Vanishing of cohomology groups and large eigenvalues of the Laplacian on p-forms in collapsing

Junya Takahashi
Tôhoku University, Japan

May 2005
Brest in France

1. Introduction

- $\left(M^{m}, g\right)$: connected oriented closed Riemannian manifold, $\operatorname{dim} M=m$
closed $=$ compact, without boundary
- the de Rham complex
$d: \Omega^{p}(M) \rightarrow \Omega^{p+1}(M), d^{2} \equiv 0$,
$\delta:$ the L^{2}-adjoint of d
w.r.t. the L^{2}-inner product,

$$
\text { i.e. }(d \varphi, \psi)_{L^{2}}=(\varphi, \delta \psi)_{L^{2}}
$$

the L^{2}-inner product is defined as

$$
(\varphi, \psi)_{L^{2}}:=\int_{M}\langle\varphi, \psi\rangle_{g} d \mu_{g}
$$

for any $\varphi, \psi \in \Omega^{p}(M)$.

- Laplacian on \boldsymbol{p}-forms
$\Delta:=d \delta+\delta d: \Omega^{p}(M) \rightarrow \Omega^{p}(M)$
Spectrum of Δ consists only of eigenvalues, because M is closed and Δ is elliptic.
So, we denote the eigenvalues by

$$
\begin{aligned}
0=\cdots= & 0<\lambda_{1}^{(p)}(M, g) \leq \\
& \lambda_{2}(M, g) \leq \cdots \rightarrow \infty
\end{aligned}
$$

(1) the number of zero eigenvalues equals $b_{p}(M):=\operatorname{dim} H^{p}(M ; \mathbb{R})$, which is independent of metric g (de Rham-Hodge-Kodaira).
(2) the positive eigenvalues depend on metric g.

Basic Problem on Spectral Geometry
Find the geometrical and topological information of $\lambda_{k}{ }^{(p)}$.

Estimates of $\lambda_{1}^{(p)}$

- $p=0$, (functions)
(M, g) : closed Riem. manifold with

$$
\left\{\begin{array}{l}
\operatorname{Ric} \geq-\kappa^{2} \\
0<d_{1} \leq \operatorname{diam} \leq \boldsymbol{d}_{2}
\end{array}\right.
$$

$\Rightarrow{ }^{\exists} C_{1}\left(m, \kappa, d_{2}\right), C_{2}\left(m, \kappa, d_{1}\right)>0$
s.t. $C_{1} \leq \lambda_{1}^{(0)}(M, g) \leq C_{2}$.

- $1 \leq p \leq m-1$

An analogy does not hold !
i.e. ${ }^{\exists}\left\{\left(M_{\alpha}, g_{\alpha, i}\right)\right\}_{i=1,2, \ldots}:(\alpha=1,2)$ two families of closed Riemannian manifolds with \star s.t.
(1) $\lambda_{1}^{(p)}\left(M_{1}, g_{1, i}\right) \rightarrow 0$,
(small eigenvalues)
(2) $\lambda_{1}^{(p)}\left(M_{2}, g_{2, i}\right) \rightarrow 0$,
(large eigenvalues)
as $i \rightarrow \infty$.

Known results

- Small eigenvalues

Colbois-Courtois [90, 00], Lott [02, 04], Forman [95], Jammes [03, 04], T- [02], etc.
typical example . . . the Berger sphere.

- Large eigenvalues

Aubry-Colbois-Ghanaat-Ruh [03], Lott [02].
typical example ... some nilmanifold.

All known examples are given by collapsing.

- In this talk, we study large eigenvalues under some collapsing.

2. Results

- If $|K| \leq b d d$., Lott [02] completely characterized the large eigenvalues.
\Rightarrow we are interested in $K \geq b d d$.

Roughly speaking,
collapsing under $K \geq b d d$. consists of gluing of (singular) fiber bundles (Shioya-Yamaguchi [00], Yamaguchi [02]).

But, this case is very difficult in general.
\Rightarrow so, we study a special collapsing of Riemannian manifolds which is gluing of two trivial bundles with boundaries.

Construction

Take two conn. orientable compact Riemannian manifolds with boundaries:

$$
\left\{\begin{array}{l}
\left(N^{n}, g_{N}\right) \rightsquigarrow \partial\left(Z^{n-1}:=\partial N, g_{Z}\right), \\
\left(W^{r+1}, g_{W}\right) \rightsquigarrow \partial\left(F^{r}:=\partial W, g_{F}\right) .
\end{array}\right.
$$

By taking products of them, we have 2-families of cpt. Riem. manifolds :
$\begin{cases}M_{1, \varepsilon} & :=\left(F \times N, \varepsilon^{2} g_{F} \oplus g_{N}\right), \\ M_{2, \varepsilon} & :=\left(W \times Z, \varepsilon^{2} g_{W} \oplus g_{N}\right) .\end{cases}$

Both boundaries are isometric.
So, by gluing them along their boundaries, we obtain the collapsing of closed Riem. manifolds :
$\left(M^{m}, g_{\varepsilon}\right):=M_{1, \varepsilon} \cup_{\partial} M_{2, \varepsilon} \rightarrow\left(N^{n}, g_{N}\right)$, as $\varepsilon \rightarrow 0$, where $m:=n+r$. In general, $K_{\varepsilon} \rightarrow \pm \infty$.

Main Theorem (T - [05])
For our collapsing family $\left(M, g_{\varepsilon}\right) \rightarrow$ (N, g_{N}) with $n \geq 2$, consider the three conditions:
(1) $n<p<r$,
(2) $\boldsymbol{H}^{q}(\boldsymbol{F} ; \mathbb{R})=0$
for $\boldsymbol{p}-\boldsymbol{n} \leq{ }^{\forall} \boldsymbol{q} \leq \boldsymbol{p}$,
(3) $\boldsymbol{H}^{q}(W ; \mathbb{R})=\boldsymbol{H}^{q}(W, \partial W ; \mathbb{R})$
$=0$ for $p-n+1 \leq{ }^{\forall} \boldsymbol{q} \leq p$.
Then, we obtain
$\lambda_{1}^{(p)}\left(M, g_{\varepsilon}\right) \begin{cases}\rightarrow \infty & \text { if }(1),(2),(3) \text { hold, } \\ \leq C & \text { otherwise, }\end{cases}$ as $\varepsilon \rightarrow 0$, where $C>0$ is independent of ε.

- Remark

In the case of $n=1$, we do not need the condition (3).

Special case: Sphere

$\left(D^{k}, g_{D^{k}}\right)$: the k-dimensional disk with $K_{D^{k}} \geq 0$. Then, we take

$$
\begin{aligned}
\left(N^{n}, g_{N}\right) & :=\left(D^{n}, g_{D^{n}}\right) \\
\left(W^{r+1}, g_{W}\right) & :=\left(D^{r+1}, g_{D^{r+1}}\right)
\end{aligned}
$$

Then, we see that our $M \cong_{C}{ }^{\infty} S^{m}$. In fact,

$$
\begin{aligned}
M_{\varepsilon}^{m} & =\left(S_{\varepsilon}^{r} \times D^{n}\right) \cup_{\partial}\left(D_{\varepsilon}^{r+1} \times S^{n-1}\right) \\
& \cong \partial\left(D^{r+1} \times D^{n}\right) \cong \partial D^{m+1} \\
& \cong S^{m}
\end{aligned}
$$

Thus, we obtain the collapsing family $\left(S^{m}, g_{\varepsilon}\right) \rightarrow\left(D^{n}, g_{D^{n}}\right)$ with $K_{g_{\varepsilon}} \geq$ $0, \sup K_{g_{\varepsilon}} \rightarrow \infty$.

- Remark
$S^{2 n}$ does not collapse under $|K| \leq$ $b d d$., because $\chi\left(S^{2 n}\right) \neq 0$.
(If possible, $\chi(M)=0$.)

Corollary. (T - [05])

${ }^{\exists}$ collapsing $\left(S^{m}, g_{\varepsilon}\right) \rightarrow\left(D^{n}, g_{D^{n}}\right)$ with $K_{g_{\varepsilon}} \geq 0$ s.t.
$\lambda_{1}^{(p)}\left(S^{m}, g_{\varepsilon}\right) \begin{cases}\rightarrow \infty & \text { if } n<p<r, \\ \leq C & \text { otherwise, }\end{cases}$ as $\varepsilon \rightarrow 0$, where $C>0$ is a constant independent of ε.

The conditions (2), (3) in Main Theorem are automatically satisfied.

