Multivariate Krawtchouk polynomials: construction and asso-
ciated quantization

Philip Feinsilver
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Abstract: Multivariate Krawtchouk polynomials arise via symmetric ten-
sor powers by specification of an orthogonal matrix and two positive definite
diagonal matrices. They are orthogonal polynomials with respect to multino-
mial distributions. After detailing their construc- tion, they are recognized as
“Bernoulli systems” — yielding a family of commuting self-adjoint operators
associated to systems of partial differential equations of Riccati type.



Spherical design and its generalization: recent results and open
problems

Djoko Suprijanto
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Abstract: One important object in combinatorial mathematics is a com-
binatorial block t-design, which was introduced for the first time by statisti-
cians. In 1977, Delsarte, Goethals, and Seidel introduced a spherical analogue
of the above concept called spherical t-design.

Spherical designs may be regarded as a finite set approximating a unit
sphere with respect to an integral of polynomial functions. Formally, a spher-
ical t-design on a unit sphere S¢ C R¥*! is a finite set X C S? such that the
Chebyshev-type quadrature formula
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is exact for all polynomials f(x) = f(xo,x1,x2,...,x4) of degree at most t.

In this talk, we introduce basic concepts of spherical ¢-designs and review
recent results including several methods to construct them. Moreover, we
discuss some directions of generalization of this concept. We mention also
several open problems in this area.

T have to admit that the content of my talk is not new for experts. The pur-
pose of my talk is to attract amateur mathematicians, in particular amateur
combinatorialists, to this (hopefully) interesting concept from my personal
viewpoint.



Distance in graphs: two old and one new problems
Rinovia Simanjuntak
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Abstract: The distance between two vertices in a graph is the length of
the shortest path connecting the vertices. Determining the distance between
a pair of vertices in a graph is known to be solvable in polynomial time [Dijk-
stra (1959), Floyd and Warshall (1962)]. Since then, many distance-related
problems have arisen through the years. I will present three problems on
which T am currently working. In degree/diameter problem we max-
imize the order of a graph given its maximum degree and diameter. By
metric dimension the position of a vertex in a graph is uniquely deter-
mined using distances. And with distance-magic labeling we generalize
the well-known magic labeling notion through distances. The diameter of a
graph G is the greatest distance between two vertices in G. Con- sidering
three parameters in a graph: order, degree, and diameter, we can optimize
one parameter while fixing the other two parameters. Among three optimiza-
tion pos- sibilities, maximizing the order of the graph given its maximum
degree and diameter is one problem that has attracted many researchers
since first introduced by Moore, Hoffman, and Singleton in 1960. A natural
upper bound for the maximum order is known due to Moore and a graph
whose order attaining such a bound is then called a Moore graph. Unfor-
tunately, or maybe fortunately for the sake of further research, there only
exist very few Moore graphs. We have contributed several results: proving
non-existence of graphs of maximum degree 4 with order close to the Moore
bound and thus improving the upper bound for graphs with that particular
degree; and determin- ing ”"good” bounds for more restricted versions of the
degree/diameter problem (i.e., graphs embedable in fixed surfaces and bi-
partite Cayley graphs). Motivated by two real world applications: assigning
computer memory network and robotic navigation, the notion of metric di-
mension was introduced separately by Slater (1975) and Harary and Melter
(1976). They called a set of vertices S resolves a graph G if every vertex
is uniquely determined by its vector of distances to the vertices in S. The
metric dimension of G, dim(G), is the minimum cardinality of a resolving
set of G. Determining the metric dimension of an arbitrary graph has been
proved to be NP-hard [Garey and Johnson (1979)] and so research in this
area are then constrained towards: characterizing graphs with particular
metric dimensions, determining metric dimensions of particular graphs, and
constructing algorithm that best approximate metric dimensions. Our re-
search has contributed results in the first two topics. Vilfred (1994) and
Miller, Rodger, Simanjuntak (2003) defined distance-magic la- beling of a
graph G as labeling of vertices in G by consecutive integers from 1 up to the
order of G such that the summation of all labels of a vertex’s neighbors (i.e.,
vertices of distance one) is independent of the choice of vertex. In a way,
this labeling can be viewed as a natural extension of previously known graph
labelings: the magic labeling [Sedlacek (1963), Kotzig and Rosa (1970)] and



radio labeling (which is distance-based) [Griggs and Yeh (1992)]. Recently,
O’Neal and Slater (2012) has generalized the notion of distance-magic label-
ing by considering the summation for labels of all vertices with particular
distances to the vertex under consideration, not only its neighbors. A short
historical account, known techniques, recent results, and open questions of
the three afore-mentioned problems will be presented.



NLS on graphs. (Few) Results and (many) problems.
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Abstract: Schroedinger equation on graphs is nowadays an established
field of research, connected with applications to nanotechnologies and quan-
tum devices. It has been recently shown that also nonlinear Schroedinger
equation on ramified structures proves interesnting both from the physical
and from the analytical side. We give a survey on recent results, with par-
ticular emphasis on the problem of the stability of stationary states, and on
open problems. This is a joint research project with C. Cacciapuoti (Bonn),
D. Finco (Rome), and D. Noja (Milan).



A characterization of ellipsoids as
uniformly dense sets with respect to a family of convex bodies
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Abstract: Let K be an N-dimensional convex body containing the origin.
We say that a Lebesgue-measurable set G C RY of finite positive measure
is uniformly K-dense, or K-dense for short, if, for every fixed r > 0, the
measure of the sets G N (z + rK) is a constant ¢(r) for every z € 0G (here,
x + rK denotes a translate of a dilate of K). This property has to do
with time-invariant level surfaces of solutions of certain parabolic partial
differential equations.

For N = 2, we prove that, if G is K-dense, then both G and K are the
same ellipse up to translations and dilations. By a different proof, this result
extends to full generality (i.e. with no regularity assumptions on K or G) a
theorem by Amar, Berrone and Gianni.

For general N, we first show that, when K is centrally symmetric, K =
G — G up to homotheties, i.e. K is the Minkowski sum of G and —G. When
also G is centrally symmetric, we prove that both G and K must be the
same ellipsoid up to translations and dilations.

The ingredients of the proof are essentially two: an asymptotic formula
for the measure of GN (x4 rK) for “large” values of r and a characterization
of ellipsoids due to Petty.

This talk is based on work done in collaboration with Michele Marini
(Scuola Normale Superiore Pisa).



On the hyperbolic metric on a Riemann surface with conical sin-
gularities

Toshiyuki Sugawa
RCPAM, Graduate School of Information Sciences, Tohoku University

Abstract: It is a classical result that an analytically finite Riemann sur-
face (i.e., a compact Riemann surface minus finitely many points) carries
a canonical complete Riemannian metric of constant Gaussian curvature -1
with prescribed conical singularities as long as the virtual hyperbolic area is
positive. By using a potential-theoretic method due to Heins, we will show
existence of such a metric even when the surface is analytically infinite. We
will also give some background, concrete estimates and related problems.



