August, 2010

(1) Let 0 < t < 1 be fixed. Draw the graph of the function $y = x^{t-1}e^{-x}$ (x > 0).

(2) Prove that the integral
$$\int_0^1 x^{t-1} e^{-x} dx$$
 converges for $0 < t < 1$.

- (3) Prove that the integral $\int_{1}^{\infty} x^{t-1} e^{-x} dx$ converges for t > 0.
- (4) By (2) and (3), for each t > 0, we can define

$$f(t) = \int_0^\infty x^{t-1} e^{-x} dx.$$

Show that the equality f(t+1) = tf(t) holds for any t > 0, and find the value f(5).

3

2

Consider the linear map from \mathbb{R}^3 to \mathbb{R}^3

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$
 $(\boldsymbol{x} \in \mathbb{R}^3)$

determined by a real matrix

$$A = \left(\begin{array}{rrr} 1 & 2 & 2 \\ 2 & a & b \\ 2 & b & c \end{array}\right).$$

Assume that if $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3$ are orthogonal then so are $f(\boldsymbol{x})$ and $f(\boldsymbol{y})$. Moreover, assume that a < 0.

- (1) Find (a, b, c).
- (2) Diagonalize the matrix A. Find also an orthogonal matrix for the diagonalization.

4 Let V be a 4-dimensional real vector space. Let $J: V \to V$ be a linear map satisfying

$$J^2 = -I.$$

Here, J^2 means the composed map $J \circ J$, and I represents the indentity map on V.

- (1) Show that the linear map $J: V \to V$ is an isomorphism.
- (2) Show that v_1 and $J(v_1)$ are linearly independent for any non-zero vector $v_1 \in V$. Moreover, when V_1 is the subspace generated by $\{v_1, J(v_1)\}$, show that V_1 is a *J*-invariant subspace, i.e.,

$$J(V_1) \subset V_1$$

holds.

(3) Take any vector $v_2 \in V$ which does not belong to V_1 , where V_1 is the subspace defined in (2). Let V_2 be the *J*-invariant subspace generated by $\{v_2, J(v_2)\}$. Then, show that

$$V_1 \cap V_2 = \{\mathbf{0}\},$$

where $\mathbf{0}$ is the zero vector of V.

(4) Find the representation matrix A of J with respect to the basis $\{v_1, J(v_1), v_2, J(v_2)\}$ of V obtained by (2) and (3).

5 For each positive integer n, we set $X_n = \{1, 2, ..., n\}$. Let E be a family of sets $\{x, y\}$ consisting of two distinct elements x, y of X_n . We say that E has a triangle if there exists a subset $\{x, y, z\}$ of X_n such that $\{x, y\} \in E, \{y, z\} \in E$, and $\{x, z\} \in E$. Let e_n denote the maximum of the number of the elements of E which does not have a triangle. For example, $e_3 = 2$.

- (1) Find e_4 .
- (2) Prove that $e_5 \ge 6$ holds.
- (3) Prove that $e_n \leq e_{n-2} + n 1$ holds if $n \geq 5$.

6 We toss a coin infinitely many times, assuming that the probability of heads on each toss is p ($0). We define a sequence of random variables <math>Z_1, Z_2, \ldots$ by $Z_n = 1$ if the *n*th outcome is heads and $Z_n = 0$ if it is tails. We set

$$X_n = Z_1 + Z_2 + \dots + Z_n$$
 $(n = 1, 2, \dots)$

and define, for each natural number $k \ge 1$,

$$T_k = \inf\{n \ge 1 \mid X_n \ge k\}.$$

- (1) Find the probability $P(T_2 = n)$ for $n = 1, 2, \ldots$
- (2) Find the mean value $\mathbf{E}[T_2]$ of T_2 .
- (3) Let k, m, n be natural numbers satisfying $k \ge 3$, n < m. Find the conditional probability $P(T_k = m | T_2 = n)$ in terms of binomial coefficients.

 $\boxed{7}$ Let *i* be the imaginary unit. We define a meromorphic function *f* on the complex plane by $f(z) = \frac{e^{iz}}{(z^2 + 1)^2}$.

- (1) For r > 0, we denote by M(r) the maximum of $|f(re^{i\theta})|$ on the interval $0 \le \theta \le \pi$. Show that $\lim_{r \to +\infty} r^2 M(r) = 0$.
- (2) Find all poles of f(z) in the upper half-plane Im z > 0 and the associated residues at those poles.

(3) Compute the integral
$$I = \int_0^\infty \frac{\cos x}{(x^2+1)^2} dx.$$

8 Let V be the set of all 2×2 matrices whose components are real-valued continuous functions on $[-\pi, \pi]$, i.e.,

$$V = \begin{cases} A(\theta) = \begin{pmatrix} a_{11}(\theta) & a_{12}(\theta) \\ a_{21}(\theta) & a_{22}(\theta) \end{pmatrix} : \end{cases}$$

 a_{ij} (i, j = 1, 2) are real-valued continuous functions on $[-\pi, \pi]$

(1) For $A(\theta), B(\theta) \in V$, we define

$$(A,B) = \frac{1}{2} \int_{-\pi}^{\pi} \operatorname{tr}(A(\theta)^{t} B(\theta)) d\theta.$$

Show that this is an inner product in the real vector space V. Here, $A(\theta)^t$ is the transposed matrix of $A(\theta)$, and $tr(A(\theta))$ is the trace of $A(\theta)$.

(2) For a nonnegative integer n, we define

$$O_n(\theta) = \frac{1}{\sqrt{2\pi}} \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}.$$

Prove that $(O_m, O_n) = \delta_{mn}$ for any nonnegative integers m, n. Here, δ_{mn} denotes Kronecker's delta.

(3) We fix $A(\theta) \in V$. For (n+1) real numbers a_0, a_1, \ldots, a_n , we define

$$Q(a_0, a_1, \dots, a_n) = (A - \sum_{k=0}^n a_k O_k, A - \sum_{k=0}^n a_k O_k).$$

Prove that $Q(a_0, a_1, \ldots, a_n)$ takes its minimum when $a_k = (A, O_k)$ for $k = 0, 1, \ldots, n$.

9 Let (X, d) be a metric space and let $C \subset X$ be a non-empty closed set. We define a function $f: X \to \mathbb{R}$ by

$$f(x) = \inf\{d(x, y) \mid y \in C\} \quad (x \in X).$$

- (1) Prove that f is continuous.
- (2) Prove that f(x) = 0 if and only if $x \in C$.

10 Let K be a field, and let U be a finite-dimensional vector space over K. Let V_1, V_2, V_3 be subspaces of U.

- (1) Prove that if a subspace V of U is included in the union $V_1 \cup V_2$, then $V \subset V_1$ or $V \subset V_2$.
- (2) Assume that K is the real field. Prove that if a subspace V of U is included in the union $V_1 \cup V_2 \cup V_3$, then V is included in one of the three V_1, V_2, V_3 .
- (3) Does the statement "If a subspace V of U is included in $V_1 \cup V_2 \cup V_3$, then V is included in one of the three V_1, V_2, V_3 " hold for any field K and for any finite-dimensional subspaces V_j (j = 1, 2, 3)? Give a proof if this statement is true, otherwise give a counter-example of K and V, V_1, V_2, V_3 .