar to the case of Theorem 3.1, the representation (3.2) must not have a residue of
its own because of the properties of f ′(z). It has to be

(3.3)
(
(z − p)2 f ′(z)

)′∣∣∣
z=p

= 0.

Setting κ(z) :=
∫ z

0
−2ϕ(ζ)
1−ζϕ(ζ)

dζ and g(z) := (z − p)2 f ′(z) = p2

(1−zp)2 e
κ(z), we obtain

g′(z)

g(z)
= κ′(z) +

2p

1− zp
.

Therefore it is necessary to be

−2ϕ(p)

1− pϕ(p)
+

2p

1− p2
= 0

⇔ ϕ(p) = p,

so that (3.3) is satisfied.



On the other hand, if ϕ : D→ D is a holomorphic function with ϕ(p) = p, the function
f defined by (3.2) does not have a residue of its own due to the consideration of the above.
Furthermore it satisfies

1 + z
f ′′(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz
= −1 + zϕ(z)

1− zϕ(z)
.

Using Theorem 2.6, we obtain f ∈ Cop. �

Considering the class Co(α) Avkhadiev and Wirths proved the following in [1].

Theorem 3.3. [1] Let α ∈ (1, 2] and f : D → Ĉ be an analytic function with f(0) =
f ′(0) − 1 = 0. Then f ∈ Co(α) if and only if there exists a function ϕ : D → D,
holomorphic in D, such that for z ∈ D

(3.4) f ′(z) =
1

(1− z)α+1
exp

∫ z

0

−(α− 1)
ϕ(ζ)

1− ζϕ(ζ)
dζ.

Using a positive measure µ(t) as in Theorem 1.1, we can obtain the next statement.

Theorem 3.4. Let α ∈ (1, 2] and f be an analytic function with f(0) = f ′(0) − 1 = 0.
Then f ∈ Co(α) if and only if there exists a positive measure µ(t) with

∫ π
−π µ(t)dt = 1,

such that

(3.5) f ′(z) =
1

(1− z)α+1
exp

∫ π

−π
(α− 1) log(1− e−itz)dµ(t).

Proof. The normalized, analytic function f is of class Co(α) if and only if (2.14) of Theo-
rem 2.7 is valid. It is known, that every function P (z) = 1 +

∑∞
n=1 cnz

n with ReP (z) > 0
for z ∈ D can be represented as

P (z) =

∫ π

−π

eit + z

eit − z
dµ(t), z ∈ D

with some positive measure µ(t) due to the Herglotz representation formula.
From the normalized form of (2.14) we therefore obtain the existence of a positive measure
µ(t), with

∫ π
−π dµ(t) = 1, such that

− 2

α− 1

(
1 + z

f ′′(z)

f ′(z)
− α + 1

2
· 1 + z

1− z

)
=

∫ π

−π

eit + z

eit − z
dµ(t)

⇔ 2

α− 1

(
(α + 1)

z

1− z
+
α− 1

2
− z f

′′(z)

f ′(z)

)
− 1 =

∫ π

−π

2z

eit − z
dµ(t)

⇔ 2z(α + 1)

(α− 1)(1− z)
− 2

α− 1
· zf

′′(z)

f ′(z)
=

∫ π

−π

2z

eit − z
dµ(t)

⇔ α + 1

1− z
z − z f

′′(z)

f ′(z)
= (α− 1)

∫ π

−π

z

eit − z
dµ(t).

Considering the derivative leads to

d

dz
(−(α + 1) log(1− z)− log f ′(z)) = −(α− 1)

∫ π

−π

d

dz
log(1− eitz)dµ(t)

⇔ log(1− z)α+1f ′(z) = (α− 1)

∫ π

−π
log(1− eitz)dµ(t),

which is obviously equivalent to the desired representation formula. �



Since we do not have to deal with any complications concerning the logarithm during
the proof of Theorem 3.4, there are no additional conditions for the measure, as it was
the case in the previous theorems.

Remark 3.5. As it can easily be observed, there is a similarity between the representation
formula using a function ϕ (see e.g. Theorem 3.1) and the version considering a positive
measure µ(t) (see e.g. Theorem 1.1).

Since the expression z 7→ 1+zϕ(z)
1−zϕ(z)

, with ϕ : D→ D, ϕ holomorphic in D, maps the unit

disk onto the right half of the complex plane and is normalized by 0 7→ 1, it can also be
described by means of the Herglotz representation formula. Therefore

1 + zϕ(z)

1− zϕ(z)
=

∫ π

−π

eit + z

eit − z
dµ(t)

⇔ 2zϕ(z)

1− zϕ(z)
+ 1 =

∫ π

−π

eit + z

eit − z
dµ(t)

⇔ 2ϕ(z)

1− zϕ(z)
=

∫ π

−π

2z

eit − z
dµ(t)

⇔
∫ z

0

ϕ(ζ)

1− ζϕ(ζ)
dζ =

∫ π

−π
log(1− eitz)dµ(t)(3.6)

for z ∈ D. The existence of a certain function ϕ is hereby equivalent to the existence of
a positive measure µ(t) so that (3.6) holds.

However, since the representation using the measure involves logarithms, we have to
be careful with additional conditions, to ensure that the results are well-defined. On the
other hand, additional conditions for ϕ are provided by the fact, that f ′(z) must not have
a residue of its own, as shown in the previous proofs.

4. Application

Using the integral representation formula of the previous section for the class Cop, we
can obtain Theorem 1.3 for the residue of concave functions.

Proof of Theorem 1.3. Since a function f ∈ Cop is represented by

f(z) =
b−1

z − p
+ b0 +

∞∑
n=1

bn(z − p)n

for |z − p| < 1− p, we obtain

f ′(z) = − b−1

(z − p)2
+ b1 +

∞∑
n=2

n bn(z − p)n−1.

Applying (3.2) from Theorem 3.2, the following equality is valid.

−b−1

(z − p)2
+ b1 +

∞∑
n=2

n bn(z − p)n−1 =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Multiplying both sides with −(z − p)2 we have

b−1 − b1(z − p)2 −
∞∑
n=2

n bn(z − p)n+1 =
−p2

(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

Considering z = p leads to the theorem. �



Using the inequality ∣∣∣∣ 1

f(z)
− 1

z
+

1 + p2

p

∣∣∣∣ ≤ 1

for f ∈ Cop provided by Miller in [4], Wirths proved the next theorem in [8].

Theorem 4.1. [8] Let p ∈ (0, 1). For a ∈ C there exists a function f ∈ Cop such that
a = Resp f if and only if

(4.1)

∣∣∣∣a+
p2

1− p4

∣∣∣∣ ≤ p4

1− p4
.

Let ϑ ∈ [0, 2π). A function f ∈ Cop has the residue

a = − p2

1− p4
+ eiϑ

p4

1− p4

if and only if

(4.2) fϑ(z) =
z − p

1+p2
(1 + eiϑ)z2(

1− z
p

)
(1− pz)

.

We now prove the same statement using the given integral representation.

Proof. Applying the transformation x = p−z
1−pz and Φ(z) = ϕ(x) for p ∈ (0, 1) and z ∈ D

to (1.3) we obtain∫ p

0

−2ϕ(x)

1− xϕ(x)
dx =

∫ 0

p

−2Φ(z)

1− p−z
1−pzΦ(z)

· p2 − 1

(1− pz)2
dz

=

∫ p

0

2Φ(z)(p2 − 1)

(1− pz)2 − (p− z)Φ(z)(1− pz)
dz.

The function Φ : D → D is holomorphic in D with Φ(0) = p. Therefore there exists a

function Ψ : D→ D, holomorphic in D with Ψ(0) = 0, such that Φ(z) = p−Ψ(z)
1−pΨ(z)

. Then

∫ p

0

−2ϕ(x)

1− xϕ(x)
dx =

∫ p

0

2(p2 − 1)(p−Ψ(z))

(1− pz) ((1− p2)− zΨ(z)(1− p2))
dz

=

∫ p

0

2(Ψ(z)− p)
(1− pz)(1− zΨ(z))

dz.(4.3)

Using representation (1.3) and (4.3) for the residue , we obtain∣∣∣∣a+
p2

1− p4

∣∣∣∣
(1.3)
=

∣∣∣∣ p2

(1− p2)2
exp

∫ p

0

−2ϕ(x)

1− xϕ(x)
dx− p2

1− p4

∣∣∣∣
(4.3)
=

p2

1− p4

∣∣∣∣1 + p2

1− p2
exp

∫ p

0

2(Ψ(x)− p)
(1− px)(1− xΨ(x))

dx− 1

∣∣∣∣
=

p2

1− p4

∣∣∣∣exp

∫ p

0

(
2p

1− p2x2
+

2(Ψ(x)− p)
(1− px)(1− xΨ(x))

)
dx− 1

∣∣∣∣
=

p2

1− p4

∣∣∣∣exp

∫ p

0

2(Ψ(x)− p2x)

(1− xΨ(x))(1− p2x2)
dx− 1

∣∣∣∣ .



Furthermore, since
∣∣∣w−p2x1−xw

∣∣∣ ≤ (1−p2)x
1−x2 for |w| ≤ x and |Ψ(x)| ≤ x, we have

(4.4)

∣∣∣∣Ψ(x)− p2x

1− xΨ(x)

∣∣∣∣ ≤ (1− p2)x

1− x2

for any x > 0.
Combining (4.4) with the above and applying |ew − 1| ≤ e|w| − 1, we obtain∣∣∣∣a+

p2

1− p4

∣∣∣∣ ≤ p2

1− p4

(
exp

∣∣∣∣∫ p

0

2(1− p2)x

(1− x2)(1− p2x2)
dx

∣∣∣∣− 1

)
(4.5)

=
p4

1− p4
.

Setting Ψ(z) = Ψc(z) = c z, i.e. ϕc(
p−z
1−pz ) = p−c z

1−p c z with c ∈ D we obtain a concave

function, for which equality holds in (4.5) if and only if c ∈ ∂D.
Applying the transformation z = ζ−p

pζ−1
we have

(4.6) ϕc(ζ) =
−(c− p2)ζ − (1− c)p
(1− c)p ζ + p2c− 1

.

Inserting (4.6) into the integral representation (3.2) of Theorem 2.6 leads to the concave
function gc which first derivative can be expressed as

g′c(z) =
p2

(z − p)2(1− pz)2
exp

∫ z

0

2(c− p2)ζ + 2(1− c)p
(c− p2)ζ2 + 2(1− c)p ζ + p2c− 1

dζ

=
p2

(z − p)2(1− pz)2

(
(c− p2)z2 + 2(1− c)pz + p2c− 1

p2c− 1

)
=

p2

(z − p)2(1− pz)2

(
c− p2

p2c− 1
z2 +

1− c
p2c− 1

2pz + 1

)
.

Therefore

gc(z) =
p2

p2c− 1

[
1

ζ − p
+

c

p(1− ζp)

]z
0

=
−p2

p2c− 1

(
(1− c)pz2 + (p2c− 1)z

p(z − p)(1− pz)

)

=
z − p

1+p2

(
1− c−p2

p2c−1

)
z2

(1− z
p
)(1− pz)

(4.7)

for c ∈ D.
Furthermore, the residue of gc can be determined to be

Resp gc =
p

p2c− 1
· (c− 1)pz2 + (1− p2c)z

1− pz

∣∣∣∣
z=p

=
p2 − p4

(p2c− 1)(1− p2)
=

p2

p2c− 1

for any c ∈ D. Since the image of D under the mapping z 7→ p2

p2z−1
is the closed disk K

with center −p2
1−p4 and radius p4

1−p4 , for each number a ∈ K there exists a concave function

gc with c = p2+a
p2a

such that Resp gc = a.



The extremal function in case of equality can be obtained by considering c ∈ ∂D as

mentioned above and setting − c−p2
p2c−1

= eiϑ in (4.7) for some ϑ ∈ [0, 2π). This proves the
theorem. �
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