INSTABILITY OF STANDING WAVES FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH POTENTIALS

Reika Fukuizumi
Mathematical institute, Tohoku University, Sendai, Miyagi 980-8578, Japan

Masahito Ohta
Department of Mathematics, Faculty of Science
Saitama University, Saitama, Saitama 338-8570, Japan

(Submitted by: Jerry L. Bona)

Abstract. We study the instability of standing waves $e^{i\omega t} \phi_\omega(x)$ for a nonlinear Schrödinger equation with an attractive power nonlinearity $|u|^{p-1}u$ and a potential $V(x)$ in \mathbb{R}^n. Here, $\omega > 0$ and $\phi_\omega(x)$ is a minimal action solution of the stationary problem. Under suitable assumptions on $V(x)$, we show that if $p > 1+4/n$, $e^{i\omega t} \phi_\omega(x)$ is unstable for sufficiently large ω. For example, our theorem covers a harmonic potential $V(x) = |x|^2$, to which the arguments in the previous papers [2], [14] and [19] are not directly applicable. As another application, we also prove a similar result for a nonlinear Schrödinger equation with a constant magnetic field.

1. Introduction and main result

In this paper, we consider the instability of standing wave solutions for the nonlinear Schrödinger equations with a real valued potential $V(x)$:

$$i\partial_t u = -\Delta u + V(x)u - |u|^{p-1}u, \quad (t, x) \in \mathbb{R}^{1+n},$$

where $1 < p < 2^* - 1$. Here, we put $2^* = \infty$ if $n = 1, 2$, and $2^* = 2n/(n-2)$ if $n \geq 3$.

When $V(x) \equiv 0$, (1.1) arises in various physical contexts such as nonlinear optics and plasma physics (see, e.g., [7, 26, 29]). The nonlinearity enters due to the effect of changes in the field intensity on the wave propagation characteristics of the medium. The potential $V(x)$ can be thought of as modeling inhomogeneities in the medium. In [23], Equation (1.1) with a bounded potential $V(x)$ is studied as a model proposed to describe the local dynamics at a nucleation site. Equation (1.1) with a harmonic potential $V(x) = |x|^2$ is known as a model to describe the Bose-Einstein condensate.

Accepted for publication: December 2002.
AMS Subject Classifications: 35Q55, 35B35, 35A15.
691
with attractive inter-particle interactions under a magnetic trap (see, e.g., [1, 13, 27]). By a standing wave, we mean a solution of (1.1) of the form $u_\omega(t, x) = e^{i\omega t}\phi_\omega(x)$, where $\omega \in \mathbb{R}$, and $\phi_\omega(x)$ is a minimal action solution of

$$-\Delta \phi + \omega \phi + V(x)\phi - |\phi|^{p-1}\phi = 0, \quad x \in \mathbb{R}^n \quad (1.2)$$

(see Definition 1.1 below). The main purpose of this paper is to show that under suitable assumptions on $V(x)$ and $p > 1 + 4/n$, the standing wave solution $e^{i\omega t}\phi_\omega(x)$ of (1.1) is unstable for sufficiently large $\omega > 0$ (see Theorem 1.1 below). As an application, in Section 4, we prove a similar result for a nonlinear Schrödinger equation (4.1) with a constant magnetic field.

Many authors have been studying the problem of stability and instability of standing waves for nonlinear Schrödinger equations (see, e.g., [2, 6, 9, 14, 15, 19, 23, 24, 28, 30]). We recall some known results. First, we consider the case $V(x) \equiv 0$. For any $\omega > 0$, there exists a unique positive radial solution $\psi_\omega(x)$ of

$$-\Delta \psi + \omega \psi - |\psi|^{p-1}\psi = 0, \quad x \in \mathbb{R}^n \quad (1.3)$$

in $H^1(\mathbb{R}^n)$ (see [16] for the uniqueness), and the standing wave solution $e^{i\omega t}\psi_\omega(x)$ of (1.1) with $V(x) \equiv 0$ is stable for any $\omega > 0$ if $p < 1 + 4/n$, and unstable for any $\omega > 0$ if $p \geq 1 + 4/n$ (see [2, 6, 28]). Meanwhile, Rose and Weinstein [23] showed that when $-\Delta + V(x)$ has the first eigenvalue λ_1, the standing wave solution $e^{i\omega t}\phi_\omega(x)$ of (1.1) is stable for ω such that $\omega > -\lambda_1$ and sufficiently close to $-\lambda_1$, even if $p \geq 1 + 4/n$ (see also [10]).

In this paper, for potential $V(x)$, we assume the following (V0)–(V2).

(V0) There exist real valued functions $V_1(x)$ and $V_2(x)$ such that $V(x) = V_1(x) + V_2(x)$.

(V1.1) $V_1(x) \in C^2(\mathbb{R}^n)$ and there exist positive constants m and C such that $0 \leq V_1(x) \leq C(1 + |x|^m)$ on \mathbb{R}^n.

(V1.2) There exists $C_\alpha > 0$ such that $|x^\alpha \partial_x \phi_1 V_1(x)| \leq C_\alpha (1 + V_1(x))$ on \mathbb{R}^n for $|\alpha| \leq 2$.

(V2) There exists \tilde{q} such that $\tilde{q} \geq 1$, $q > n/2$ and $x^\alpha \partial_x \phi_1 V_2(x) \in L^q(\mathbb{R}^n) + L^{\infty}(\mathbb{R}^n)$ for $|\alpha| \leq 2$.

Example. (i) (Harmonic potentials) For $c_1, \cdots, c_n \in \mathbb{R}$, $\sum_{j=1}^n c_j^2 x_j^2$ satisfies (V1.1) and (V1.2).

(ii) For $c \in \mathbb{R}$ and $0 < a < \min\{2, n\}$, $c|x|^{-a}$ satisfies (V2).

(iii) (V2) is satisfied if $U(x) \in C^2(\mathbb{R}^n)$ satisfies $|\partial_x^\alpha U(x)| \leq C_\alpha (x)^{-|\alpha|}$ for $|\alpha| \leq 2$.

(iv) $1 + \sin x_1$ satisfies (V1.1), but does not satisfy (V1.2) nor (V2).

We define a real Hilbert space X by

$$X := \{v \in H^1(\mathbb{R}^n, \mathbb{C}) : V_1(x)|v(x)|^2 \in L^1(\mathbb{R}^n)\}$$
with the inner product

\[(v, w)_X := \text{Re} \int_{\mathbb{R}^n} (v(x)\bar{w}(x) + \nabla v(x) \cdot \nabla \bar{w}(x) + V_1(x)v(x)\bar{w}(x))dx.\]

The norm of \(X\) is denoted by \(\| \cdot \|_X\). Let \(G\) be a closed subgroup of \(O(n)\) such that \(V_1(x)\) and \(V_2(x)\) are invariant under \(G\), i.e., \(V_j(gx) = V_j(x)\) for \(g \in G, x \in \mathbb{R}^n\) and \(j = 1, 2\). We define a closed subspace \(X_G\) of \(X\) by

\[X_G := \{v \in X : v(gx) = v(x), g \in G, x \in \mathbb{R}^n\}.\]

We note that \(X_G = X\) if \(G = \{\text{Id (identity matrix)}\}\), and \(X_G = X_{rad}\) if \(G = O(n)\), where \(X_{rad} = \{v \in X : v(x) = v(|x|), x \in \mathbb{R}^n\}\). Moreover, we define the energy functional \(E\) on \(X_G\) by

\[E(v) := \frac{1}{2} \|\nabla v\|_2^2 + \frac{1}{2} \int_{\mathbb{R}^n} V(x)|v(x)|^2dx - \frac{1}{p+1} \|v\|_{p+1}^{p+1},\]

where \(\| \cdot \|_r\) stands for the norm of \(L^r(\mathbb{R}^n)\). We remark that by the assumptions (V2) and \(1 < p < 2^* - 1\), the functional \(E\) is well-defined on \(X_G\). We assume that the time local well-posedness for the Cauchy problem to (1.1) in \(X_G\), the conservation of energy and \(L^2(\mathbb{R}^n)\)-norm, and the virial identity hold.

Assumption (A1). For any \(u_0 \in X_G\), there exist \(T = T(||u_0||_X) > 0\) and a unique solution \(u(t) \in C([0, T], X_G)\) of (1.1) with \(u(0) = u_0\) satisfying

\[E(u(t)) = E(u_0), \quad \|u(t)\|_2^2 = \|u_0\|_2^2, \quad t \in [0, T].\]

In addition, if \(u_0 \in X_G\) satisfies \(|x|u_0 \in L^2(\mathbb{R}^n)\), then the virial identity

\[\frac{d^2}{dt^2} \|xu(t)\|_2^2 = 8P(u(t))\]

holds for \(t \in [0, T]\), where

\[P(v) := \|\nabla v\|_2^2 - \frac{1}{2} \int_{\mathbb{R}^n} x \cdot \nabla V(x)|v(x)|^2dx - \frac{n(p-1)}{2(p+1)} \|v\|_{p+1}^{p+1}.\]

Remark 1.1. The assumption (A1) is verified, if \(V(x)\) satisfies the following (A1.1)–(A1.2) with (V0) (see Section 6.4, Theorem 9.2.5 and Remark 9.2.9 of [4]).

(A1.1) \(V_1(x) \in C^\infty(\mathbb{R}^n), V_1(x) \geq 0 \in \mathbb{R}^n, \partial^\alpha_x V_1(x) \in L^\infty(\mathbb{R}^n)\) for \(|\alpha| \geq 2, \)

and there exists \(C > 0\) such that \(|x \cdot \nabla V_1(x)| \leq C(|x|^2 + V_1(x))\) in \(\mathbb{R}^n,\)

(A1.2) \(V_2(x) \in L^{q_0}(\mathbb{R}^n)+L^\infty(\mathbb{R}^n)\) for some \(q_0 \geq 1, q_0 > n/2\) and \(x \cdot \nabla V_2(x) \in L^{q_1}(\mathbb{R}^n)+L^\infty(\mathbb{R}^n)\) for some \(q_1 \geq 1, q_1 > n/2,\)

Next, we consider the stationary problem (1.2).
We note that M and ϕ satisfy Assumption (A2). Moreover, for any $(i) \in \mathbb{N}$, there exists $\delta > 0$ such that for any $\phi \in M$, the solution ϕ satisfies $I_\omega(\phi) = 0$. Thus, by the definition of M, we have $S_\omega(\phi) = S_\omega(v)$. That is, $\phi \in M$ is a minimal action solution of (1.2).

We also assume the existence of minimal action solutions of (1.2) for large ω.

Assumption (A2). There exists $\omega_0 \in (0, \infty)$ such that $M_{G, \omega}$ is not empty and $M_{G, \omega} \subset \{v \in X_G : |x|v(x) \in L^2(\mathbb{R}^n)\}$ for any $\omega \in (\omega_0, \infty)$.

Remark 1.3. If $V(x) \in C(\mathbb{R}^n)$ satisfies $\lim_{|x|\to \infty} V(x) = +\infty$, it is easy to see that $M_{G, \omega}$ is not empty for sufficiently large ω, since the embedding $X_G \subset L^r(\mathbb{R}^n)$ is compact for $2 \leq r < 2^*$. However, in general, we may need some additional assumptions related to the concentration compactness principle (see, e.g., [17, 18, 22]). The assumption $M_{G, \omega} \subset \{v \in X_G : |x|v(x) \in L^2(\mathbb{R}^n)\}$ is needed to use the virial identity (1.4) in the proof of Proposition 1.1 below.

Definition 1.1. We define two functionals on X_G:

$$S_\omega(v) := E(v) + \frac{\omega}{2} \|v\|^2_2 \quad \text{(action)},$$

$$I_\omega(v) := \|\nabla v\|^2_2 + \omega \|v\|^2_2 + \int_{\mathbb{R}^n} V(x)|v(x)|^2 dx - \|v\|^{p+1}_{p+1}.$$

Let $M_{G, \omega}$ be the set of all minimizers for

$$\inf\{S_\omega(v) : v \in X_G \setminus \{0\}, I_\omega(v) = 0\}. \quad (1.6)$$

Remark 1.2. (i) We note that $P(v) = \partial_\lambda S_\omega(v^\lambda)|_{\lambda=1}, I_\omega(v) = \partial_\lambda S_\omega(\lambda v)|_{\lambda=1},$ where $v^\lambda(x) := \lambda^{n/2} v(\lambda x)$ for $\lambda > 0$.

(ii) Let $\phi_\omega \in M_{G, \omega}$. There exists a Lagrange multiplier $\Lambda \in \mathbb{R}$ such that $S'_\omega(\phi_\omega) = \Lambda I'_\omega(\phi_\omega)$. Taking the pairing of this equation with ϕ, we obtain $\langle S'_\omega(\phi_\omega), \phi \rangle = \Lambda \langle I'_\omega(\phi_\omega), \phi \rangle$. Since $\langle S'_\omega(\phi_\omega), \phi \rangle = I_\omega(\phi_\omega) = 0$ and $\langle I'_\omega(\phi_\omega), \phi \rangle = -(p-1)\|\phi_\omega\|^{p+1}_{p+1} < 0$, we have $\Lambda = 0$. Namely, ϕ_ω satisfies (1.2). Moreover, for any $v \in X_G \setminus \{0\}$ satisfying $S'_\omega(v) = 0$, we have $I_\omega(v) = 0$. Thus, by the definition of $M_{G, \omega}$, we have $S_\omega(\phi_\omega) \leq S_\omega(v)$. That is, $\phi_\omega \in M_{G, \omega}$ is a minimal action solution of (1.2).

Definition 1.2. Let T_V be the maximal linear subspace of \mathbb{R}^n contained in $\{y \in \mathbb{R}^n : V(x + y) = V(x), x \in \mathbb{R}^n\}$, and for $\phi_\omega \in M_{G, \omega}$, we put

$$N_\delta(\phi_\omega) := \left\{ v \in X_G : \inf\{\|v - e^{it}\phi_\omega(\cdot + y)\|_X : \theta \in \mathbb{R}, y \in T_V\} < \delta \right\}.$$

We say that a standing wave solution $e^{it}\phi_\omega(x)$ of (1.1) is stable in X_G if for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any $u_0 \in N_\delta(\phi_\omega)$, the solution $u(t)$ of (1.1) with $u(0) = u_0$ satisfies $u(t) \in N_\varepsilon(\phi_\omega)$ for any $t \geq 0$. Otherwise, $e^{it}\phi_\omega(x)$ is said to be unstable in X_G.

694

Reika Fukuzumi and Masahito Ohta
Remark 1.4. Let $n = 3$, $c > 0$ and $V(x) = c(x_1^2 + x_2^2)$. In this case, we have $T_V = \{(0, 0, z) \in \mathbb{R}^3 : z \in \mathbb{R}\}$. This example will be used in Section 4.

Our main result in this paper is the following.

Theorem 1.1. Assume $(V0)$–$(V2)$, $(A1)$ and $(A2)$. Let $1 + 4/n < p < 2^* - 1$ and $\phi_\omega(x) \in \mathcal{M}_{G, \omega}$. Then there exists $\omega_* = \omega_*(n, p) \in (\omega_0, \infty)$ such that the standing wave solution $e^{i\omega t} \phi_\omega(x)$ of (1.1) is unstable in X_G for any $\omega \in (\omega_*, \infty)$.

By the general theory in Grillakis, Shatah and Strauss [14, 15], under some assumptions on the spectrum of a linearized operator, the standing wave solution $e^{i\omega t} \phi_\omega(x)$ is stable (resp. unstable) if the function $\|\phi_\omega\|^2_2$ is strictly increasing (resp. decreasing) at $\omega = \omega_1$. In the case $V(x) \equiv 0$, by the scaling $\psi_\omega(x) = \omega^{1/(p-1)} \psi_1(\sqrt{\omega} x)$, it is easy to check the increase and decrease of $\|\psi_\omega\|^2_2$. However, it seems difficult to check this property of $\|\phi_\omega\|^2_2$ for general $V(x)$. So, for the proof of Theorem 1.1, we use the following sufficient condition for instability, which is a modification of Theorem 3 in [20] (see also [10, 11, 24]).

Proposition 1.1. Assume $(V0)$–$(V2)$, $(A1)$ and $(A2)$. Let $1 < p < 2^* - 1$ and $\phi_\omega(x) \in \mathcal{M}_{G, \omega}$. If $\partial_\lambda^2 E(\phi_\omega^\lambda)\big|_{\lambda=1} < 0$, then the standing wave solution $e^{i\omega t} \phi_\omega(x)$ of (1.1) is unstable in X_G. Here, $v^\lambda(x) := \lambda^{n/2} v(\lambda x)$ for $\lambda > 0$.

For a bounded potential $V(x)$ as in Example (iii), Rose and Weinstein [23] studied by numerical simulations that if ω is sufficiently large and $p > 1 + 4/n$, then $\|\phi_\omega\|^2_2$ would decrease. We can affirm that this numerical result is correct with mathematical precision from Theorem 1.1. Moreover, for the nonlinear Schrödinger equation (4.1) with a constant magnetic field, Gonçalves Ribeiro [11] showed that if $\omega > 0$ and $p_0(3) := 1 + 4/3 + (4\sqrt{10} - 8)/9 < 5$, then the standing wave solution $e^{i\omega t} \phi_\omega(x)$ of (4.1) is unstable in $H^1_{A,0}(\mathbb{R}^3)$ (see Section 4). Recently, in [10], one of the authors studied the case of $V(x) = |x|^2$ and proved that if $\omega > 0$ and $p \geq p_0(n) := (n^2 + 4 + 4\sqrt{n^2 + 1})/n^2$, then the standing wave solution $e^{i\omega t} \phi_\omega(x)$ of (1.1) is unstable. Here, we note that $1 + 4/n < p_0(n) < 2^* - 1$, so that Theorem 1.1 also gives an improvement of the results in [10] and [11].

This paper is organized as follows. In Section 2, we prove Theorem 1.1 using Proposition 1.1. The variational characterization of $\phi_\omega(x) \in \mathcal{M}_{G, \omega}$ and the rescaled function $\tilde{\phi}_\omega(x)$ defined by $\phi_\omega(x) = \omega^{1/(p-1)} \tilde{\phi}_\omega(\sqrt{\omega} x)$ play an important role in the proof of Theorem 1.1 (see Lemma 2.1). In Section 3, we give the proof of Proposition 1.1 following that of Theorem 3 in [20]. In Section 4, as an application of Theorem 1.1, we study the nonlinear
Schrödinger equation (4.1) with a constant magnetic field, and improve the result in Gonçalves Ribeiro [11].

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using Proposition 1.1, which will be proved in Section 3. By simple computations, we have

\[
E(v^\lambda) = \frac{\lambda^2}{2} \|\nabla v\|^2 + \frac{1}{2} \int_{\mathbb{R}^n} V(x) |v(x)|^2 dx - \frac{\lambda^{n(p-1)/2}}{p+1} \|v\|_{p+1}^{p+1},
\]

\[
\partial_\lambda^2 E(v^\lambda) |_{\lambda=1} = \|\nabla v\|^2 + \frac{1}{2} \int_{\mathbb{R}^n} \left\{ 2x \cdot \nabla V(x) + \sum_{j,k=1}^n x_j x_k \partial_j \partial_k V(x) \right\} |v(x)|^2 dx
\]

\[
- \frac{n(p-1)}{2(p+1)} \left\{ \frac{n(p-1)}{2} - 1 \right\} \|v\|_{p+1}^{p+1}.
\]

Since \(P(\phi_\omega) = \partial_\lambda S_\omega (\phi^\lambda_\omega)|_{\lambda=1} = 0\) (see (1.5) and Remark 1.2), if we put

\[
V^*(x) = 3x \cdot \nabla V(x) + \sum_{j,k=1}^n x_j x_k \partial_j \partial_k V(x),
\]

then we have

\[
\partial_\lambda^2 E(\phi^\lambda_\omega)|_{\lambda=1} = \frac{1}{2} \int_{\mathbb{R}^n} V^*(x) |\phi_\omega(x)|^2 dx - \frac{n(p-1)}{2(p+1)} \left\{ \frac{n(p-1)}{2} - 2 \right\} \|\phi_\omega\|_{p+1}^{p+1}.
\]

Thus, we see that the condition \(\partial_\lambda^2 E(\phi^\lambda_\omega)|_{\lambda=1} < 0\) is equivalent to

\[
\frac{\int_{\mathbb{R}^n} V^*(x) |\phi_\omega(x)|^2 dx}{\|\phi_\omega\|_{p+1}^{p+1}} < \frac{n(p-1)\{n(p-1) - 4\}}{2(p+1)}.
\]

We remark that the right hand side of (2.2) is a positive constant by the assumption \(p > 1 + 4/n\) in Theorem 1.1. In what follows, we will show that the left hand side of (2.2) converges to 0 as \(\omega \to \infty\). To this end, we rescale \(\phi_\omega(x) \in \mathcal{M}_{G,\omega}\) as follows:

\[
\phi_\omega(x) = \omega^{1/(p-1)} \tilde{\phi}_\omega(\sqrt{\omega} x), \quad \omega \in (\omega_0, \infty).
\]

Then, the rescaled function \(\tilde{\phi}_\omega(x)\) satisfies

\[
-\Delta \phi + \phi + \omega^{-1} V\left(\frac{x}{\sqrt{\omega}}\right) \phi - |\phi|^{p-1} \phi = 0, \quad x \in \mathbb{R}^n.
\]
Moreover, since we have
\[\frac{\int_{\mathbb{R}^n} V^*(x)|\tilde{\phi}_\omega(x)|^2 dx}{\|\tilde{\phi}_\omega\|_{p+1}^{p+1}} = \frac{\omega^{-1} \int_{\mathbb{R}^n} V^*(x/\sqrt{\omega})|\tilde{\phi}_\omega(x)|^2 dx}{\|\tilde{\phi}_\omega\|_{p+1}^{p+1}}, \]
it suffices to prove
\[\lim_{\omega \to \infty} \frac{\omega^{-1} \int_{\mathbb{R}^n} V^*(x/\sqrt{\omega})|\tilde{\phi}_\omega(x)|^2 dx}{\|\tilde{\phi}_\omega\|_{p+1}^{p+1}} = 0. \tag{2.5} \]

When \(\omega \to \infty \), the term \(\omega^{-1}V(x/\sqrt{\omega})\phi \) in (2.4) disappears formally, and we expect that \(\tilde{\phi}_\omega(x) \) may converge to the unique positive radial solution \(\psi_1(x) \) of (1.3) with \(\omega = 1 \) in some sense. Since the standing wave solution \(e^{it\psi_1(x)} \) of (1.1) with \(V(x) \equiv 0 \) is unstable in \(H^1(\mathbb{R}^n) \) when \(p > 1 + 4/n \), we expect that the standing wave solution \(e^{iwt\tilde{\phi}_\omega(x)} \) of (1.1) may be also unstable in \(X_G \) when \(p > 1 + 4/n \) and \(\omega \) is sufficiently large. This is the reason why we introduce the rescaled function \(\tilde{\phi}_\omega(x) \) to prove (2.5). In what follows, we justify this formal argument. First, we put
\[I_\omega(v) := \|\nabla v\|_2^2 + \|v\|_2^2 + \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right)|v(x)|^2 dx - \|v\|_{p+1}^{p+1}, \]
\[I_0^0(v) := \|\nabla v\|_2^2 + \|v\|_2^2 - \|v\|_{p+1}^{p+1}. \]

The following Lemma 2.1 is a key to show (2.5).

Lemma 2.1. Let \(1 < p < 2^* - 1 \) and \(\phi_\omega \in M_{G, \omega} \) for large \(\omega \). Assume (V0), (V1.1) and \(V_2(x) \in L^q(\mathbb{R}^n) + \mathcal{L}^\infty(\mathbb{R}^n) \) for some \(q \) such that \(q > n/2 \) and \(q \geq 1 \). Let \(\tilde{\phi}_\omega(x) \) be the rescaled function defined by (2.3), and \(\psi_1(x) \) be the unique positive radial solution of (1.3) with \(\omega = 1 \) in \(H^1(\mathbb{R}^n) \). Then, we have

(i) \(\lim_{\omega \to \infty} \|\tilde{\phi}_\omega\|_{p+1}^{p+1} = \|\psi_1\|_{p+1}^{p+1} \),

(ii) \(\lim_{\omega \to \infty} I_\omega^0(\tilde{\phi}_\omega) = 0 \),

(iii) \(\lim_{\omega \to \infty} \|\tilde{\phi}_\omega\|_{H^1}^2 = \|\psi_1\|_{H^1}^2 \),

(iv) \(\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right)|\tilde{\phi}_\omega(x)|^2 dx = 0 \).

We prepare one lemma to prove Lemma 2.1.

Lemma 2.2. Let \(U(x) \in L^q(\mathbb{R}^n) + \mathcal{L}^\infty(\mathbb{R}^n) \) for some \(q \) such that \(q > n/2 \) and \(q \geq 1 \). Then, there exists a constant \(C > 0 \) such that
\[\left| \int_{\mathbb{R}^n} U(x)|v(x)|^2 dx \right| \leq C\|U\|_{L^q + \mathcal{L}^\infty} \|v\|_{H^1}^2, \quad v \in H^1(\mathbb{R}^n). \]
Lemma 2.2 is easily proved by the Hölder and the Gagliardo-Nirenberg inequalities. So, we omit the proof.

Proof of Lemma 2.1. First of all, we note that $\tilde{\phi}(x)$ is a minimizer of

$$
\inf \left\{ \|v\|_{p+1}^{p+1} : v \in X_G \setminus \{0\}, \hat{I}_\omega(v) \leq 0 \right\},
$$

and $\psi(\xi)$ is a minimizer of

$$
\inf \left\{ \|v\|_{p+1}^{p+1} : v \in H^1(\mathbb{R}^n) \setminus \{0\}, I_0^1(v) \leq 0 \right\},
$$

(see Lemma 3.1). In order to prove (i), we show that for any ω we have

$$
\omega \leq \omega_0 \leq \omega_1.
$$

Indeed, from (V1.1) and Lemma 2.2, we have

$$
1 \mu \|\psi\|_{p+1}^{p+1} \leq \|\tilde{\phi}\|_{p+1}^{p+1} \leq \mu^p \|\psi\|_{p+1}^{p+1}, \quad \omega \in (\omega(\mu), \infty).
$$

Since $\mu > 1$ is arbitrary, we conclude (i). First, from $I_0^1(\psi_1) = 0$, we have

$$
\mu^{-2} \hat{I}_\omega(\mu \psi_1) = - (\mu^{p-1} - 1) \|\psi_1\|_{p+1}^{p+1} + \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) \|\psi_1(x)\|^2 dx.
$$

Since $\psi_1(x)$ has an exponential decay at infinity (see, e.g., [3, Lemma 2]), we have

$$
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) |\psi_1(x)|^2 dx = 0. \quad (2.7)
$$

Indeed, from (V1.1) and Lemma 2.2, we have

$$
\omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) |\psi_1(x)|^2 dx
\leq \omega^{-1} \int_{\mathbb{R}^n} V_0\left(\frac{x}{\sqrt{\omega}}\right) |\psi_1(x)|^2 dx + \omega^{-1} \int_{\mathbb{R}^n} V_2\left(\frac{x}{\sqrt{\omega}}\right) |\psi_1(x)|^2 dx
\leq \omega^{-1} C \int_{\mathbb{R}^n} (1 + \omega^{-m/2} |x|^m) |\psi_1(x)|^2 dx + C(\omega^{-\theta(q)} + \omega^{-1}) \|V_2\|_{L^1 + L^\infty} \|\psi_1\|_{H^1}^2,
$$

where $\theta(q) := 1 - n/2q$. Therefore we obtain (2.7) since $|x|^m |\psi_1(x)|^2 \in L^1(\mathbb{R}^n)$ and $q > n/2$. Thus, for any $\mu > 1$, there exists $\omega(\mu) \in (\omega_0, \infty)$ such that $I_\omega(\mu \psi_1) < 0$ for any $\omega \in (\omega(\mu), \infty)$. Next, from $I_\omega(\tilde{\phi}_\omega) = 0$, we have

$$
\mu^{-2} I_0^1(\mu \tilde{\phi}_\omega) = - (\mu^{p-1} - 1) \|\tilde{\phi}_\omega\|_{p+1}^{p+1} + \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) |\tilde{\phi}_\omega(x)|^2 dx
\leq - (\mu^{p-1} - 1) \|\tilde{\phi}_\omega\|_{p+1}^{p+1} + \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) |\tilde{\phi}_\omega(x)|^2 dx,
$$

where $\tilde{\phi}_\omega(x)$ is a minimizer of

$$
\inf \left\{ \|v\|_{p+1}^{p+1} : v \in X_G \setminus \{0\}, \hat{I}_\omega(v) \leq 0 \right\}.
$$
where $V_-(x) = \max\{-V(x), 0\}$. From the assumptions (V0) and (V1.1), we have $V_\in L^q(\mathbb{R}^n) + L^\infty(\mathbb{R}^n)$ with $q \geq 1$ and $q > n/2$. Thus, by Lemma 2.2, there exists $C > 0$ such that

$$\omega^{-1} \int_{\mathbb{R}^n} V_-(\frac{x}{\sqrt{\omega}}) |\phi_{\omega}(x)|^2 dx \leq C(\omega^{-\theta(q)} + \omega^{-1}) \|V_\|_{L^q + L^\infty} \|\phi_{\omega}\|_{H^1}^2.$$

Note that $\theta(q) \in (0, 1]$ since $q > n/2$. Moreover, from $I_\omega(\tilde{\phi_{\omega}}) = 0$, we have

$$\|\tilde{\phi_{\omega}}\|_{H^1}^2 \leq \|\tilde{\phi_{\omega}}\|_{H^1}^2 \leq C(\omega^{-\theta(q)} + \omega^{-1}) \|V_\|_{L^q + L^\infty} \|\tilde{\phi_{\omega}}\|_{H^1}^2,$$

which implies

$$\left(1 - C(\omega^{-\theta(q)} + \omega^{-1}) \|V_\|_{L^q + L^\infty}\right)\|\tilde{\phi_{\omega}}\|_{H^1}^2 \leq \|\tilde{\phi_{\omega}}\|_{H^1}^2.$$

Thus, we have

$$\mu^{-2} I_\omega^*(\mu \tilde{\phi_{\omega}}) \leq -\left(\mu^{p-1} - 1 - \frac{C(\omega^{-\theta(q)} + \omega^{-1}) \|V_\|_{L^q + L^\infty}}{1 - C(\omega^{-\theta(q)} + \omega^{-1}) \|V_\|_{L^q + L^\infty}}\right)\|\tilde{\phi_{\omega}}\|_{H^1}^2.$$

(2.8)

Therefore, for any $\mu > 1$, there exists $\omega_2(\mu) \in (\omega_0, \infty)$ such that $I_\omega^*(\mu \tilde{\phi_{\omega}}) < 0$ for any $\omega \in (\omega_2(\mu), \infty)$. Hence, we conclude (i).

Secondly, we show (ii). By (2.8) with $\mu = 1$ and (i), we have

$$\limsup_{\omega \to \infty} I_\omega^*(\tilde{\phi_{\omega}}) \leq 0.$$

Moreover, for any $\omega \in (\omega_0, \infty)$ there exists $\mu(\omega) > 0$ such that $I_\omega^*(\mu(\omega) \tilde{\phi_{\omega}}) = 0$. Thus, we have

$$\|\psi_1\|_{H^1}^2 \leq \|\mu(\omega) \tilde{\phi_{\omega}}\|_{H^1}^2 = \mu(\omega) \|\tilde{\phi_{\omega}}\|_{H^1}^2,$$

which together with (i) implies that

$$\liminf_{\omega \to \infty} \mu(\omega) \geq \liminf_{\omega \to \infty} \|\psi_1\|_{H^1}^2 = 1.$$

From $I_\omega^*(\mu(\omega) \tilde{\phi_{\omega}}) = 0$ and (i), we have

$$\liminf_{\omega \to \infty} I_\omega^*(\tilde{\phi_{\omega}}) = \liminf_{\omega \to \infty} (\mu(\omega) - 1) \|\tilde{\phi_{\omega}}\|_{H^1}^2 \geq 0.$$

Hence, we conclude (ii).

Next, from (i), (ii) and $I_\omega^*(\psi_1) = 0$, we have

$$\lim_{\omega \to \infty} \|\tilde{\phi_{\omega}}\|_{H^1}^2 = \lim_{\omega \to \infty} \|\tilde{\phi_{\omega}}\|_{H^1}^2 = \|\psi_1\|_{H^1}^2,$$

which shows (iii).
Finally, from (ii) and $\tilde{I}_\omega(\tilde{\phi}_\omega) = 0$, we have
\[\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) |\tilde{\phi}_\omega(x)|^2 \, dx = 0, \]
which shows (iv).

We are now in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. As stated above, we have only to show (2.5). Recall that $V^*_l(x)$ is defined by (2.1), and we put
\[V^*_l(x) := 3x \cdot \nabla V_l(x) + \sum_{j,k \leq 1} x_j x_k \partial_j \partial_k V_l(x), \quad (l = 1, 2). \]

By the assumption (V2) and Lemma 2.2, we have
\[\omega^{-1} \int_{\mathbb{R}^n} |V^*_2\left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\phi}_\omega(x)|^2 \, dx \leq C(\omega^{-1} + \omega^{-\theta(q)}) \|V^*_2\|_{L^q + L^\infty} \|	ilde{\phi}_\omega\|^2_{H^1}, \quad (2.9) \]
\[\omega^{-1} \int_{\mathbb{R}^n} |V^*_2\left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\phi}_\omega(x)|^2 \, dx \leq C(\omega^{-1} + \omega^{-\theta(q)}) \|V^*_2\|_{L^q + L^\infty} \|	ilde{\phi}_\omega\|^2_{H^1}. \quad (2.10) \]

From Lemma 2.1 (iii), (iv) and (2.10), we have
\[\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} V^*_1\left(\frac{x}{\sqrt{\omega}}\right) |\tilde{\phi}_\omega(x)|^2 \, dx = 0. \quad (2.11) \]

Now, from the assumption (V1.2), we have
\[-\int_{\mathbb{R}^n} \left|1 + V^*_1\left(\frac{x}{\sqrt{\omega}}\right)\right||\tilde{\phi}_\omega(x)|^2 \, dx \leq C \omega^{-1} \int_{\mathbb{R}^n} V^*_2\left(\frac{x}{\sqrt{\omega}}\right) |\tilde{\phi}_\omega(x)|^2 \, dx. \]

Thus, from (2.11) and Lemma 2.1 (iii), we have
\[\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} V^*_1\left(\frac{x}{\sqrt{\omega}}\right) |\tilde{\phi}_\omega(x)|^2 \, dx = 0. \quad (2.12) \]

Since $V^*_2(x) = V^*_1(x) + V^*_2(x)$, it follows from (2.9) and (2.12) that
\[\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} |V^*_2\left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\phi}_\omega(x)|^2 \, dx = 0. \]
Hence, by Lemma 2.1 (i), we obtain (2.5).

Remark 2.1. Let $\phi_\omega(x) \in \mathcal{M}_{G,\omega}$. Without loss of generality, we may assume that $\phi_\omega(x)$ is positive in \mathbb{R}^n. By Lemma 2.1 and the concentration compactness principle, we see that for any sequence $\{\omega_j\}$ with $\omega_j \to \infty$, there exist a subsequence $\{\phi_{\omega_{j_k}}(x)\}$ of $\{\phi_{\omega_j}(x)\}$ and a sequence $\{y_k\} \subset \mathbb{R}^n$ such that
\[\lim_{k \to \infty} \|\phi_{\omega_{j_k}}(\cdot + y_k)\|_{H^1} = 0 \quad (2.13) \]
(see Theorem III.1 in [18]). Although (2.13) may give some information on the asymptotic behavior of $\phi_\omega(x) \in \mathcal{M}_{G,\omega}$ as $\omega \to \infty$, we do not use (2.13) in the proof of Theorem 1.1 directly. We also note that Lemma 2 holds for any $p \in (1, 2^* - 1)$. Finally, we remark that, in the case $p = 1 + 4/n$, it follows from (2.13) that $\lim_{\omega \to \infty} \|\phi_\omega\|_2^2 = \|\psi_1\|_2^2$.

3. Proof of Proposition 1.1

In this section we give the proof of Proposition 1.1 following that of Theorem 3 in [20].

Lemma 3.1. Let $\phi_\omega \in \mathcal{M}_{G,\omega}$. Then, we have

(i) $\|\phi_\omega\|_{p+1} = \inf\{\|v\|_{p+1}: v \in X_G \setminus \{0\}, I_\omega(v) = 0\} = \inf\{\|v\|_{p+1}: v \in X_G \setminus \{0\}, I_\omega(v) \leq 0\}$,

(ii) $S_\omega(\phi_\omega) = \inf\{S_\omega(v): v \in X_G, \|v\|_{p+1} = \|\phi_\omega\|_{p+1}\}$.

Proof. (i) Since we have

$$S_\omega(v) = \frac{1}{2} I_\omega(v) + \frac{p-1}{2(p+1)} \|v\|_{p+1}^p, \quad v \in X_G,$$

we see that

$$d_1(\omega) := \inf\{S_\omega(v): v \in X_G \setminus \{0\}, I_\omega(v) = 0\} = \inf\left\{\frac{p-1}{2(p+1)} \|v\|_{p+1}: v \in X_G \setminus \{0\}, I_\omega(v) = 0\right\},$$

and $d_1(\omega) = S_\omega(\phi_\omega) = [(p-1)/(2(p+1))]\|\phi_\omega\|_{p+1}$. We put

$$d_2(\omega) := \inf\left\{\frac{p-1}{2(p+1)} \|v\|_{p+1}: v \in X_G \setminus \{0\}, I_\omega(v) \leq 0\right\}.$$

Since it is clear that $d_2(\omega) \leq d_1(\omega)$, we show $d_1(\omega) \leq d_2(\omega)$. For any $v \in X_G \setminus \{0\}$ satisfying $I_\omega(v) < 0$, there exists $\lambda_0 \in (0, 1)$ such that $I_\omega(\lambda_0 v) = 0$. Thus, we have

$$d_1(\omega) \leq \frac{p-1}{2(p+1)} \|\lambda_0 v\|_{p+1} = \frac{(p-1)}{2(p+1)} \lambda_0^{p+1} \|v\|_{p+1} < \frac{p-1}{2(p+1)} \|v\|_{p+1}.$$

Hence, we have $d_1(\omega) \leq d_2(\omega)$.

(ii) We put $d_3(\omega) := \inf\{S_\omega(v): v \in X_G, \|v\|_{p+1} = \|\phi_\omega\|_{p+1}\}$. Since $d_3(\omega) \leq S_\omega(\phi_\omega)$, it suffices to prove $S_\omega(\phi_\omega) \leq d_3(\omega)$. By (i), for any $v \in X_G$ satisfying $\|v\|_{p+1} = \|\phi_\omega\|_{p+1}$, we have $I_\omega(v) \geq 0$. Thus, we have

$$S_\omega(v) \geq \frac{p-1}{2(p+1)} \|v\|_{p+1} = \frac{p-1}{2(p+1)} \|\phi_\omega\|_{p+1} = S_\omega(\phi_\omega).$$
Therefore, we obtain $S_\omega(\phi_\omega) \leq d_3(\omega)$. \hfill \Box

Lemma 3.2. If $\partial^2_\lambda \bar{E}(\phi^\lambda_\omega)|_{\lambda=1} < 0$, then there exist positive constants ε_1 and δ_1 with the following properties: for any $v \in N_{\delta_1}(\phi_\omega)$ satisfying $\|v\|^2 = \|\phi_\omega\|^2$, there exists $\lambda(v) \in (1 - \varepsilon_1, 1 + \varepsilon_1)$ such that $E(\phi_\omega) \leq E(v) + (\lambda(v) - 1)P(v)$, where $N_{\delta_1}(\phi_\omega)$ is the set defined in Definition 1.2.

Proof. From the assumption $\partial^2_\lambda \bar{E}(\phi^\lambda_\omega)|_{\lambda=1} < 0$ and the continuity of $\partial^2_\lambda \bar{E}(v^\lambda)$ in λ and v, there exist $\varepsilon_1, \delta_1 > 0$ such that $\partial^2_\lambda \bar{E}(v^\lambda) < 0$ for any $\lambda \in (1 - \varepsilon_1, 1 + \varepsilon_1)$ and $v \in N_{\delta_1}(\phi_\omega)$. Since $\partial_\lambda E(v^\lambda)|_{\lambda=1} = P(v)$, the Taylor expansion at $\lambda = 1$ gives

$$E(v^\lambda) \leq E(v) + (\lambda - 1)P(v), \quad \lambda \in (1 - \varepsilon_1, 1 + \varepsilon_1), \quad v \in N_{\delta_1}(\phi_\omega). \quad (3.1)$$

For any $v \in N_{\delta_1}(\phi_\omega)$, we put $\lambda(v) := (\|\phi_\omega\|^2_1/\|v\|^2_1)^{2/n(p-1)}$. Then, we have $\|v^{\lambda(v)}\|^2_1 = \|\phi_\omega\|^2_1$, and we can take δ_1 small enough to have $\lambda(v) \in (1 - \varepsilon_1, 1 + \varepsilon_1)$. Furthermore, from Lemma 3.1 (ii), if $\|v\|^2_2 = \|\phi_\omega\|^2_2$, we have

$$E(v^{\lambda(v)}) = S_\omega(v^{\lambda(v)}) - \frac{\omega}{2}\|v^{\lambda(v)}\|^2_2 \geq S_\omega(\phi_\omega) - \frac{\omega}{2}\|\phi_\omega\|^2_2 = E(\phi_\omega). \quad (3.2)$$

Therefore, from (3.1) and (3.2), we have $E(\phi_\omega) \leq E(v) + (\lambda(v) - 1)P(v)$ for any $v \in N_{\delta_1}(\phi_\omega)$ satisfying $\|v\|^2_2 = \|\phi_\omega\|^2_2$. \hfill \Box

Definition 3.1. Let δ_1 be the positive constant in Lemma 3.2. We put

$$A := \{v \in N_{\delta_1}(\phi_\omega); \; E(v) < E(\phi_\omega), \; \|v\|^2_2 = \|\phi_\omega\|^2_2, \; P(v) < 0\},$$

and for any $u_0 \in N_{\delta_1}(\phi_\omega)$, we define the exit time from $N_{\delta_1}(\phi_\omega)$ by

$$T(u_0) = \sup\{T > 0 : u(t) \in N_{\varepsilon_1}(\phi_\omega), 0 \leq t \leq T\},$$

where $u(t)$ is a solution of (1.1) with $u(0) = u_0$.

Lemma 3.3. If $\partial^2_\lambda \bar{E}(\phi^\lambda_\omega)|_{\lambda=1} < 0$, then for any $u_0 \in A$, there exists $\varepsilon_0 = \varepsilon_0(u_0) > 0$ such that $P(u(t)) \leq -\varepsilon_0$ for $0 \leq t < T(u_0)$.

Proof. Take $u_0 \in A$ and put $\varepsilon_2 = E(\phi_\omega) - E(u_0) > 0$. From Lemma 3.2 and the conservation laws in the assumption (A1), we have

$$\varepsilon_2 \leq (\lambda(u(t)) - 1)P(u(t)), \quad 0 \leq t < T(u_0). \quad (3.3)$$

Thus, we see that $P(u(t)) \neq 0$ for $0 \leq t < T(u_0)$. Since the function $t \mapsto P(u(t))$ is continuous and $P(u_0) < 0$, we have $P(u(t)) < 0$ for $0 \leq t < T(u_0)$. Therefore, from Lemma 3.2 and (3.3), we have

$$-P(u(t)) \geq \frac{\varepsilon_2}{1 - \lambda(u(t))} \geq \frac{\varepsilon_2}{\varepsilon_1}, \quad 0 \leq t < T(u_0).$$

Hence, putting $\varepsilon_0 = \varepsilon_2/\varepsilon_1$, we have $P(u(t)) \leq -\varepsilon_0$ for $0 \leq t < T(u_0)$. \hfill \Box
Proof of Proposition 1.1. Since $\partial_\lambda E(\phi_\omega^\lambda)|_{\lambda=1} = 0$, $\partial^2_{\lambda} E(\phi_\omega^\lambda)|_{\lambda=1} < 0$ and $P(\phi_\omega^\lambda) = \lambda \partial_\lambda E(\phi_\omega^\lambda)$, we have $E(\phi_\omega^\lambda) < E(\phi_\omega)$ and $P(\phi_\omega^\lambda) < 0$ for $\lambda > 1$ sufficiently close to 1. Furthermore, since $\|\phi_\omega^\lambda\|_2^2 = \|\phi_\omega\|_2^2$ and $\lim_{\lambda \to 1} \|\phi_\omega^\lambda - \phi_\omega\|_X = 0$, we have $\phi_\omega^\lambda \in A$ for $\lambda > 1$ sufficiently close to 1. Since we assume $|x|\phi_\omega^\lambda(x) \in L^2(\mathbb{R}^n)$ in the assumption (A2), it follows from the virial identity (1.4) in the assumption (A1) that

$$\frac{d^2}{dt^2} \|xu_\lambda(t)\|_2^2 = 8P(u_\lambda(t)), \quad 0 \leq t < T(\phi_\omega^\lambda),$$

(3.4)

where $u_\lambda(t)$ is the solution of (1.1) with $u_\lambda(0) = \phi_\omega^\lambda$. From Lemma 3.3, there exists $\varepsilon_\lambda > 0$ such that

$$P(u_\lambda(t)) \leq -\varepsilon_\lambda, \quad 0 \leq t < T(\phi_\omega^\lambda).$$

(3.5)

Hence, from (3.4) and (3.5), we can conclude that $T(\phi_\omega^\lambda) < \infty$. Since $\lim_{\lambda \to 1} \|\phi_\omega^\lambda - \phi_\omega\|_X = 0$, the proof is completed. \qed

4. NLS WITH A CONSTANT MAGNETIC FIELD

In this section, we consider the nonlinear Schrödinger equation with a constant magnetic field $B = (0, 0, b)$:

$$i\partial_t u = -(\nabla + iA(x))^2 u - |u|^{p-1}u, \quad (t, x) \in \mathbb{R}^{1+3},$$

(4.1)

where $1 < p < 5$ and

$$A(x_1, x_2, x_3) = \frac{b}{2}(-x_2, x_1, 0), \quad b \in \mathbb{R} \setminus \{0\}.$$

Here, we note that $B = \text{rot } A(x) = (0, 0, b)$, $\text{div } A(x) = 0$ and

$$-(\nabla + iA(x))^2 u = -\Delta u - 2iA(x) \cdot \nabla u + |A(x)|^2 u = -\Delta u - bi\frac{\partial u}{\partial \theta} + \frac{b^2}{4}\rho^2 u,$$

where we used the cylindrical coordinates (ρ, θ, z) in \mathbb{R}^3:

$$x_1 = \rho \cos \theta, \quad x_2 = \rho \sin \theta, \quad x_3 = z.$$

As in [11], we consider (4.1) in the closed subspace $H^1_{A, 0}(\mathbb{R}^3) = \{v \in H^1(\mathbb{R}^3) : \rho v \in L^2(\mathbb{R}^3), \quad v = v(\rho, z) \text{ does not depend on } \theta\}$ of the energy space $H^1_A(\mathbb{R}^3) = \{v \in L^2(\mathbb{R}^3) : (\nabla + iA(x))v \in L^2(\mathbb{R}^3)\}$. We note that in $H^1_{A, 0}(\mathbb{R}^3)$, equation (4.1) is equivalent to

$$i\partial_t u = -\Delta u + \frac{b^2}{4}\rho^2 u - |u|^{p-1}u, \quad (t, x) \in \mathbb{R}^{1+3}.$$

(4.2)

Let $V_1(x) = (b^2/4)(x_1^2 + x_2^2) = (b^2/4)\rho^2$, $V_2(x) \equiv 0$, and let G be the group of rotations around the x_3-axis in \mathbb{R}^3. Then, $V(x) = V_1(x) + V_2(x) = \frac{b^2}{4}\rho^2$.\]
the standing wave solution 4.1, Gonçalves Ribeiro [11] proved that if $1 + 4^p < 3$, and E, S_ω and L_ω on $H^1_{A,0}(\mathbb{R}^3)$ are defined as in Section 1. The assumption (A1) is verified by [5, 12]. For the assumption (A2), the existence of minimal action solution $\phi_\omega(\rho, z)$ of the stationary problem:

$$-\Delta \phi + \omega \phi + \frac{b^2}{4} \rho^2 \phi - |\phi|^{p-1} \phi = 0, \quad x \in \mathbb{R}^3$$

in $H^1_{A,0}(\mathbb{R}^3)$ was proved by Esteban and Lions [8] for $\omega \in (-|b|, \infty)$. More precisely, we have

Lemma 4.1. Let $1 < p < 5$ and $\omega \in (-|b|, \infty)$. Then, the set $M_{G,\omega}$ is not empty, i.e., there exists a minimizer $\phi_\omega(\rho, z)$ of

$$\inf \{ S_\omega(v) : v \in H^1_{A,0}(\mathbb{R}^3) \setminus \{0\}, \quad I_\omega(v) = 0 \}.$$

Proof. Esteban and Lions [8] proved that for any $\omega \in (-|b|, \infty)$, there exists a minimizer $\varphi_\omega(x)$ for

$$\alpha_\omega := \inf \{ W_\omega(v) : v \in H^1_{A,0}(\mathbb{R}^3), \quad \|v\|_{p+1} = 1 \},$$

where

$$W_\omega(v) = I_\omega(v) + \|v\|^{p+1}_{p+1} = \|\nabla v\|^2_2 + \omega \|v\|^2_2 + \frac{b^2}{4} \int_{\mathbb{R}^3} \rho^2 |v(x)|^2 dx.$$

Here, we put $\phi_\omega(x) = \alpha_\omega^{1/(p-1)} \varphi_\omega(x)$. Then, we have $\phi_\omega \in H^1_{A,0}(\mathbb{R}^3) \setminus \{0\}$ and $I_\omega(\phi_\omega) = 0$. Moreover, for any $v \in H^1_{A,0}(\mathbb{R}^3) \setminus \{0\}$ satisfying $I_\omega(v) = 0$, we have

$$S_\omega(\phi_\omega) = \frac{p-1}{2(p+1)} \alpha_\omega^{(p+1)/(p-1)} \leq \frac{p-1}{2(p+1)} W_\omega \left(\frac{v}{\|v\|_{p+1}} \right)^{(p+1)/(p-1)} = \frac{p-1}{2(p+1)} \|v\|^{p+1}_{p+1} = S_\omega(v).$$

Hence, we conclude that $\phi_\omega \in M_{G,\omega}$. \hfill \Box

The stability of standing wave solutions of (4.1) was studied by Cazenave and Esteban [5] for the case $1 < p < 1 + 4/3$. For $\phi_\omega(\rho, z) \in M_{G,\omega}$ in Lemma 4.1, Gonçalves Ribeiro [11] proved that if $1 + 4/3 + (4\sqrt{10} - 8)/9 \leq p < 5$, the standing wave solution $e^{i\omega t} \phi_\omega(\rho, z)$ of (4.1) is unstable in $H^1_{A,0}(\mathbb{R}^3)$ for any $\omega > 0$. Here, we remark that $\phi_\omega(\rho, z)$ exists for $\omega \in (-|b|, \infty)$. Applying Theorem 1.1 to (4.2), we obtain the following theorem, which covers the case $1 + 4/3 < p < 1 + 4/3 + (4\sqrt{10} - 8)/9$ and gives an improvement of the above result by Gonçalves Ribeiro [11].
Theorem 4.1. Let \(1 + 4/3 < p < 5 \) and \(\phi_\omega(\rho, z) \in M_{G,\omega} \). Then there exists \(\omega_* = \omega_*(p, b) \) such that the standing wave solution \(e^{i\omega t} \phi_\omega(\rho, z) \) of (4.1) is unstable in \(H^1_{A,0}(\mathbb{R}^3) \) for any \(\omega \in (\omega_*, \infty) \).

Proof. We apply Theorem 1.1 to (4.2). As stated above, \(V(x) = V_1(x) + V_2(x) = (b^2/4)\rho^2 \) satisfies (V0)–(V2) and (A1). For (A2), by Lemma 4.1, the set \(M_{G,\omega} \) is not empty for \(\omega \in (-|b|, \infty) \). Thus, we have only to show that
\[
M_{G,\omega} \subset \{ v \in H^1_{A,0}(\mathbb{R}^3) : |x|v(x) \in L^2(\mathbb{R}^3) \}, \quad \omega \in (0, \infty).
\] (4.4)
For any \(\omega > 0 \), it follows from [21, Theorem 2.5] that the operator \(-\Delta + (b^2/4)\rho^2 + \omega\) is m-accretive in \(L^r(\mathbb{R}^n) \) for \(1 < r < \infty \). By following the argument of Cazenave [4, Theorem 8.1.1], we see that all \(v \in M_{G,\omega} \) decay exponentially. Therefore, we have (4.4). This completes the proof. \(\square \)

Acknowledgement. The authors would like to express their deep gratitude to Professor Yoshio Tsutsumi for his valuable comments and encouragement for their work.

References

