The Terwilliger algebra of a \(Q \)-polynomial distance-regular graph with respect to a set of vertices

Hajime Tanaka

(joint work with Rie Tanaka and Yuta Watanabe)

Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University

November 29, 2014
Algebraic Combinatorics Workshop
Notation

- \(\Gamma = (X, R) \): a finite connected simple graph
 - \(X \): the vertex set
 - \(R \): the edge set (= a set of 2-element subsets of \(X \))

- \(\partial \): the path-length distance on \(X \)

\[
\partial(x,y) = i
\]

- \(D := \max \{ \partial(x, y) : x, y \in X \} \): the diameter of \(\Gamma \)

- \(\Gamma_i(x) := \{ y \in X : \partial(x, y) = i \} \): the \(i \)th subconstituent
Distance-regular graphs

- \(\Gamma : \text{distance-regular} \)

\[
\iff \exists a_i, b_i, c_i \ (0 \leq i \leq D) \ \text{s.t.} \ \forall x, y \in X : \\
|\Gamma_{i-1}(x) \cap \Gamma_1(y)| = c_i \\
|\Gamma_i(x) \cap \Gamma_1(y)| = a_i \\
|\Gamma_{i+1}(x) \cap \Gamma_1(y)| = b_i
\]

where \(\partial(x, y) = i \).
The adjacency algebra

- **Mat\(_X(\mathbb{C})\)**: the set of square matrices over \(\mathbb{C}\) index by \(X\)
- The **i\(^{th}\) distance matrix** \(A_i \in \text{Mat}\(_X(\mathbb{C})\) is**

\[
(A_i)_{x,y} = \begin{cases}
1 & \text{if } \partial(x, y) = i \\
0 & \text{otherwise}
\end{cases}
\]

[Note: \(A_0 = I\)]

- \(A_0, A_1, \ldots, A_D\) satisfy the **three-term recurrence**

\[
A_1A_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1} \quad (0 \leq i \leq D)
\]

where \(A_{-1} = A_{D+1} = 0\).
Recall the three-term recurrence

\[A_1 A_i = b_{i-1} A_{i-1} + a_i A_i + c_{i+1} A_{i+1} \quad (0 \leq i \leq D) \]

where \(A_{-1} = A_{D+1} = 0. \)

\(M := \mathbb{C}[A_1] \subseteq \text{Mat}_X(\mathbb{C}) : \text{the adjacency algebra of } \Gamma \)

\(\exists v_i \in \mathbb{Q}[t] \text{ s.t. } \deg v_i = i \text{ and } A_i = v_i (A_1) \quad (0 \leq i \leq D) \)

\(M = \langle A_0, A_1, \ldots, A_D \rangle \)

\(A_1 \text{ has } D + 1 \text{ distinct eigenvalues } \theta_0, \theta_1, \ldots, \theta_D \in \mathbb{R}. \)
The Q-polynomial property

- Recall
 - $\theta_0, \theta_1, \ldots, \theta_D \in \mathbb{R}$: the distinct eigenvalues of A_1
 - Γ: regular with valency $k_1 := |\Gamma_1(x)| (= b_0)$

Always set $\theta_0 = k_1$.

- $E_\ell \in \text{Mat}_X(\mathbb{C})$: the orthogonal projection onto the eigenspace of θ_ℓ
 [Note: $E_0 = \frac{1}{|X|} J$ (J: the all-ones matrix)]

- $M = \mathbb{C}[A_1] = \langle A_0, A_1, \ldots, A_D \rangle = \langle E_0, E_1, \ldots, E_D \rangle$

- E_0, E_1, \ldots, E_D: the primitive idempotents of M
The Q-polynomial property

- Recall the three-term recurrence

$$A_1 A_i = b_{i-1} A_{i-1} + a_i A_i + c_{i+1} A_{i+1} \quad (0 \leq i \leq D).$$

- $\Gamma : Q$-polynomial w.r.t. $\{E_\ell\}_{\ell=0}^D$

$$\text{def} \quad \exists a_\ell^*, b_\ell^*, c_\ell^* \quad (0 \leq \ell \leq D) \quad \text{s.t.} \quad b_{\ell-1}^* c_\ell^* \neq 0 \quad (1 \leq \ell \leq D) \quad \text{and}$$

$$|X| E_1 \circ E_\ell = b_{\ell-1}^* E_{\ell-1} + a_\ell^* E_\ell + c_{\ell+1}^* E_{\ell+1} \quad (0 \leq \ell \leq D)$$

where $E_{-1} = E_{D+1} = 0$ and \circ is the entrywise product.
We shall assume Γ is a Q-polynomial DRG.

- $Y \subseteq X$: a nonempty subset of X
- $\chi \in \mathbb{C}^X$: the characteristic vector of Y
- $w = \max\{i : \chi^T A_i \chi \neq 0\}$: the width of Y
- $w^* = \max\{\ell : \chi^T E_\ell \chi \neq 0\}$: the dual width of Y
We have

\[w + w^* \geq D. \]

If \(w + w^* = D \) then \(Y \) is completely regular, and the induced subgraph \(\Gamma_Y \) on \(Y \) is a \(Q \)-polynomial DRG with diameter \(w \) provided it is connected.

\(Y \) : a descendent of \(\Gamma \) \(\overset{\text{def}}{\leftrightarrow} \) \(w + w^* = D \)

Some descendents

- $w = 0 : Y = \{x\} \ (x \in X)$
- $w = D : Y = X$
- $w = 1 : \text{Delsarte cliques} \ (\theta_D = \theta_{\text{min}}) \ i.e., \ |Y| = 1 - \frac{k_1}{\theta_D}$
A chain of descendents

Q_1 Q_2 Q_3

Q_4
Theorem (T., 2011)

Let \(Y \) be a descendent of \(\Gamma \) and suppose \(\Gamma_Y \) is connected. Then a nonempty subset of \(Y \) is a descendent of \(\Gamma_Y \) if and only if it is a descendent of \(\Gamma \).

- \(\mathcal{L} \) : the set of isomorphism classes of \(Q \)-polynomial DRGs
- \([\Delta] \preceq [\Gamma] \overset{\text{def}}{\iff} \exists Y : \text{a descendent of } \Gamma \text{ s.t. } [\Delta] = [\Gamma_Y] \)
- \((\mathcal{L}, \preceq) : \text{a poset} \)
The classification of descendents is complete for the 15 known infinite families of DRGs with unbounded diameter and with classical parameters (BGKM, 2003; T., 2006, 2011).

The ideal $\mathcal{I}_{[\Gamma]} = \{[\Delta] \in \mathcal{L} : [\Delta] \preceq [\Gamma]\}$ is known if Γ belongs to one of the above families.
The structure of (\mathcal{L}, \preceq)

Problem
- Determine the filter $\mathcal{F}_{[\Gamma]} = \{ [\Delta] \in \mathcal{L} : [\Gamma] \preceq [\Delta] \}$

- This has been solved at the parameteric level.
- The generic case is described in terms of 5 scalars (besides D) q, r_1, r_2, s, s^* where $r_1 r_2 = ss^* q^{D+1}$ (Leonard, 1982).

Theorem (T., 2009, 2011)
- Suppose $[\Gamma] \preceq [\Delta]$ and Δ has diameter $C \geq D$. If $D \geq 3$ then the scalars corresponding to Δ are

$$q, r_1, r_2, sq^{D-C}, s^*.$$
When Γ_Y is connected

Theorem (Brouwer–Godsil–Koolen–Martin, 2003)

- We have
 \[w + w^* \geq D. \]
- If \(w + w^* = D \) then \(Y \) is completely regular, and the induced subgraph \(\Gamma_Y \) on \(Y \) is a Q-polynomial DRG with diameter \(w \) provided it is connected.

Theorem (T., 2011)

- Let \(Y \) be a descendent of \(\Gamma \). Then \(\Gamma_Y \) is connected if and only if \(q \neq -1 \), or \(q = -1 \) and \(w^* \) is even.
$Y \subseteq X :$ a nonempty subset of X

$Y_i = \{z \in X : \partial(z, Y) = i\}$

$\tau = \max\{i : Y_i \neq \emptyset\} :$ the covering radius of Y

The distance partition of X
The Terwilliger algebra

- $\chi_i \in \mathbb{C}^X$: the characteristic vector of Y_i ($0 \leq i \leq \tau$)
- $E_i^* = \text{Diag}(\chi_i) \in \text{Mat}_X(\mathbb{C})$ ($0 \leq i \leq \tau$),

\[
(E_i^*)_{zz} = \begin{cases}
1 & \text{if } z \in Y_i, \\
0 & \text{otherwise},
\end{cases} \quad (z \in X).
\]

- $T = T(Y) = \mathbb{C}[A_1, E_0^*, \ldots, E_\tau^*]$: the Terwilliger algebra with respect to Y (Martin–Taylor, 1997; Suzuki, 2005)

- $Y = \{x\} \implies T = T(x)$: the Terwilliger algebra with respect to x (Terwilliger, 1992)
The case when Y is a descendent

- We shall assume Y is a descendent of Γ.

- We have $\tau = |\{\ell \neq 0 : \chi^T E_{\ell} \chi \neq 0\}| = w^*$.

- $T = \mathbb{C}[A_1, E_0^*, \ldots, E_w^*]$
The dual adjacency matrix

\[E_i^* A_1^* E_j^* = 0 \text{ if } |i - j| > 1 \]

\[A_1^* = \frac{|X|}{|C|} \text{Diag}(E_1 \chi) \in \text{Mat}_X(\mathbb{C}) : \text{the dual adjacency matrix} \]

\[Y : \text{completely regular} \implies A_1^* \in M^* := \langle E_0^*, E_1^*, \ldots, E_w^* \rangle \]

“dual Bose–Mesner algebra”

\[E_i A_1^* E_j = 0 \text{ if } |i - j| > 1 \]
Tridiagonal pairs

- \(W \): a finite-dimensional complex vector space
- \(\alpha, \alpha^* \in \text{End}(W) \): diagonalizable
- \((\alpha, \alpha^*)\): a tridiagonal pair (Ito–Tanabe–Terwilliger, 2001)

\[\text{def} \quad \exists W_0, W_1, \ldots, W_d : \text{an ordering of the eigenspaces of } A \text{ s.t.} \]
\[\alpha^* W_i \subset W_{i-1} + W_i + W_{i+1} \quad (0 \leq i \leq d); \]

\[\exists W_0^*, W_1^*, \ldots, W_{d^*}^* : \text{an ordering of the eigenspaces of } A^* \text{ s.t.} \]
\[\alpha W_i^* \subset W_{i-1}^* + W_i^* + W_{i-1}^* \quad (0 \leq i \leq d^*); \]
- \(W \): irreducible as a \(\mathbb{C}[\alpha, \alpha^*] \)-module.

Proposition (Ito–Tanabe–Terwilliger, 2001)

- \(d = d^* \).
Do irreducible T-modules afford tridiagonal pairs?

- $E_i^* A_1 E_j^* = 0$ if $|i - j| > 1$
- $E_i A_1^* E_j = 0$ if $|i - j| > 1$

W: an irreducible T-module

- $A_1 E_i^* W \subset E_{i-1}^* W + E_i^* W + E_{i+1}^* W$
- $A_1^* E_i W \subset E_{i-1} W + E_i W + E_{i+1} W$

If $M^* = \mathbb{C}[A_1^*]$ then W is irreducible as a $\mathbb{C}[A_1, A_1^*]$-module.

Theorem

Every irreducible T-module affords a tridiagonal pair if and only if $q \neq -1$, or $q = -1$ and ω is even.
Some general results

- We shall assume $q \neq -1$.

- W : an irreducible T-module

- $\rho = \min\{i : E_i^* W \neq 0\}$: the endpoint of W

- $\rho^* = \min\{\ell : E_\ell W \neq 0\}$: the dual endpoint of W

- $d = |\{i : E_i^* W \neq 0\}| = |\{\ell : E_\ell W \neq 0\}|$: the diameter of W

- $\{i : E_i^* W \neq 0\} = \{\rho, \ldots, \rho + d\} \subset \{0, 1, \ldots, w^*\}$

- $\{\ell : E_\ell W \neq 0\} = \{\rho^*, \ldots, \rho^* + d\} \subset \{0, 1, \ldots, D\}$

Proposition (cf. Caughman, 1999)

- $2\rho + d \geq w^*$

- $2\rho^* + d \geq w^*$
Some general results

- $\rho + d \leq w^*$
- $\rho^* + d \leq D$
- $2\rho + d \geq w^*$
- $2\rho^* + d \geq w^*$

\[\eta := \rho + \rho^* + d - w^* : \text{the displacement of } W \]
\[\wedge \wedge \]
\[w^* \quad D \]

- $0 \leq \eta \leq D$

We may generalize the displacement and split decompositions of \mathbb{C}^X due to Terwilliger (2005).

In particular, it is likely that $U_q(\hat{sl}_2) \rightarrow \boxtimes_q \rightarrow \mathcal{T}$ when Γ is a forms graph (cf. Ito–Terwilliger, 2009).

“q-tetrahedron algebra”
Some general results

- W: thin $\overset{\text{def}}{\iff} \dim E_i^*W \leq 1 \ (0 \leq i \leq D)\iff$ the associated tridiagonal pair is a Leonard pair

Theorem (Hosoya–Suzuki, 2007)

- There are precisely $w + 1$ inequivalent irreducible T-modules in \mathbb{C}^X with $\rho = 0$.
- Each of such modules is thin and is generated by an eigenvector of Γ_Y in $\mathbb{C}^Y = E_0^*\mathbb{C}^X$.

A Q-polynomial DRG with diameter w
Hamming graphs

- \([q] = \{0, 1, \ldots, q - 1\} \ (q \geq 2)\)
- \(X = [q]^D\)
- \(y \sim z \iff |\{i : y_i \neq z_i\}| = 1\)
- \(\Gamma = H(D, q) : \text{the Hamming graph}\)

- The structure of \(T(x)\) has been well studied.
- \(H(D, 2) = Q_D \implies U(\mathfrak{sl}_2) \xrightarrow{\exists} T(x)\) (Go, 2002)
- \(H(D, q) \ (q \geq 3) \implies \text{The method for the Doob graphs (Tanabe, 1997) works as well.}\)
\(n \in \{0, 1, \ldots, D\} \)

\(Y = \{z \in X : z_1 = \cdots = z_n = 0\} \): a descendent with \(w = D - n \), \(w^* = n \)

\(z = (0, \ldots, 0 | *, \ldots, *) \)

\(\Gamma_Y \cong H(D - n, q) \)

Theorem (Brouwer–Godsil–Koolen–Martin, 2003)

Every descendent of \(\Gamma = H(D, q) \) with \(w^ = n \) is isomorphic (under \(\text{Aut} \Gamma \)) to \(Y \) above.*
Hamming graphs

\[z = (0, 0, 0, \ldots, 0|*, \ldots, *) \in Y = Y_0 \]
\[z = (1, 0, 0, \ldots, 0|*, \ldots, *) \in Y_1 \]
\[z = (1, 1, 0, \ldots, 0|*, \ldots, *) \in Y_2 \]

\[Y_i = \Gamma'_i(0) \times [q]^{D-n} \quad (0 \leq i \leq n) \]

where \(\Gamma' = H(n, q) \) and \(0 = (0, \ldots, 0) \)
Hamming graphs

- $\Gamma' = H(n, q), \quad \Gamma'' = H(D - n, q)$
- Use ' (resp. '') to denote objects associated with Γ' (resp. Γ'').

- $Y_i = \Gamma'_i(0) \times [q]^{D-n} \quad (0 \leq i \leq n)$
- $E^*_i = E^*_{i'} \otimes I'' \in T'(0) \otimes M'' \quad (0 \leq i \leq n)$

- $A_1 = A'_1 \otimes I'' + I' \otimes A''_1 \in T'(0) \otimes M''$
- $T \subset T'(0) \otimes M''$

Theorem

- Every irreducible $(T'(0) \otimes M'')$-module is a thin irreducible T-module.
Johnson graphs

- Use \sim to denote objects associated with $Q_v = H(v, 2)$ ($v \geq 2D$).
- $X = \tilde{\Gamma}_D(0) = \{z \in [2]^v : \partial(0, z) = D\}$ where $0 = (0, \ldots, 0)$
 - in bijection with $\binom{[v]}{D}$
- $y \sim z \iff \partial(y, z) = 2$
- $\Gamma = J(v, D)$: the Johnson graph
Johnson graphs

- \(n \in \{0, 1, \ldots, D\} \)
- \(u \in \tilde{\Gamma}_n(0) \leftrightarrow \binom{[v]}{n} \)
- \(Y = \{ z \in X : \partial(u, z) = D - n \} : \text{a descendent with } w = D - n, w^* = n \)

\[
\begin{align*}
 u &= \left(1, \ldots, 1 \mid 0, \ldots, 0, 0, \ldots, 0\right) \\
 z &= \left(1, \ldots, 1 \mid 1, \ldots, 1, 0, \ldots, 0\right) \\
 D - n
\end{align*}
\]

- \(\Gamma_Y \cong J(v - n, D - n) \)

Theorem (Brouwer–Godsil–Koolen–Martin, 2003)

- Every descendent of \(\Gamma = J(v, D) \) with \(w^* = n \) is isomorphic (under \(\text{Aut}\ \Gamma \)) to \(Y \) above.
Johnson graphs

\[u = (1, \ldots, 1, 1, 1 | 0, \ldots, 0, 0, 0, 0, 0, \ldots, 0) \]
\[z = (1, \ldots, 1, 1, 1 | 1, \ldots, 1, 0, 0, 0, \ldots, 0) \in Y = Y_0 \]
\[z = (1, \ldots, 1, 1, 0 | 1, \ldots, 1, 1, 0, 0, \ldots, 0) \in Y_1 \]
\[z = (1, \ldots, 1, 0, 0 | 1, \ldots, 1, 1, 1, 0, \ldots, 0) \in Y_2 \]

\[Y_i = \Gamma'_{n-i}(0) \times \Gamma''_{D-n+i}(0) (0 \leq i \leq n) \]

where \(\Gamma' = \mathcal{Q}_n \) and \(\Gamma'' = \mathcal{Q}_{v-n} \)
Johnson graphs

- $\Gamma' = Q_n$, $\Gamma'' = Q_{v-n}$
- Use $'$ (resp. $''$) to denote objects associated with Γ' (resp. Γ'').
- $Y_i = \Gamma'_{n-i}(0) \times \Gamma''_{D-n+i}(0)$ ($0 \leq i \leq n$)
- $E^*_i = E^*_{n-i} \otimes E^*_{D-n+i} \in \tilde{E}^*_D (T' \otimes T'') \tilde{E}^*_D$
- $A_1 = \tilde{E}^*_D \tilde{A}_2 \tilde{E}^*_D \in \tilde{E}^*_D (T' \otimes T'') \tilde{E}^*_D$
- $T \subset \tilde{E}^*_D (T' \otimes T'') \tilde{E}^*_D$

Theorem

Every irreducible $(\tilde{E}^*_D (T' \otimes T'') \tilde{E}^*_D)$-module is a thin irreducible T-module.
Grassmann graphs

- $\mathcal{V} = \mathbb{F}_q^v (v \geq 2D)$
- $X = \left[\begin{array}{c} \mathcal{V} \\ D \end{array} \right]_q \quad \text{the set of } D\text{-dimensional subspaces of } \mathcal{V}$
- $y \sim z \overset{\text{def}}{\iff} \dim(y \cap z) = D - 1$
- $\Gamma = J_q(v, D) : \text{the Grassmann graph}$
Grassmann graphs

- \(n \in \{0, 1, \ldots, D\} \)
- \(u \in \binom{V}{n}_q \)

- \(Y = \{z \in X : u \leq z\} : \text{a descendent} \)
 with \(w = D - n, w^* = n \)

- \(\Gamma_Y \cong J_q(v - n, D - n) \)

Theorem (T., 2006)

Every descendent of \(\Gamma = J_q(v, D) \) with \(w^ = n \) is isomorphic (under \(\text{Aut} \Gamma \)) to \(Y \) above.*

- \(Y_i = \{z \in X : \dim(u \cap z) = n - i\} \) (0 \(\leq i \leq n\))
Grassmann graphs

- $P(V) = \bigcup_{i=0}^{v} [V]_q^i$: the set of subspaces of V
- $G = \text{GL}(V) \curvearrowright P(V)$
- $K = G_u = \{ g \in G : gu = u \}$
- $\mathcal{H} = \{ B \in \text{End}(\mathbb{C}P(V)) : gB = Bg \text{ for } \forall g \in K \}$

Dunkl (1978) decomposed $\mathbb{C}P(V)$ into irreducible K-modules, and computed all the spherical functions, i.e., the structure of \mathcal{H} is (essentially) known.
Grassmann graphs

- $\mathcal{H} = \{ B \in \text{End}(\mathbb{C}^{P(V)}) : gB =Bg \text{ for } \forall g \in K \}$ ← known
- $K \acts X = [V_D]$
- $\mathcal{H}_X = \{ B \in \text{End}(\mathbb{C}^X) : gB =Bg \text{ for } \forall g \in K \}$ ← known
- $Y_i = \{ z \in X : \dim(u \cap z) = n - i \} \ (0 \leq i \leq n)$
- $K \cdot Y_i = Y_i \implies E_i^* \in \mathcal{H}_X$
- $T \subset \mathcal{H}_X$

Theorem

Every irreducible \mathcal{H}_X-module is a thin irreducible T-module.
Semilattice-type DRGs

- \(\Gamma \): a Johnson, Hamming, Grassmann, bilinear forms, or a dual polar graph
- \((\mathcal{P}, \preceq)\): the associated semilattice
- \(u \in \mathcal{P}: \text{rank } n\)
- \(Y = \{z \in X: u \preceq z\}: \text{a descendent with } w = D - n, w^* = n\)

Theorem (BGKM, 2003; T., 2006)

Every descendent of \(\Gamma \) with \(w^* = n \) is isomorphic (under \(\text{Aut} \Gamma \)) to \(Y \) above.
The bipartite Q-polynomial DRGs

- Suppose Γ is bipartite.

Theorem (Caughman, 1999)

- The structure of $T(x)$ depends only on the parameters of Γ.
- The dual polar graphs $[D_D(q)]$ and the Hemmeter graphs $\text{Hem}_D(q)$ have the same parameters.

- Y : an edge of Γ; a descendent with $w = 1$, $w^* = D - 1$

Problem

- Study $T(Y)$.