ON THE REPRESENTATION AND THE RESIDUE OF CONCAVE FUNCTIONS

RINTARO OHNO

Abstract

In [2] we introduced several integral representation formulas for concave functions. Using those, we gave a general formula to describe the residue of concave functions with a pole at $p \in(0,1)$. In the present article we will present alternate versions of the formulas, as well as a shortcut for the calculation to obtain the range of the residue. Key words: concave univalent functions, integral representations

1. Introduction

Let \mathbb{C} be the complex plane, $\widehat{\mathbb{C}}$ the Riemann sphere and $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk. A univalent function $f: \mathbb{D} \rightarrow \widehat{\mathbb{C}}$ is said to be concave, if $f(\mathbb{D})$ is concave, i.e. $\mathbb{C} \backslash f(\mathbb{D})$ is convex. Commonly there are several types of concave functions, which map \mathbb{D} conformally onto a simply connected, concave domain in $\widehat{\mathbb{C}}$:
(1) meromorphic, univalent functions f with a simple pole at the origin and the normalization $f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}$, said to belong to the class $\mathcal{C} o_{0}$,
(2) meromorphic, univalent functions f with a simple pole at the point $p \in(0,1)$ and the normalization $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, said to belong to the class $\mathcal{C} o_{p}$ and
(3) analytic, univalent functions f satisfying $f(1)=\infty$ with the normalizations $f(z)=$ $z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and an opening angle of $f(\mathbb{D})$ at ∞ less or equal to $\alpha \pi$ with $\alpha \in(1,2]$, said to belong to the class $\mathcal{C} o(\alpha)$.
A detailed discussion of these classes has already been done in [2]. We therefore concentrate on the class $\mathcal{C} o_{p}$ for the present article.

2. Alternative formulas

In [2] we introduced the following integral representation formula for functions of $\mathcal{C} o_{p}$.
Theorem 1. [2] Let $p \in(0,1)$. For a meromorphic function $f: \mathbb{D} \rightarrow \widehat{\mathbb{C}}$ of class $\mathcal{C} o_{p}$, there exists a function $\varphi: \mathbb{D} \rightarrow \mathbb{D}$, holomorphic in \mathbb{D} with $\varphi(p)=p$, such that the concave function can be represented as

$$
\begin{equation*}
f^{\prime}(z)=\frac{p^{2}}{(z-p)^{2}(1-z p)^{2}} \exp \int_{0}^{z} \frac{-2 \varphi(\zeta)}{1-\zeta \varphi(\zeta)} d \zeta \tag{1}
\end{equation*}
$$

for $z \in \mathbb{D}$. Conversely, for any holomorphic function φ mapping $\mathbb{D} \rightarrow \mathbb{D}$ with $\varphi(p)=p$, there exists a concave function of class $\mathcal{C} o_{p}$ described by (1).

However, a fixed point of the function φ at p is not very useful for further discussions. Using several transformations we obtain an alternate version of Theorem 1.

[^0]Corollary 2. Let $p \in(0,1)$. For a meromorphic function $f: \mathbb{D} \rightarrow \widehat{\mathbb{C}}$ of class \mathcal{C}_{p}, there exists a function $\Psi: \mathbb{D} \rightarrow \mathbb{D}$, holomorphic in \mathbb{D} with $\Psi(0)=0$ such that the concave function can be represented as

$$
\begin{equation*}
f^{\prime}(z)=\frac{p^{2}}{(z-p)^{2}(1-z p)^{2}} \exp \left(2 \int_{p}^{\frac{p-z}{1-p z}} \frac{p}{1-p \zeta}-\frac{\Psi(\zeta)}{1-\zeta \Psi(\zeta)} d \zeta\right) \tag{2}
\end{equation*}
$$

for $z \in \mathbb{D}$. Conversely, for any holomorphic function Ψ mapping $\mathbb{D} \rightarrow \mathbb{D}$ with $\Psi(0)=0$, there exists a concave function of class $\mathcal{C} o_{p}$ described by (2).
Proof. Let $p \in(0,1)$ and $z \in \mathbb{D}$. Applying the transformation $\zeta=\frac{p-x}{1-p x}$ and $\Phi(x)=\varphi(\zeta)$ we obtain

$$
\begin{aligned}
\int_{0}^{z} \frac{-2 \varphi(\zeta)}{1-\zeta \varphi(\zeta)} d \zeta & =\int_{p}^{\frac{p-z}{1-p z}} \frac{-2 \Phi(x)}{1-\frac{p-x}{1-p x} \Phi(x)} \cdot \frac{p^{2}-1}{(1-p x)^{2}} d x \\
& =\int_{p}^{\frac{p-z}{1-p z}} \frac{-2 \Phi(x)\left(p^{2}-1\right)}{(1-p x)^{2}-(p-x) \Phi(x)(1-p x)} d x
\end{aligned}
$$

Here the function Φ is holomorphic in \mathbb{D} with $\Phi(0)=p$. Therefore there exists a function $\Psi: \mathbb{D} \rightarrow \mathbb{D}$ holomorphic in \mathbb{D} with $\Psi(0)=0$, such that $\Phi(x)=\frac{p-\Psi(x)}{1-p \Psi(x)}$. Then

$$
\begin{aligned}
\int_{0}^{z} \frac{-2 \varphi(\zeta)}{1-\zeta \varphi(\zeta)} d \zeta & =\int_{p}^{\frac{p-z}{1-p z}} \frac{-2 \frac{p-\Psi(x)}{1-p \Psi(x)}\left(p^{2}-1\right)}{(1-p x)^{2}-(p-x) \frac{p-\Psi(x)}{1-p \Psi(x)}(1-p x)} d x \\
& =\int_{p}^{\frac{p-z}{1-p z}} \frac{-2(p-\Psi(x))\left(p^{2}-1\right)}{(1-p x)\left(\left(1-p^{2}\right)-x \Psi(x)\left(1-p^{2}\right)\right)} d x \\
& =\int_{p}^{\frac{p-z}{1-p z}} \frac{-2(\Psi(x)-p)}{(1-p x)(1-x \Psi(x)} d x \\
& =2 \int_{p}^{\frac{p-z}{1-p z}} \frac{p}{1-p x}-\frac{\Psi(x)}{1-x \Psi(x)} d x .
\end{aligned}
$$

Changing the variable inside the integration and replacing the integral in (1) leads to the statement.

The formula for the residue derived from the integral representation in [2] was given as follows.

Theorem 3. [2] Let $f(z) \in \mathcal{C} o_{p}$ be a concave function with a simple pole at some point $p \in(0,1)$. Then the residue of this function f can be described by some function $\varphi: \mathbb{D} \rightarrow$ \mathbb{D}, holomorphic in \mathbb{D} and $\varphi(p)=p$, such that

$$
\begin{equation*}
\operatorname{Res}_{p} f=-\frac{p^{2}}{\left(1-p^{2}\right)^{2}} \exp \int_{0}^{p} \frac{-2 \varphi(z)}{1-x \varphi(z)} d z \tag{3}
\end{equation*}
$$

Applying the alternative representation from Corollary 2, we obtain
Corollary 4. Let $f(z) \in \mathcal{C} o_{p}$ be a concave function with a simple pole at some point $p \in$ $(0,1)$. Then the residue of this function f can be described by some function $\Psi: \mathbb{D} \rightarrow \mathbb{D}$, holomorphic in \mathbb{D} and $\Psi(0)=0$, such that

$$
\begin{equation*}
\operatorname{Res}_{p} f=-\frac{p^{2}}{\left(1-p^{2}\right)^{2}} \exp 2 \int_{0}^{p} \frac{\Psi(x)}{1-x \Psi(x)}-\frac{p}{1-p x} d x . \tag{4}
\end{equation*}
$$

The advantage of Corollary 4 over the original presentation is the fixed point of Ψ at the origin. This provide much easier means for the construction, than a fixed point at p. Furthermore, the Schwarz Lemma can be applied directly without any complicated analysis, giving a way for the estimate of special values. We will show an application in the next section.

3. Range of the residue

Wirths proved the following statement in [3] using the inequality

$$
\left|\frac{1}{f(z)}-\frac{1}{z}+\frac{1+p^{2}}{p}\right| \leq 1
$$

provided by Miller in [1].
Theorem 5. [3] Let $p \in(0,1)$. For $a \in \mathbb{C}$ there exists a function $f \in \mathcal{C} o_{p}$ such that $a=\operatorname{Res}_{p} f$ if and only if

$$
\begin{equation*}
\left|a+\frac{p^{2}}{1-p^{4}}\right| \leq \frac{p^{4}}{1-p^{4}} \tag{5}
\end{equation*}
$$

Let $\vartheta \in[0,2 \pi)$. A function $f \in \mathcal{C} o_{p}$ has the residue

$$
a=-\frac{p^{2}}{1-p^{4}}+e^{i \vartheta} \frac{p^{4}}{1-p^{4}}
$$

if and only if

$$
\begin{equation*}
f_{\vartheta}(z)=\frac{z-\frac{p}{1+p^{2}}\left(1+e^{i \vartheta}\right) z^{2}}{\left(1-\frac{z}{p}\right)(1-p z)} \tag{6}
\end{equation*}
$$

The established representation formula for the residue can be used for a different approach of the same statement as described in [2]. For the present discussion we will use Corollary 4, which provides a shortcut for the proof. We also present some details, omitted in [2]
Proof. Let $p \in(0,1)$ and $\Psi: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic in \mathbb{D} with fixed point at the origin. For $a=\operatorname{Res}_{p} f$ with $f \in \mathcal{C} o_{p}$ we obtain with the use of Corollary 4

$$
\left|a+\frac{p^{2}}{1-p^{4}}\right| \stackrel{(4)}{=} \frac{p^{2}}{1-p^{4}}\left|\frac{1+p^{2}}{1-p^{2}} \exp \left(2 \int_{0}^{p} \frac{\Psi(x)}{1-x \Psi(x)}-\frac{p}{1-p x} d x\right)-1\right| .
$$

Some basic calculations yield

$$
\frac{1+p^{2}}{1-p^{2}}=\exp 2\left(\frac{1}{2} \log \frac{1+p^{2}}{1-p^{2}}\right)=\exp \int_{0}^{p} \frac{2 p}{1-p^{2} x^{2}} d x
$$

and therefore

$$
\begin{aligned}
\left|a+\frac{p^{2}}{1-p^{4}}\right| & =\frac{p^{2}}{1-p^{4}}\left|\exp \int_{0}^{p} 2\left(\frac{p}{1-p^{2} x^{2}}-\frac{p}{1-p x}+\frac{\Psi(x)}{1-x \Psi(x)}\right) d x-1\right| \\
& =\frac{p^{2}}{1-p^{4}}\left|\exp \int_{0}^{p} 2 \frac{\Psi(x)-p^{2} x}{(1-x \Psi(x))\left(1-p^{2} x^{2}\right)} d x-1\right| .
\end{aligned}
$$

From the triangle inequality, we know that

$$
\left|e^{w}-1\right|=\left|\sum_{n=1}^{\infty} \frac{w^{n}}{n!}\right|_{3} \leq \sum_{n=1}^{\infty} \frac{|w|^{n}}{n!}=e^{|w|}-1
$$

Hence

$$
\left|a+\frac{p^{2}}{1-p^{4}}\right| \leq \frac{p^{2}}{1-p^{4}}\left(\exp \int_{0}^{p} 2\left|\frac{\Psi(x)-p^{2} x}{(1-x \Psi(x))\left(1-p^{2} x^{2}\right)}\right| d x-1\right)
$$

Due to the fixed point at the origin, we can apply the Schwarz Lemma and have $|\Psi(x)| \leq x$ for $0<x<p$. Furthermore, since $\left|\frac{w-p^{2} x}{1-x w}\right| \leq \frac{\left(1-p^{2}\right) x}{1-x^{2}}$ for $|w| \leq x$, we have

$$
\begin{equation*}
\left|\frac{\Psi(x)-p^{2} x}{1-x \Psi(x)}\right| \leq \frac{\left(1-p^{2}\right) x}{1-x^{2}} \tag{7}
\end{equation*}
$$

Using the above, we finally obtain

$$
\begin{aligned}
\left|a+\frac{p^{2}}{1-p^{4}}\right| & \stackrel{(7)}{\leq} \frac{p^{2}}{1-p^{4}}\left(\exp \int_{0}^{p} 2 \frac{\left(1-p^{2}\right) x}{\left(1-x^{2}\right)\left(1-p^{2} x^{2}\right)} d x-1\right) \\
& =\frac{p^{2}}{1-p^{4}}\left(\exp \left(\log \left(1+p^{2}\right)\right)-1\right) \\
& =\frac{p^{4}}{1-p^{4}} .
\end{aligned}
$$

The rest of the proof goes according to the way described in [2].

References

[1] J. Miller, Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607-613.
[2] R. Ohno, Characterizations for concave functions and integral representations, Proceedings of the 19th ICFIDCAA (2013), Tohoku Univ. Press, to appear.
[3] K.-J. Wirths, On the residuum of concave univalent functions, Serdica Math. J. 32 (2006), 209-214.
Graduate School of Information Sciences,
Tohoku University, Sendai, 980-8579, Japan.
E-mail address: rohno@ims.is.tohoku.ac.jp

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Concave functions; Integral representations.

