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Abstract. In [2] we introduced several integral representation formulas for concave
functions. Using those, we gave a general formula to describe the residue of concave
functions with a pole at p ∈ (0, 1). In the present article we will present alternate
versions of the formulas, as well as a shortcut for the calculation to obtain the range of
the residue.
Key words: concave univalent functions, integral representations

1. Introduction

Let C be the complex plane, Ĉ the Riemann sphere and D = {z ∈ C : |z| < 1} be the

unit disk. A univalent function f : D → Ĉ is said to be concave, if f(D) is concave, i.e.
C\f(D) is convex. Commonly there are several types of concave functions, which map D
conformally onto a simply connected, concave domain in Ĉ:

(1) meromorphic, univalent functions f with a simple pole at the origin and the nor-
malization f(z) = 1

z
+
∑∞

n=0 anz
n, said to belong to the class Co0,

(2) meromorphic, univalent functions f with a simple pole at the point p ∈ (0, 1) and
the normalization f(z) = z +

∑∞
n=2 anz

n, said to belong to the class Cop and
(3) analytic, univalent functions f satisfying f(1) =∞ with the normalizations f(z) =

z +
∑∞

n=2 anz
n and an opening angle of f(D) at ∞ less or equal to απ with

α ∈ (1, 2], said to belong to the class Co(α).

A detailed discussion of these classes has already been done in [2]. We therefore concen-
trate on the class Cop for the present article.

2. Alternative formulas

In [2] we introduced the following integral representation formula for functions of Cop.

Theorem 1. [2] Let p ∈ (0, 1). For a meromorphic function f : D → Ĉ of class Cop,
there exists a function ϕ : D→ D, holomorphic in D with ϕ(p) = p, such that the concave
function can be represented as

(1) f ′(z) =
p2

(z − p)2(1− zp)2
exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ

for z ∈ D. Conversely, for any holomorphic function ϕ mapping D → D with ϕ(p) = p,
there exists a concave function of class Cop described by (1).

However, a fixed point of the function ϕ at p is not very useful for further discussions.
Using several transformations we obtain an alternate version of Theorem 1.
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Corollary 2. Let p ∈ (0, 1). For a meromorphic function f : D → Ĉ of class Cop, there
exists a function Ψ : D → D, holomorphic in D with Ψ(0) = 0 such that the concave
function can be represented as

(2) f ′(z) =
p2

(z − p)2(1− zp)2
exp

(
2

∫ p−z
1−pz

p

p

1− pζ
− Ψ(ζ)

1− ζΨ(ζ)
dζ

)
for z ∈ D. Conversely, for any holomorphic function Ψ mapping D → D with Ψ(0) = 0,
there exists a concave function of class Cop described by (2).

Proof. Let p ∈ (0, 1) and z ∈ D. Applying the transformation ζ = p−x
1−px and Φ(x) = ϕ(ζ)

we obtain ∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ =

∫ p−z
1−pz

p

−2Φ(x)

1− p−x
1−pxΦ(x)

· p2 − 1

(1− px)2
dx

=

∫ p−z
1−pz

p

−2Φ(x)(p2 − 1)

(1− px)2 − (p− x)Φ(x)(1− px)
dx.

Here the function Φ is holomorphic in D with Φ(0) = p. Therefore there exists a function

Ψ : D→ D holomorphic in D with Ψ(0) = 0, such that Φ(x) = p−Ψ(x)
1−pΨ(x)

. Then∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ =

∫ p−z
1−pz

p

−2 p−Ψ(x)
1−pΨ(x)

(p2 − 1)

(1− px)2 − (p− x) p−Ψ(x)
1−pΨ(x)

(1− px)
dx

=

∫ p−z
1−pz

p

−2(p−Ψ(x))(p2 − 1)

(1− px) ((1− p2)− xΨ(x)(1− p2))
dx

=

∫ p−z
1−pz

p

−2(Ψ(x)− p)
(1− px)(1− xΨ(x)

dx

= 2

∫ p−z
1−pz

p

p

1− px
− Ψ(x)

1− xΨ(x)
dx.

Changing the variable inside the integration and replacing the integral in (1) leads to the
statement. �

The formula for the residue derived from the integral representation in [2] was given as
follows.

Theorem 3. [2] Let f(z) ∈ Cop be a concave function with a simple pole at some point
p ∈ (0, 1). Then the residue of this function f can be described by some function ϕ : D→
D, holomorphic in D and ϕ(p) = p, such that

(3) Resp f = − p2

(1− p2)2
exp

∫ p

0

−2ϕ(z)

1− xϕ(z)
dz.

Applying the alternative representation from Corollary 2, we obtain

Corollary 4. Let f(z) ∈ Cop be a concave function with a simple pole at some point p ∈
(0, 1). Then the residue of this function f can be described by some function Ψ : D→ D,
holomorphic in D and Ψ(0) = 0, such that

(4) Resp f = − p2

(1− p2)2
exp 2

∫ p

0

Ψ(x)

1− xΨ(x)
− p

1− px
dx.
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The advantage of Corollary 4 over the original presentation is the fixed point of Ψ at
the origin. This provide much easier means for the construction, than a fixed point at
p. Furthermore, the Schwarz Lemma can be applied directly without any complicated
analysis, giving a way for the estimate of special values. We will show an application in
the next section.

3. Range of the residue

Wirths proved the following statement in [3] using the inequality∣∣∣∣ 1

f(z)
− 1

z
+

1 + p2

p

∣∣∣∣ ≤ 1

provided by Miller in [1].

Theorem 5. [3] Let p ∈ (0, 1). For a ∈ C there exists a function f ∈ Cop such that
a = Resp f if and only if

(5)

∣∣∣∣a+
p2

1− p4

∣∣∣∣ ≤ p4

1− p4
.

Let ϑ ∈ [0, 2π). A function f ∈ Cop has the residue

a = − p2

1− p4
+ eiϑ

p4

1− p4

if and only if

(6) fϑ(z) =
z − p

1+p2
(1 + eiϑ)z2(

1− z
p

)
(1− pz)

.

The established representation formula for the residue can be used for a different ap-
proach of the same statement as described in [2]. For the present discussion we will use
Corollary 4, which provides a shortcut for the proof. We also present some details, omitted
in [2]

Proof. Let p ∈ (0, 1) and Ψ : D → D be holomorphic in D with fixed point at the origin.
For a = Respf with f ∈ Cop we obtain with the use of Corollary 4∣∣∣∣a+

p2

1− p4

∣∣∣∣ (4)
=

p2

1− p4

∣∣∣∣1 + p2

1− p2
exp

(
2

∫ p

0

Ψ(x)

1− xΨ(x)
− p

1− px
dx

)
− 1

∣∣∣∣ .
Some basic calculations yield

1 + p2

1− p2
= exp 2

(
1

2
log

1 + p2

1− p2

)
= exp

∫ p

0

2p

1− p2x2
dx

and therefore∣∣∣∣a+
p2

1− p4

∣∣∣∣ =
p2

1− p4

∣∣∣∣exp

∫ p

0

2

(
p

1− p2x2
− p

1− px
+

Ψ(x)

1− xΨ(x)

)
dx− 1

∣∣∣∣
=

p2

1− p4

∣∣∣∣exp

∫ p

0

2
Ψ(x)− p2x

(1− xΨ(x))(1− p2x2)
dx− 1

∣∣∣∣ .
From the triangle inequality, we know that

|ew − 1| =

∣∣∣∣∣
∞∑
n=1

wn

n!

∣∣∣∣∣ ≤
∞∑
n=1

|w|n

n!
= e|w| − 1.
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Hence ∣∣∣∣a+
p2

1− p4

∣∣∣∣ ≤ p2

1− p4

(
exp

∫ p

0

2

∣∣∣∣ Ψ(x)− p2x

(1− xΨ(x))(1− p2x2)

∣∣∣∣ dx− 1

)
.

Due to the fixed point at the origin, we can apply the Schwarz Lemma and have

|Ψ(x)| ≤ x for 0 < x < p. Furthermore, since
∣∣∣w−p2x1−xw

∣∣∣ ≤ (1−p2)x
1−x2 for |w| ≤ x, we have

(7)

∣∣∣∣Ψ(x)− p2x

1− xΨ(x)

∣∣∣∣ ≤ (1− p2)x

1− x2
.

Using the above, we finally obtain∣∣∣∣a+
p2

1− p4

∣∣∣∣ (7)

≤ p2

1− p4

(
exp

∫ p

0

2
(1− p2)x

(1− x2)(1− p2x2)
dx− 1

)
=

p2

1− p4

(
exp(log(1 + p2))− 1

)
=

p4

1− p4
.

The rest of the proof goes according to the way described in [2].
�
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