球面上の代数的組合せ論入門
An introduction to algebraic combinatorics on a sphere

Hiroshi Nozaki
Aichi University of Education

代数的組合せ論「夏の学校 2014」
Algebraic combinatorics “Summer school 2014”
Problem 1

What is a “good” finite set on the unit sphere S^{d-1}?

1. Coding theory (local viewpoint)
 - Spherical u-code → Kissing number
 - Optimal code
 - s-distance set

2. Design theory (global viewpoint)
 - Spherical t-design

$\rightarrow Q$-polynomial association scheme
1. Kissing number configurations
2. Optimal spherical codes
3. Spherical harmonics and linear programming method
4. s-distance sets
5. Spherical t-design
6. Results obtained from parameters s and t
X: a finite set on S^{d-1}

$$A(X) := \{ \langle x, y \rangle \mid x, y \in X, x \neq y \}.$$

Definition 2

X is called u-code if $A(X) \subset [-1, u]$.

Problem 3

For given $u \in [-1, 1]$ and d, find maximum $|X|$ in u-codes X.

$\frac{1}{2}$-codes \leftrightarrow kissing number problem
Kissing number on S^{d-1}: $k(d)$

$k(2) = 6$

$k(3) = 12$
- Famous disagreement between Newton and Gregory (1694)
- Proved by Schutte and van der Waerden (1953), Leech (1956), ...

$k(4) = 24$ (24-cell)

$k(8) = 240$ (E_8 root system), LP

$k(24) = 196560$ (Minimum vectors of the Leech lattice), LP
- Odlyzko–Sloane (1979)
Kissing number on S^{d-1}: $k(d)$

$k(2) = 6$

For other dimensions, nobody knows $k(d)$.

$k(3) = 12$

- Famous disagreement between Newton and Gregory (1694)
- Proved by Schutte and van der Waerden (1953), Leech (1956), . . .

$k(4) = 24$ (24-cell)

$k(8) = 240$ (E_8 root system), LP

$k(24) = 196560$ (Minimum vectors of the Leech lattice), LP

- Odlyzko–Sloane (1979)
Problem 4

For a given $|X|$ and d, find smallest u such that X is a u-code on S^{d-1}. (optimal code)
Optimal codes on S^2
The strong thirteen spheres problem

13 points
Musin and Tarasov (2012)
Optimal codes in higher dimensions

<table>
<thead>
<tr>
<th>dim.</th>
<th>size</th>
<th>$A(X)$</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$n + 1$</td>
<td>$-1/n$</td>
<td>simplex</td>
</tr>
<tr>
<td>n</td>
<td>$2n$</td>
<td>$-1, 0$</td>
<td>cross polytope</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>$-2/3, 1/6$</td>
<td>Petersen graph</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>$-1, \pm 1/2, 0, (\pm 1 \pm \sqrt{5})/4$</td>
<td>600-cell</td>
</tr>
<tr>
<td>8</td>
<td>240</td>
<td>$-1, \pm 1/2, 0$</td>
<td>E_8 root</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>$-1, \pm 1/3$</td>
<td>kissing</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>$-1/2, 1/4$</td>
<td>kissing</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>$-3/5, 1/5$</td>
<td>kissing</td>
</tr>
<tr>
<td>24</td>
<td>196560</td>
<td>$-1, \pm 1/2, \pm 1/4, 0$</td>
<td>Leech lattice</td>
</tr>
<tr>
<td>23</td>
<td>4600</td>
<td>$-1, \pm 1/3, 0$</td>
<td>kissing</td>
</tr>
<tr>
<td>22</td>
<td>891</td>
<td>$-1/2, -1/8, 1/4$</td>
<td>kissing</td>
</tr>
<tr>
<td>23</td>
<td>552</td>
<td>$-1 \pm 1/5$</td>
<td>equiangular lines</td>
</tr>
<tr>
<td>22</td>
<td>275</td>
<td>$-1/4, 1/6$</td>
<td>kissing</td>
</tr>
<tr>
<td>21</td>
<td>162</td>
<td>$-2/7, 1/7$</td>
<td>kissing</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>$-4/11, 1/11$</td>
<td>Higman-Sims</td>
</tr>
<tr>
<td>$q^{3+1}/q+1$</td>
<td>$(q + 1)(q^3 + 1)$</td>
<td>$-1/q, 1/q^2$</td>
<td>Cameron et al’78</td>
</tr>
</tbody>
</table>

Proved by LP or SDP (SDP: only for Petersen graph)
Homogeneous polynomials

$\text{Hom}_i(\mathbb{R}^d)$ denotes the linear space of homogeneous polynomials of degree i, in d variables x_1, \ldots, x_d.

$$\dim \text{Hom}_i(\mathbb{R}^d) = \binom{d+i-1}{i}.$$

(i-combination with repetitions)

$$P_i(\mathbb{R}^d) = \bigoplus_{j=0}^{i} \text{Hom}_j(\mathbb{R}^d).$$

$$\dim P_i(\mathbb{R}^d) = \sum_{j=0}^{i} \binom{d+j-1}{j} = \binom{d+i}{i}.$$
Harmonic polynomials

Laplacian: \(\Delta f = \sum_{k=1}^{d} \frac{\partial^2 f}{\partial x_k^2} \) for \(f \in \text{Hom}_i(\mathbb{R}^d) \).

\[\Delta : \text{Hom}_i(\mathbb{R}^d) \to \text{Hom}_{i-2}(\mathbb{R}^d) \] (linear map)

- \(\text{Harm}_i(\mathbb{R}^d) := \ker \Delta = \{ f \mid \Delta f = 0 \} \)
- An element of \(\text{Harm}_i(\mathbb{R}^d) \) is called a harmonic polynomial.

Actually \(\Delta \) is surjective.

\[
\dim \ker \Delta = \dim \text{Hom}_i(\mathbb{R}^d) - \dim \text{Im} \Delta
\]
\[
\dim \text{Harm}_i(\mathbb{R}^d) = \dim \text{Hom}_i(\mathbb{R}^d) - \dim \text{Hom}_{i-2}(\mathbb{R}^d)
= \binom{d+i-1}{i} - \binom{d+i-3}{i-2}
\]
Basic results on harmonic polynomials

Let \(r^2 = \sum_{i=1}^{d} x_i^2 \).

Theorem 5

1

\[
\text{Hom}_i(\mathbb{R}^d) = \text{Harm}_i(\mathbb{R}^d) \oplus r^2 \text{Hom}_{i-2}(\mathbb{R}^d).
\]

2

\[
\text{Hom}_i(\mathbb{R}^d) = \bigoplus_{j=0}^{[i/2]} r^{2j} \text{Harm}_{i-2j}(\mathbb{R}^d).
\]

3

\[
\text{Harm}_i(\mathbb{R}^d) \perp \text{Harm}_j(\mathbb{R}^d) (i \neq j)
\]

with respect to

\[
\langle\langle f, g \rangle\rangle = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x)g(x)d\mu(x).
\]
Polynomials on a sphere

\[\text{Hom}_i(S^{d-1}) = \{ f|_{S^{d-1}} \mid f \in \text{Hom}_i(\mathbb{R}^d) \} \]
\[P_i(S^{d-1}) = \{ f|_{S^{d-1}} \mid f \in P_i(\mathbb{R}^d) \} \]
\[\text{Harm}_i(S^{d-1}) = \{ f|_{S^{d-1}} \mid f \in \text{Harm}_i(\mathbb{R}^d) \} \]

Theorem 6

\[\text{Harm}_i(S^{d-1}) \cong \text{Harm}_i(\mathbb{R}^d) \]

\[\text{Hom}_i(\mathbb{R}^d) = \bigoplus_{j=0}^{\lfloor i/2 \rfloor} r^{2j} \text{Harm}_{i-2j}(\mathbb{R}^d) \Rightarrow \text{Hom}_i(S^{d-1}) \cong \bigoplus_{j=0}^{\lfloor i/2 \rfloor} \text{Harm}_{i-2j}(\mathbb{R}^d) \]

\[P_i(S^{d-1}) = \sum_{j=0}^{i} \text{Hom}_j(S^{d-1}) \cong \bigoplus_{j=0}^{i} \text{Harm}_j(\mathbb{R}^d) \]
Dimension of $P_i(S^{d-1})$

$$P_i(S^{d-1}) = \bigoplus_{j=0}^{i} \text{Harm}_j(\mathbb{R}^d)$$

$$\dim P_i(S^{d-1}) = \sum_{j=0}^{i} \dim \text{Harm}_j(\mathbb{R}^d)$$

$$= \sum_{j=0}^{i} \left(\binom{d+j-1}{j} - \binom{d+j-3}{j-2} \right)$$

$$= \binom{d+i-1}{i} + \binom{d+i-2}{i-1}.$$
Gegenbauer polynomials:

\[G_0^{(d)}(t) = 1, \quad G_1^{(d)}(t) = dt, \]

\[tG_{i-1}^{(d)}(t) = \frac{i}{d + 2i - 2} G_i^{(d)}(t) + \frac{d + i - 4}{d + 2i - 6} G_{i-2}^{(d)}(t). \]

Gegenbauer polynomials form a sequence of orthogonal polynomials w.r.t.

\[(f, g) = \int_{-1}^{1} f(t)g(t)(1 - t^2)^{(d-3)/2} dx \]

Note \(G_i^{(d)}(1) = \dim \text{Harm}_i(\mathbb{R}^d). \)
Let $h_i = \dim \text{Harm}_i(\mathbb{R}^d)$.
Let $\{\varphi_{i,1}, \ldots, \varphi_{i,h_i}\}$ be an orthonormal basis of $\text{Harm}_i(\mathbb{R}^d)$ w.r.t. $\langle\langle , \rangle\rangle$.
Let \langle , \rangle be the usual inner product in \mathbb{R}^d.

Theorem 7 (Addition formula)

For any $x, y \in S^{d-1}$, we have

$$
\sum_{j=0}^{h_i} \varphi_{i,j}(x) \varphi_{i,j}(y) = G_i^{(d)}(\langle x, y \rangle).
$$
Positive definiteness of $G_{i}^{(d)}(t)$

Theorem 8

For arbitrary points $x_1, \ldots, x_n \in S^{d-1}$, and real variables ξ_1, \ldots, ξ_n, we have

$$
\sum_{i,j=1}^{n} G_{k}^{(d)}(\langle x_i, x_j \rangle) \xi_i \xi_j \geq 0,
$$

or equivalently $(G_{k}^{d}(\langle x_i, x_j \rangle))_{i,j}$ is positive semidefinite.

Proof:

$$(G_{k}^{(d)}(\langle x_i, x_j \rangle))_{i,j} = (\sum_{l=0}^{h} \varphi_{k,l}(x_i) \varphi_{k,l}(x_j))_{i,j} = (\varphi_{k,l}(x_i))_{i,l}^t (\varphi_{k,l}(x_i))_{i,l} \succeq 0$$

Corollary: $\sum_{i,j=1}^{n} G_{k}^{(d)}(\langle x_i, x_j \rangle) \geq 0.$
Theorem 9 (Delsarte, Goethals and Seidel (1977))

Let X be a subset in S^{d-1}. Suppose there exists a polynomial $g(t) = \sum_{i \geq 0} g_i G_i^{(d)}(t)$ s.t.

- $g(1) > 0$, $g(\alpha) \leq 0$ for any $\alpha \in A(X)$,
- $g_0 > 0$, and $g_i \geq 0$ for any i.

Then

$$|X| \leq \frac{g(1)}{g_0}.$$
Proof of LP bound

Proof: \(n_\alpha = |\{(x, y) \in X \times X \mid \langle x, y \rangle = \alpha\}| \)

\[
\sum_{x,y\in X} g(\langle x, y \rangle) = \sum_{x,y\in X} \sum_{i \geq 0} g_i G_i^{(d)}(\langle x, y \rangle)
\]

\[
|X|g(1) \geq |X|g(1) + \sum_{\alpha \in A(X)} n_\alpha g(\alpha)
\]

\[
= |X|^2 g_0 + \sum_{i \geq 1} g_i \sum_{x,y \in X} G_i^{(d)}(\langle x, y \rangle) \geq |X|^2 g_0
\]

\[
|X| \leq \frac{g(1)}{g_0}.
\]

Equality holds \(\iff \)

\(g(\alpha) = 0 \) and \(g_i \sum_{x,y \in X} G_i^{(d)}(\langle x, y \rangle) = 0 \) for any \(1 \leq i \leq \deg g \).
Linear programming bound for spherical sets.

\[A(X) = \{\alpha_1, \ldots, \alpha_s\}, \quad n_i = \frac{1}{|X|} \left| \{(x, y) \in X \times X \mid \langle x, y \rangle = \alpha_i\} \right| \]

- \(L = -(G^{(d)}_j(\alpha_i))_{1 \leq i \leq s, 1 \leq j \leq r} \),
- \(b = (g_0, \ldots, g_0) \), \(c = (G^{(d)}_1(1), \ldots, G^{(d)}_r(1)) \),
- \(x = (g_1, \ldots, g_r) \), \(y = (n_1, \ldots, n_s) \).

maximize \(yb^T \) subject to \(yL \leq c, y \geq 0 \)

Dual linear problem:

minimize \(cx^T \) subject to \(Lx^T \geq b, x \geq 0 \)

\(M \): Maximum, \(m \): Minimum

\[g_0(|X| - 1) = g_0 \sum_{i=1}^{s} n_i \leq M = m \leq \sum_{i=1}^{r} g_i G^{(d)}_i(1) = g(1) - g_0 \]
Application of LP bound for kissing numbers

\[X \subset S^7: \ E_8 \text{ root system} \]
\[|X| = 240. \ A(X) = \{1/2, 0, -1/2, -1\}. \]

We want to find a polynomial \(g(t) = \sum_{i \geq 0} g_i G_i^{(d)}(t) \) such that

- \(g(1) > 0, \ g(\alpha) \leq 0 \) for any \(\alpha \in [-1, 1/2] \),
- \(g_0 > 0, \) and \(g_i \geq 0 \) for any \(i \),
- \(g(1)/g_0 < 241. \)

Actually

\[
g(t) = (t + 1)(t + \frac{1}{2})^2 t^2 (t - \frac{1}{2})
\]

satisfies the condition. \((g(1)/g_0 = 240) \)

Therefore \(X \) is a kissing number configuration.

\((k(24): \text{same method}) \)
Application of LP bound for optimal codes

\[X \subset S^7: \ E_8 \text{ root system} \]
\[|X| = 240. \ A(X) = \{1/2, 0, -1/2, -1\}. \]

\[X \text{ attains the LP bound from} \]
\[g(t) = (t + 1)(t + \frac{1}{2})^2t^2(t - \frac{1}{2}), \]

where \(g(1)/g_0 = 240. \)

If there exists \(Y \subset S^7 \) such that \(|Y| = 240 \) and \(A(Y) \subset [-1, 1/2) \), \(Y \) also attains the same LP bound. Thus \(A(Y) = \{-1, -1/2, 0\} \).

We perturb \(Y \) continuously to another spherical \(\alpha \)-code with \(0 < \alpha < 1/2 \).
\(g(t) \) must have the root \(\alpha \), a contradiction.
What concept is closely related to LP bound?

X attains the LP bound from $g(t) = \sum_{i \geq 0} g_i G_i^{(d)}(t)$.

\Rightarrow

- $g(\alpha) = 0$ for any $\alpha \in A(X)$.
 $\rightarrow X$ has few distances. (s-distance set)

- $g_i \sum_{x,y \in X} G_i^{(d)}(\langle x, y \rangle) = 0$ for any $1 \leq i \leq \deg g$.
 $\rightarrow \sum_{x,y \in X} G_i^{(d)}(\langle x, y \rangle) = 0$ for any $1 \leq i \leq t$.
 (spherical t-design)
Definition 10 (s-distance set)

X is called an s-distance set if $|A(X)| = s$.

Problem 11

For given s and d, find largest $|X|$ in s-distance sets $X \subset S^{d-1}$. (maximum distance set)
Theorem 12 (Delsarte-Goethals-Seidel (1977))

1. If $X \subset S^{d-1}$ is an s-distance set, then we have

$$|X| \leq \binom{d + s - 1}{s} + \binom{d + s - 2}{s - 1}.$$

2. If X is an antipodal s-distance set ($X = -X$), then we have

$$|X| \leq 2 \binom{d + s - 2}{s - 1}.$$

X is called a tight spherical s-distance set if equality holds.
Proof of the absolute bound for s-distance sets

Proof
X: s-distance set in S^{d-1}

For each $x \in X$,

$$f_x(\xi) = \prod_{\alpha \in A(X)} \frac{\langle x, \xi \rangle - \alpha}{1 - \alpha}.$$

- $f_x \in P_s(S^{d-1})$.
- For $y \in X$,

$$f_x(y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$$

$$\sum_{x \in X} c_x f_x(\xi) = 0 \Rightarrow \xi = y \in X, \text{ then } c_y = 0.$$

$\{f_x\}_{x \in X}$ are linearly independent.

$$|X| \leq \dim P_s(S^{d-1}) = \binom{d + s - 1}{s} + \binom{d + s - 2}{s - 1}. \square$$
Maximum distance sets on S^1

1-distance set 2-distance set 3-distance set 4-distance set
Regular $(2s + 1)$-gon \Leftrightarrow Maximum s-distance set

2-distance set 3-distance set 4-distance set
Regular $2s$-gon \Leftrightarrow Maximum antipodal s-distance set
Maximum 2-distance sets on S^2
Maximum distance sets on S^{d-1}

Maximum 3-distance set on S^2
(Shinohara, arXiv:1309.2047)

Maximum 2-distance set on S^{d-1}:

<table>
<thead>
<tr>
<th>d</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8 \cdots 21</th>
<th>22</th>
<th>23</th>
<th>24 \cdots 93 (d \neq 46, 78)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>X</td>
<td>$</td>
<td>10</td>
<td>16</td>
<td>27</td>
<td>28</td>
<td>$\frac{d(d+1)}{2}$</td>
<td>275</td>
</tr>
</tbody>
</table>

Theorem 13 (Musin and N. (2010))

1. A maximum 3-distance set on S^7 has 120 points [subsets of the E_8 root system]

2. A maximum 3-distance set on S^{21} has 2025 points [subset of the minimum vectors of the Leech lattice]
Main tools to determine maximum distance sets

- Linear programming bound, or semidefinite programming bound
- Harmonic absolute bound
Theorem 14 (N. and Shinohara (2010))

Let X be an s-distance set in S^{d-1}. Let

$$\prod_{\alpha \in X} (t - \alpha) = \sum_{i=1}^{s} g_i G^{(d)}_i (t).$$

Then we have

$$|X| \leq \sum_{i: g_i > 0} h_i,$$

where $h_i = \dim \text{Harm}_i(\mathbb{R}^d) = \binom{d+i-1}{i} - \binom{d+i-3}{i-2}$.

- Musin (2009) proved the bound for $s = 2$ and $g_1 \leq 0$.
- $\sum_{i=0}^{s} h_i = \binom{d+s-1}{s} + \binom{d+s-2}{s-1}$ (absolute bound)
Theorem 15 (N. (2010))

\(X \): an \(s \)-distance set in \(S^{d-1} \) with \(s \geq 2 \), and
\(A(X) = \{\alpha_1, \alpha_2, \ldots, \alpha_s\} \).
For each \(i = 1, 2, \ldots, s \), we define

\[
K_i = \prod_{j=1,2,\ldots,s,j\neq i} \frac{1 - \alpha_j}{\alpha_i - \alpha_j}.
\]

If \(|X| \geq 2 \dim P_{s-1}(S^{d-1}) \), then \(K_i \) is an integer. Moreover \(|K_i| \) is bounded above by some function of \(d \) and \(s \).

- Larman, Rogers, and Seidel (1977) proved it for \(s = 2 \).
- \(\sum_{i=1}^{s} K_i = 1 \)
- \(\alpha_1, \ldots, \alpha_{s-1} \) are determined by \(K_1, \ldots, K_{s-1}, \alpha_s \).
Let X be a finite subset on the unit sphere S^{d-1}.

Definition 16 (Spherical t-design, Delsarte-Goethals-Seidel (1977))

X is called a spherical t-design in S^{d-1} ⇔

$$
\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x) \, d\mu(x)
$$

for any $f(x) \in P_t(S^{d-1})$.

1. t-design \Rightarrow $(t - 1)$-design
2. X, Y: t-design ($X \cap Y = \emptyset$) \Rightarrow $X \cup Y$: t-design
Theorem 17

$X \subset S^{d-1}$. The following are equivalent.

1. X is a spherical t-design.

2. For each $f \in \text{Harm}_i(\mathbb{R}^d)$ and any $1 \leq i \leq t$, we have
 \[\sum_{x \in X} f(x) = 0. \]

3. For each $1 \leq i \leq t$, we have
 \[\sum_{x,y \in X} G_i^{(d)}(\langle x, y \rangle) = 0, \]
 where $G_i^{(d)}$ is the Gegenbauer polynomial of degree i.

Equivalent condition of spherical design
Proof of the theorem of equivalent conditions

(1) \Leftrightarrow (2): $f \in P_t(S^{d-1})$ can be expressed by

$$f = c_0 + \sum_{i=1}^{t} \varphi_i, \text{ where } \varphi_i \in \text{Harm}_i(\mathbb{R}^d).$$

Then

$$\frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x) d\mu(x) = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} (c_0 + \sum_{i=1}^{t} \varphi_i(x)) d\mu(x) = c_0,$$

$$\frac{1}{|X|} \sum_{x \in X} f(x) = c_0 + \frac{1}{|X|} \sum_{x \in X} \sum_{i=1}^{t} \varphi_i(x).$$

(2) \Leftrightarrow (3):

$$\sum_{x,y \in X} G_i^{(d)}(\langle x, y \rangle) = \sum_{x,y \in X} \sum_{j=0}^{h_i} \varphi_{i,j}(x) \varphi_{i,j}(y) = \sum_{j=0}^{h_i} (\sum_{x \in X} \varphi_{i,j}(x))^2$$
Spherical t-designs on S^1

2-design
3-design
4-design
\cdots \quad \text{regular n-gon}
\cdots \quad (n - 1)$-design
Regular polyhedron

spherical 2-design
 4 points

spherical 3-design
 8 points

spherical 3-design
 6 points

spherical 5-design
 20 points

spherical 5-design
 12 points
Semi-regular polyhedron

spherical 3-design
12 points

spherical 3-design
48 points

spherical 5-design
30 points

spherical 3-design
24 points

spherical 5-design
60 points
Remark that the following are NOT semi-regular polyhedrons.

Spherical 9-design on S^2

- spherical 9-design
 - 60 points
 - angles corresponding edges are
 - 20.5424° or 24.8207°
 - (Goethals and Seidel, The football, (1981))

- spherical 9-design
 - 60 points
 - angles corresponding edges are
 - 24.2511° or 28.3728°
Theorem 18 (Delsarte-Goethals-Seidel (1977))

1. If X is a spherical $2e$-design on S^{d-1}, then we have

$$|X| \geq \binom{d + e - 1}{e} + \binom{d + e - 2}{e - 1}.$$

2. If X is a spherical $(2e - 1)$-design on S^{d-1}, then we have

$$|X| \geq 2 \binom{d + e - 2}{e - 1}.$$

X is called a **tight** spherical design if equality holds.
Theorem 19 (Delsarte, Goethals and Seidel (1977))

Let X be a spherical t-design in S^{d-1}. Suppose there exists a polynomial $g(x) = \sum_{i \geq 0} g_i G_i^{(d)}(x)$ s.t.

- $g(1) > 0$, $g(\alpha) \geq 0$ for any $\alpha \in [-1, 1]$,
- $g_0 > 0$, and $g_i \leq 0$ for any $i > t$.

Then

$$|X| \geq \frac{g(1)}{g_0}.$$
Proof of LP bound for design

Proof: \[n_\alpha = |\{(x, y) \in X \times X \mid \langle x, y \rangle = \alpha\}| \]

\[
\sum_{x, y \in X} g(\langle x, y \rangle) = \sum_{x, y \in X} \sum_{i \geq 0} g_i G_i^{(d)}(\langle x, y \rangle)
\]

\[
|X| g(1) \leq |X| g(1) + \sum_{\alpha \in A(X)} n_\alpha g(\alpha)
\]

\[
= |X|^2 g_0 + \sum_{i > t} g_i \sum_{x, y \in X} G_i^{(d)}(\langle x, y \rangle) \leq |X|^2 g_0
\]

\[
|X| \geq \frac{g(1)}{g_0}. \quad \square
\]

Equality holds \(\Leftrightarrow\)

\[g(\alpha) = 0 \text{ and } g_i \sum_{x, y \in X} G_i^{(d)}(\langle x, y \rangle) = 0 \text{ for any } t + 1 \leq i \leq \deg g. \]
Proof of the absolute bound for design

Proof for 2e-designs: Use LP method.

\[
g(x) = \left(\sum_{i=0}^{e} G_{i}^{(d)}(x) \right)^2 = \sum_{i=0}^{2e} g_{i} G_{i}^{(d)}(x).
\]

Then \(g_0 = \sum_{i=0}^{e} G_{i}^{(d)}(1) > 0, \ g_i = 0 \) for \(i > t \), and \(g(x) \geq 0 \) for \(-1 \leq x \leq 1 \).

\[
|X| \geq \frac{g(1)}{g_0} = \sum_{i=0}^{e} G_{i}^{(d)}(1) = \sum_{i=0}^{e} \dim \text{Harm}_i(\mathbb{R}^d)
\]

\[
= \binom{d+e-1}{e} + \binom{d+e-2}{e-1}.
\]
Classification of tight spherical designs

Theorem 20 (Bannai–Damerell (1979,1980))

If a tight t-design on S^{d-1} for $d \geq 3$ exists, then $t \leq 5$ or $t = 7, 11$

$t = 2, 3, 11$: classified, $t = 4, 5, 7$: open.

<table>
<thead>
<tr>
<th>dim.</th>
<th>size</th>
<th>t</th>
<th>$A(X)$</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$n+1$</td>
<td>2</td>
<td>$-1/n$</td>
<td>simplex</td>
</tr>
<tr>
<td>n</td>
<td>$2n$</td>
<td>3</td>
<td>$-1,0$</td>
<td>cross polytope</td>
</tr>
<tr>
<td>8</td>
<td>240</td>
<td>7</td>
<td>$-1,\pm1/2,0$</td>
<td>E_8 root</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>5</td>
<td>$-1,\pm1/3$</td>
<td>kissing</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>4</td>
<td>$-1/2,1/4$</td>
<td>kissing</td>
</tr>
<tr>
<td>24</td>
<td>196560</td>
<td>11</td>
<td>$-1,\pm1/2,\pm1/4,0$</td>
<td>Leech lattice</td>
</tr>
<tr>
<td>23</td>
<td>4600</td>
<td>7</td>
<td>$-1,\pm1/3,0$</td>
<td>kissing</td>
</tr>
<tr>
<td>23</td>
<td>552</td>
<td>5</td>
<td>$-1 \pm 1/5$</td>
<td>equiangular lines</td>
</tr>
<tr>
<td>22</td>
<td>275</td>
<td>4</td>
<td>$-1/4,1/6$</td>
<td>kissing</td>
</tr>
</tbody>
</table>
Existence and construction for spherical designs

Theorem 21 (Seymour-Zaslavsky (1984))

There exists a spherical t-design on S^d for any d and t.

Theorem 22 (Bondarenko, Radchenko, and Viazovska (Annals of Math. (2013)))

For each $N \geq c_d t^d$, there exists a spherical t-design in S^d consisting of N points, where c_d is a constant depending only on d.

Problem 23

Give a explicit construction of a spherical t-design for any d and t.

For S^2, Kuperberg (2005) gives a certain explicit construction.
Parameters s and t

X: spherical t-design and s-distance set

- $t \leq 2s$. If $X = -X$, then $t \leq 2s - 1$.
- $t = 2s$ or $(t = 2s - 1$ and $X = -X)$
 $\iff X$: tight spherical design.
- $t \geq s - 1 \Rightarrow X$: distance invariant
- $t \geq 2s - 2$ or $(t \geq 2s - 3$ and $X = -X)$
 $\Rightarrow X$ has the structure of a Q-polynomial scheme.
- $t \geq 2s - 1$
 $\Rightarrow X$ is an optimal code (Levenshtein (1992)).

Problem 24

Classify spherical codes satisfying $t \geq 2s - 1$ or $t \geq 2s - 2$.
Bounds on s-distance t-design

X: s-distance set and $2e$-design on S^{d-1}

\[
\binom{d + e - 1}{e} + \binom{d + e - 2}{e - 1} \leq |X| \leq \binom{d + s - 1}{s} + \binom{d + s - 2}{s - 1}
\]

X: tight s-distance set $\iff X$: tight $2s$-design (DGS(1977)).

We say X has strength t if X is a t-design but not a $(t + 1)$-design

- Strength $2s \iff |X| = \binom{d+s-1}{s} + \binom{d+s-2}{s-1}$
- Strength $2s - 1 \implies |X| \leq \binom{d+s-1}{s} + \binom{d+s-2}{s-1} - 1$
- Strength $2s - 2 \implies |X| \leq ??$

Theorem 25 (Cameron-Goethals-Seidel (1978), Neumaier (1981))

X: 2-distance set with strength 2.

Then $|X| \leq \binom{d+1}{2}$ (\(= \text{above bound} - d\)).
Theorem 26 (N. and Suda (2011))

X: s-distance set with strength $2s - 2$. Then

$$|X| \leq \binom{d + s - 1}{s} + \binom{d + s - 4}{s - 3} = \dim P_s(S^{d-1}) - \dim \text{Harm}_{s-1}(R^d).$$

X: antipodal s-distance set (s: odd) with strength $2s - 5$. Then

$$|X| \leq 2\binom{d + s - 2}{s - 1} - 2\left(\binom{d + s - 4}{s - 3} - \binom{d + s - 6}{s - 5}\right)$$
Examples attaining the bound

- 2025-point 3-distance set on S^{21} with strength 4 (Maximum spherical 3-distance set)

Antipodal set:
- Dodecahedron: 20-point 5-distance set with strength 5
Summary

- Kissing number configuration, optimal code, spherical t-design, spherical s-distance set.
- Linear programming method, spherical harmonics.
- $t \geq 2s - 2 \rightarrow$ association scheme, orthogonal polynomial.

References:

