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Abstract

For each degree p and each natural number k ≥ 1, we construct on any

closed manifold a family of Riemannian metrics, with fixed volume such that

the kth positive eigenvalue of the rough or the Hodge Laplacian acting on

differential p-forms converge to zero. In particular, on the sphere, we can

choose these Riemannian metrics as those of non-negative sectional curvature.

This is a generalization of the results by Colbois and Maerten in 2010 to the

case of higher degree forms.

Résumé. Pour chaque degré p et chaque entier naturel k ≥ 1, nous constru-

isons, sur toute variété compacte, une famille de métriques riemanniennes à

volume fixé telle que la kième valeur propre strictement positive du Laplacien

brut ou du Laplacien de Hodge agissant sur les formes différentielles de degré

p converge vers zéro. En particulier, sur la sphère, nous pouvons choisir des

métriques à courbure sectionnelle positive. Ce résultat généralise aux plus

hauts degrés celui de Colbois et Maerten de 2010.

1 Introduction

We study the eigenvalue problems of two elliptic differential operators acting on

differential p-forms on a connected oriented closed Riemannian manifold (Mm, g) of

dimension m ≥ 2.

One is the rough Laplacian ∆ = ∇∗∇, or the connection Laplacian, acting

on p-forms on (M, g), where ∇ is the covariant derivative induced from the Levi-

Civita connection of the Riemannian metric g. The spectrum of the rough Laplacian

consists only of non-negative eigenvalues with finite multiplicity. We denote its

eigenvalues counted with multiplicity by

0 ≤ λ
(p)

1 (M, g) ≤ λ
(p)

2 (M, g) ≤ · · · ≤ λ
(p)

k (M, g) ≤ · · · .
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The other is the Hodge-Laplacian ∆ = dδ + δd acting on p-forms on (M, g),

where d is the exterior derivative and δ its formal adjoint with respect to the L2-

inner product. The spectrum of the Hodge-Laplacian consists only of non-negative

eigenvalues with finite multiplicity. We also denote its positive eigenvalues counted

with multiplicity by

0 = · · · = 0︸ ︷︷ ︸
bp(M)

< λ
(p)
1 (M, g) ≤ λ

(p)
2 (M, g) ≤ · · · ≤ λ

(p)
k (M, g) ≤ · · · ,

where the multiplicity of the eigenvalue 0 is equal to the p-th Betti number bp(M)

of M , by the Hodge-Kodaira-de Rham theory. In particular, it is independent of a

choice of Riemannian metrics.

Furthermore, since the Hodge-Laplacian ∆ commutes with d and δ, we can define

the k-th eigenvalues of the Hodge-Laplacian acting on exact and co-exact p-forms,

which are denoted by λ
′(p)
k (M, g) and λ

′′(p)
k (M, g), respectively. These are always

positive. From the Hodge duality, it follows that for any degree p

λ
′(p)
k (M, g) = λ

′′(m−p)
k (M, g) (1.1)

for k = 1, 2, . . . . In particular, we see that

λ
(p)
1 (M, g) = min{λ′(p)1 (M, g), λ

′′(p)
1 (M, g)}

= min{λ′(p)1 (M, g), λ
′(m−p)
1 (M, g)}.

(1.2)

We are interested in the supremum and the infimum of the k-th eigenvalues

under all Riemannian metrics with fixed volume onM . Colbois and Dodziuk [CD94]

proved that there exists no universal upper bound of the first positive eigenvalue

of the Laplacian acting on functions under fixed volume. Similar results to the

rough-Laplacian acting on p-forms with 1 ≤ p ≤ m− 1 were proved by Colbois and

Maerten [CM10, Theorem 1.1], and to the Hodge-Laplacian acting on p-forms for

2 ≤ p ≤ m− 2 by Gentile and Pagliara [GP95]. But, the case of p = 1,m− 1 is still

unknown (cf. [Tan83], [Ge99]).

There exists no positive universal lower bound of the first positive eigenvalue of

the Laplacian acting on functions, if we deform a Riemannian manifold to a dumbbell

under fixed volume, which is called the Cheeger dumbbell [Ch70]. Similar results

to the rough Laplacian acting on p-forms with p = 0, 1,m − 1,m were also proved

by Colbois and Maerten [CM10, Theorem 1.2]. On any connected oriented closed

manifoldM of dimension m ≥ 3, there exists a one-parameter family of Riemannian

metrics gL with volume one such that for p = 0, 1,m− 1,m and for any k ≥ 1,

λ
(p)

k (M, gL) −→ 0 as L −→ ∞.

In the present paper, we prove similar results in the case of all degree p with

1 ≤ p ≤ m−1.We also prove them in the case of the Hodge-Laplacian for all degree p
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with 1 ≤ p ≤ m− 1. In the same way as Colbois and Dodziuk [CD94] who deduced

their result from that on the spheres, for the odd dimensional spheres by Tanno

[Tan79], Bleecker [B83], for the even dimensional spheres by Muto [Mu80], using a

spectral analysis of connected sums, we first construct such a family of Riemannian

metrics with non-negative sectional curvature on the m-dimensional standard sphere

Sm. More precisely,

Theorem 1.1. For m ≥ 2 and a given degree p with 1 ≤ p ≤ m − 1, there exists

a one-parameter family of Riemannian metrics gp,L on the m-dimensional standard

sphere Sm with volume one and non-negative sectional curvature such that for any

integer k ≥ 1,

(1) λ
(p)

k (Sm, gp,L) −→ 0;

(2) λ
′′(p)
k (Sm, gp,L) −→ 0,

as L −→ ∞.

Furthermore, we give lower bounds of the eigenvalues of the Hodge-Laplacian

acting on p-forms on Sm in Theorem 4.1 and Corollary 4.2.

Next, by gluing this sphere with any closed manifold, we obtain the same result

as Theorem 1.1 for any closed manifold, without keeping non-negative sectional

curvature.

Theorem 1.2. LetMm be a connected oriented closed manifold of dimension m ≥ 2.

For any fixed degree p with 1 ≤ p ≤ m − 1, any integer k ≥ 1 and for any ε > 0,

there exists a Riemannian metric gp,ε on M with volume one such that

0 < λ
(p)

k (M, gp,ε) < ε and λ
′′(p)
k (M, gp,ε) < ε.

We note that Riemannian metrics gp,L and gp,ε in Theorems 1.1 and 1.2 depend

on the degree p. But, by taking connected sums ofM and (m−1) spheres at distinct

(m− 1) points, we obtain a Riemannian metrics gε on M with small eigenvalues for

all p = 1, 2, . . . ,m− 1.

Theorem 1.3. LetMm be a connected oriented closed manifold of dimension m ≥ 2.

For any ε > 0 and any integer k ≥ 1, there exists a Riemannian metric gε on M

with volume one such that for any degree p with 1 ≤ p ≤ m− 1,

0 < λ
(p)

k (M, gε) < ε and λ
′′(p)
k (M, gε) < ε.

Remark 1.4. (i) In the case of m = 2, Theorem 1.2 is covered with the result by

Colbois and Maerten [CM10].
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(ii) The same results for the Hodge-Laplacian were obtained from the results by

Guerini [Gu04] and Jammes [Ja08], [Ja11]. Although the sectional curvature

for their Riemannian metrics on Sm diverges to −∞, our Riemannian metric

constructed in Theorem 1.1 has non-negative sectional curvature. This is our

advantage.

(iii) As a consequence of our result on spheres, Theorem 1.1, their exists no lower

bound of the positive eigenvalue of degree p with 1 ≤ p ≤ m−1 depending only

on the dimension, the volume and a lower bound of the sectional curvature.

See Remark 3.3 below.

(iv) Jammes [Ja08] constructed similar Riemannian metrics within a fixed confor-

mal class for m ≥ 5, except for p = m
2
if m is even.

The present paper is organized as follows: In Section 2, we recall the Weizenböck

formula and the properties of parallel forms. In Section 3, we consider the case of

the sphere, and give the proof of Theorem 1.1. In Section 4, we give lower bounds

for the eigenvalues of the Hodge-Laplacian on the sphere. In Section 5, we consider

the case of a general manifold, and give the proof of Theorems 1.2 and 1.3. In

Section 6, as an appendix, we prove the convergence theorem of the eigenvalues of

the rough Laplacian acting on p-forms, when one side of a connected sum of two

closed Riemannian manifolds collapses to a point.

Acknowledgement. We thank the referee for the interest on our work, valuable

improvement and the idea of Theorem 1.3. The second named author is supported

by the Grants-in-Aid for Scientific Research (C), Japan Society for the Promotion

of Science, No. 16K05117.

2 Notations and basic facts

We fix the notations used in the present paper. Let (Mm, g) be a connected oriented

closed Riemannian manifold of dimension m ≥ 2. The metric g defines a volume

element dµg and a scalar product on the fibers of any tensor bundle. The L2-inner

product of the space of all smooth p-forms Ωp(M) is defined as, for any p-form φ, ψ

on M

(φ, ψ)L2(M,g) : =

∫
M

⟨φ, ψ⟩dµg and ∥φ ∥2L2(M,g) := (φ, φ)L2(M,g).

The space of L2 p-forms L2(ΛpM, g) is the completion of Ωp(M) with respect to this

L2-norm.

For a positive constant a > 0, it is easy to see that

λ
(p)

k (M,ag) = a−1λ
(p)

k (M, g), λ
(p)
k (M,ag) = a−1λ

(p)
k (M, g),

vol(M,ag) = a
m
2 vol(M, g),

(2.1)
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where vol(M, g) denotes the volume of (M, g). Thus, if we take a new Riemannian

metric

g := vol(M, g)−
2
m g, (2.2)

then the volume is one: vol(M, g) = 1. Therefore, instead of considering a volume

normalized metric, we may consider the following invariants

λ
(p)

k (M, g) vol(M, g)
2
m , λ

(p)
k (M, g) vol(M, g)

2
m .

The relation between the rough and Hodge Laplacians on p-forms is given by the

Weitzenböck formula: for any p-form φ on M ,

∆φ = ∆φ+Fp(φ), (2.3)

where Fp is the Weitzenböck curvature tensor defined as

Fp(φ) = −
m∑

i,j=1

ei ∧ iej(R(ei, ej)φ), (2.4)

where R denotes the curvature tensor with respect to the covariant derivative in-

duced from the Levi-Civita connection and iX denotes the interior product of a

vector X, and {e1, . . . , em} is a local orthonormal frame and {e1, . . . , em} is its dual

frame.

Now, after taking the scalar product of φ with (2.3), we obtain the Bochner

formula: for each point on M ,

1

2
∆(|φ |2) = −|∇φ |2 + ⟨∆φ, φ⟩

= ⟨∆φ, φ⟩ − |∇φ |2 − ⟨Fp(φ), φ⟩.
(2.5)

By the Hodge-Kodaira-de Rham theory, the kernel of the Hodge-Laplacian acting

on p-forms consists of harmonic p-forms, whose dimension is equal to the p-th Betti

number of M , that is, a topological invariant of M . In contract, the kernel of the

rough Laplacian acting on p-forms consists of parallel p-forms, whose dimension

is not a topological invariant. In fact, we can kill all parallel p-forms under local

perturbation of a Riemannian metric.

Lemma 2.1. Let (M, g) be a connected oriented closed Riemannian manifold. If Fp

is positive definite at one point, there exist no non-zero parallel p-forms on (M, g).

Proof. We prove this by contradiction. Let φ be a non-zero parallel p-form on M .

Then, φ is harmonic and of constant norm. By the assumption, there exists an open

subset U of M such that ⟨Fp(φ), φ⟩ > 0 on U . From the Bochner formula on U

(2.5)
1

2
∆(|φ |2) = ⟨∆φ, φ⟩ − |∇φ |2 − ⟨Fp(φ), φ⟩,
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we have

0 = |∇φ |2 = −⟨Fp(φ), φ⟩ < 0,

which is a contradiction.

Lemma 2.2. Let (Mm, g) be a connected oriented closed Riemannian manifold. For

any open subset U , there exists a Riemannian metric g′ on M with g′ = g on M \U
such that all parallel p-forms with respect to g′ are zero.

Proof. We take any point x0 in any open subset U of M . On a neighborhood

of x0, we deform the Riemannian metric g to g′ such that g′ has constant sectional

curvature 1. The curvature operator is also 1 on this neighborhood of x0 (see [Pe16],

p.84, Proposition 3.1.3). Since the Weitzenböck curvature tensor Fp is controlled

below by the curvature operator (see [GM75] p.264, Corollary 2.6), we see that

Fp ≥ p(m − p) > 0 at x0. Hence, from Lemma 2.1, we see that (M, g′) has no

non-zero parallel p-forms.

3 Small eigenvalues on the sphere Sm

We first consider the case of the m-dimensional standard sphere Sm.

Notations. For a dimension n, Let gSn be the Riemannian metric on Sn of constant

sectional curvature one. We denote by Dn the n-dimensional closed disk, and let

gDn a fixed Riemannian metric on it, which is identified with [0, 2] × Sn−1, of non-

negative sectional curvature KgDn ≥ 0. We can, in addition, assume that gDn is a

product metric near the boundary. In fact, if we take a smooth positive function

f(r) on the interval [0, 2] satisfying that

f(r) =

{
sin(r) on [0, 1],

1 on [3/2, 2],

(Note that sin(1) ∼ 0.84.) and 0 ≤ f ′(r) ≤ 1 and f ′′(r) ≤ 0, then the metric gDn is

written as

gDn = dr2 ⊕ f 2(r)gSn−1 on [0, 2]× Sn−1. (3.1)

The sectional curvatures of gDn are given, if X and Y are orthonormal vectors

tangent to the angle directions, by

K(∂r, X) = −f
′′(r)

f(r)
, K(X,Y ) =

1− (f ′(r))2

f 2(r)
,

both of which are non-negative (e.g., Petersen [Pe16], 4.2.3, p.121).
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Proof of Theorem 1.1. We take any degree p with 1 ≤ p ≤ m− 1. We consider the

decomposition (see Figure 1)

Sm =
(
Sp × Dm−p

L

)
∪Sp×Sm−p−1

(
Dp+1 × Sm−p−1

)
, (3.2)

and set

H1 := Sp × Dm−p
L and H2 := Dp+1 ×Sm−p−1.

Dm−p
L

⋃
Sp×Sm−p−1

Dp+1

Figure 1: Sm ∼=
(
Sp × Dm−p

L

)
∪Sp×Sm−p−1

(
Dp+1 × Sm−p−1

)
For any real number L > 0, we construct a one-parameter family of Riemannian

metrics gp,L on Sm. First we introduce a one-parameter family of Riemannian metrics

gDm−p,L on Dm−p containing a long cylinder as follows (see Figure 2):

gDm−p,L :=

{
dr2 ⊕ f 2(r)gSm−p−1 on [0, 2]× Sm−p−1,

dr2 ⊕ gSm−p−1 on [2, L+ 2]× Sm−p−1.

Dm−p
L

0 2 L+ 2
L

Figure 2: long disk Dm−p
L

Then, we define the smooth Riemannian metric gp,L on Sm as

gp,L :=

{
gSp ⊕ gDm−p,L on H1 = Sp × Dm−p

L ,

gDp+1 ⊕ gSm−p−1 on H2 = Dp+1 ×Sm−p−1.
(3.3)

Since

vol(Sp × Dm−p
L ) = vol(Sp) · vol(Dm−p

L )

= vol(Sp) ·
{
vol(Dm−p) + vol(Sm−p−1) · L

}
,
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we can write for some constants A,B > 0 independent of L

vol(Sm, gp,L) = vol(Sp × Dm−p
L ) + vol(Dp+1 ×Sm−p−1)

= AL+B.
(3.4)

Next, we estimate the eigenvalues of the rough and Hodge Laplacians acting on

p-forms from above.

Lemma 3.1. For any integer k ≥ 1 and any real number L > 0, we have

(1) λ
(p)

k (Sm, gp,L) ≤
k2π2

L2
;

(2) λ
′′(p)
k (Sm, gp,L) ≤

k2π2

L2
.

Remark 3.2. We note that, for any metric, the rough and Hodge Laplacians acting

on p-forms of Sm for 1 ≤ p ≤ m−1 have no 0 eigenvalues. In fact, from bp(Sm) = 0

for 1 ≤ p ≤ m − 1, by the Hodge theory, there exist no non-zero harmonic p-forms

on Sm. In particular, there exist no non-zero parallel p-forms.

Proof. We construct k test p-forms φi for the min-max principle. Their behaviour

will be like fivp, for suitable functions fi, if vp is the volume p-form on (Sp, gSp), so we

can take advantage of the properties of the standard volume form. The functions

fi are constructed as follows: we divide the interval [2, L + 2] of length L into k

intervals Ii := [ri−1, ri] (i = 1, . . . , k), where

2 = r0 < r1 < · · · < rk = L+ 2 with ri :=
L

k
i+ 2 (i = 0, 1, . . . , k).

Let fi(r) be the first Dirichlet eigenfunction of the Laplacian acting on functions on

the interval Ii, that is,

fi(r) = sin

(
(r − ri−1)

kπ

L

)
for r ∈ [ri−1, ri].

rO r0 r1 r2 rk−1 rk

1

Figure 3: test functions fi(r)

Then, we define k test p-forms φi on Sm as follows (recall that vp is the volume

p-form on (Sp, gSp)): on H1 = Sp × Dm−p
L ,

φi :=

fi(r)vp on Sp ×
(
[ri−1, ri]× Sm−p−1

)
,

0 otherwise,
(3.5)
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and φi ≡ 0 on H2 = Dp+1 ×Sm−p−1.

We remark that the family φi (i = 1, . . . , k) is orthogonal.

(1) We first prove the case of the rough Laplacian acting on p-forms. Since the

orthogonal family φi (i = 1, . . . , k) have disjoint support, they are also orthogonal

for the quadratic form defining the rough Laplacian, namely, ∥∇φ ∥2L2(Sm,gp,L)
. The

min-max principle and Remark 3.2 give then

0 < λ
(p)

k (Sm, gp,L) ≤ max
i=1,2,...,k

{
∥∇φi ∥2L2(Sm,gp,L)

∥φi ∥2L2(Sm,gp,L)

}
. (3.6)

Since vp is parallel, the numerator of the right-hand side of (3.6) is

∥∇φi ∥2L2(Sm,gp,L)
= ∥∇(fivp)∥2L2(Sp×Dm−p

L )
= ∥dfi ⊗ vp∥2L2(Sp×(Ii×Sm−p−1)).

Since the Riemannian metric on Ci = Ii × Sm−p−1 is product, we have

∥dfi ⊗ vp∥2L2(Sp×Ci)
=

∫
Sp

∫
Ii×Sm−p−1

|dfi ⊗ vp|2dµSpdµCi

= vol(Sp)

∫
Ii×Sm−p−1

|dfi|2drdµSm−p−1

= vol(Sp) vol(Sm−p−1)

∫ ri

ri−1

|dfi|2dr.

Since fi(r) is the Dirichlet eigenfunction on the interval Ii = [ri−1, ri], which is

isometric to [0, L
k
], we have∫ ri

ri−1

|dfi|2dr =
k2π2

L2

∫ ri

ri−1

|fi|2dr.

Therefore, the numerator of the right-hand side of (3.6) is

∥∇φi ∥2L2(Sm,gp,L)
=
k2π2

L2
vol(Sp) vol(Sm−p−1)

∫ ri

ri−1

|fi|2dr. (3.7)

On the other hand, the denominator of the right-hand side of (3.6) is

∥φi ∥2L2(Sm,gp,L)
= ∥fivp∥2L2(Sp×Dm−p

L )
= ∥fivp∥2L2(Sp×Ci)

= vol(Sp)

∫
Ii×Sm−p−1

|fi|2drdµSm−p−1

= vol(Sp) vol(Sm−p−1)

∫ ri

ri−1

|fi|2dr.

(3.8)

Thus, by substituting (3.7) and (3.8) into (3.6), we obtain

0 < λ
(p)

k (Sm, gp,L) ≤
k2π2

L2
.
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(2) Next, we prove the case of the Hodge Laplacian acting on co-exact p-forms.

We use the same test p-forms φi constructed in (3.5). For the same reason as

before, this family is orthogonal for the quadratic form defining the Hodge Laplacian

∥(d + δ)φ ∥2L2(Sm,gp,L)
. Moreover, we note that the test p-forms φi are co-closed.

Indeed, since the Riemannian metric is product on the support of φi,

δgp,L φi = f(δgp,Lvp)− i(gradgp,Lf)(vp) ≡ 0.

Since Sm has no non-zero harmonic p-forms, all co-closed forms must be co-exact.

Therefore, from the min-max principle of the Hodge-Laplacian acting on co-exact

p-forms, it follows that

0 < λ
′′(p)
k (Sm, gp,L) ≤ max

i=1,2,...,k

{
∥dφi ∥2L2(Sm,gp,L)

∥φi ∥2L2(Sm,gp,L)

}
.

By the same calculations as in (1), we obtain the same upper bound

λ
′′(p)
k (Sm, gp,L) ≤

k2π2

L2
.

Finally, we normalize the volume to be one. Namely, if we set a new Riemannian

metric

gp,L := vol(Sm, gp,L)
− 2

m gp,L,

then vol(Sm, gp,L) ≡ 1 and still Kgp,L ≥ 0. From Lemma 3.1 and (3.4), we have

λ
(p)

k (Sm, gp,L) = λ
(p)

k (Sm, gp,L) · vol(Sm, gp,L)
2
m

≤ k2π2

L2
· (AL+B)

2
m

= k2π2 ·
(
AL+B

Lm

) 2
m

−→ 0,

(3.9)

and similarly λ
′′(p)
k (Sm, gp,L) −→ 0 as L −→ ∞. Thus, we have finished the proof of

Theorem 1.1.

Remark 3.3. Theorem 1.1 implies that the first positive eigenvalue of the Hodge-

Laplacian acting on p-forms cannot be estimated below in terms of dimension, vol-

ume and a lower bound of the sectional curvature. For this family gp,L, the diameter

diam(Sm, gp,L) −→ ∞ as L→ ∞.

Lott [Lo04, p.918] conjectured that for given m ∈ N, κ ∈ R and v,D > 0, there

exists a positive constant C(m,κ, v,D) > 0 such that any connected oriented closed

Riemannian manifold (Mm, g) of dimension m with the sectional curvature Kg ≥ κ,

the volume vol(M, g) ≥ v and the diameter diam(M, g) ≤ D satisfies

λ
(p)
1 (M, g) ≥ C(m,κ, v,D) > 0.

– 10 –



Small eigenvalues of the rough and Hodge Laplacians, C. Anné and J. Takahashi

This conjecture is still open. We note that this is a non-collapsing case. In a col-

lapsing case, we do not know anything, but recently Boulanger and Courtois [BC21]

proposed a Cheeger constant for coexact 1-forms, whose square gives a lower bound

of the first positive eigenvalue of the Hodge-Laplacian acting on 1-forms for Rie-

mannian manifolds with bounded diameter and bounded sectional curvature.

4 Lower bounds for the eigenvalues of the Hodge-

Laplacian on Sm

We consider lower bounds of the eigenvalues of the Hodge-Laplacian acting on exact

q-forms for 1 ≤ q ≤ m for the one-parameter family of volume un-normalized

Riemannian metrics gp,L on Sm constructed in Theorem 1.1.

Theorem 4.1. Let p be an integer with 1 ≤ p ≤ m − 1. For the one parameter

family of Riemannian metrics gp,L on Sm constructed in the proof of Theorem 1.1,

the eigenvalues of the Hodge-Laplacian acting on exact q-forms for 1 ≤ q ≤ m satisfy

the following:

(1) For q ̸= 1, p, p+ 1,m− p− 1,m− p,m− 1,m, there exists a positive constant

C > 0 independent of L such that

λ
′(q)
1 (Sm, gp,L) ≥ C > 0.

(2) For q = 1, p, p + 1,m − p − 1,m − p,m − 1,m, there exist positive constants

C1, C2 > 0 independent of L such that for sufficiently large L > 0

λ
′(q)
nq+1(Sm, gp,L) ≥

1

C1L2 + C2

.

Here, nq is given by

nq :=



4 if (p, q) = (
m− 1

2
,
m+ 1

2
) and m is odd,

2 if q = 1, p+ 1,m− p,m,

except for (p, q) = (
m− 1

2
,
m+ 1

2
) if m is odd,

0 otherwise.

Corollary 4.2. Let p be an integer with 1 ≤ p ≤ m − 1. For the one parameter

family of the volume normalized Riemannian metrics gp,L on Sm, if q ̸= 1, p, p +

1,m− p− 1,m− p,m− 1,m, we have

λ
(q)
1 (Sm, gp,L) −→ ∞ as L→ ∞.
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Proof of Corollary 4.2. By combining (1) in Theorem 4.1 with the Hodge-duality

λ
′′(q)
1 = λ

′(m−q)
1 , we find that the first positive eigenvalue of the Hodge-Laplacian

acting on q-forms for q ̸= 1, p, p + 1,m − p − 1,m − p,m − 1 have a uniform lower

bound in L. That is, there exists a positive constant C > 0 independent of L such

that

λ
(q)
1 (Sm, gp,L) = min{λ′(p)1 (Sm, gp,L, λ

′′(p)
1 (Sm, gp,L)}

= min{λ′(p)1 (Sm, gp,L, λ
′(m−p)
1 (Sm, gp,L)}

≥ C > 0.

For the volume normalized metric gp,L = vol(Sm, gp,L)
− 2

m gp,L, in the same way as in

(3.9), we have

λ
(q)
1 (Sm, gp,L) = λ

(q)
1 (Sm, gp,L) · vol(Sm, gp,L)

2
m

≥ C(AL+B)
2
m −→ ∞, as L→ ∞.

Remark 4.3. In the case of nq = 2, 4 for q = 1, p, p+1,m− p− 1,m− p,m− 1,m,

we do not know whether or not λ
(q)
i (Sm, gp,L) for i = 1, . . . , nq have positive lower

bounds independent of L. A similar problem occurs in [EP17, Remark 5.7], p.457.

We prove Theorem 4.1 in the same way as Gentile and Pagliara [GP95]. In this

way, the following result by McGowan [MG93, Lemma 2.3] (see also [GP95], Lemma

1) plays an important rôle. A similar argument was used to prove Corollary 1.5 in

[Tak05].

We now denote by ν
′(p)
1 (U, g) the first positive eigenvalue of the Hodge-Laplacian

acting on exact p-forms on (U, g) with the absolute boundary condition.

Lemma 4.4 (McGowan [MG93]). Let (Mm, g) be a connected oriented closed Rie-

mannian manifold of dimension m. We take a finite open covering {Ui}Ki=1 of M

satisfying Ui ∩Uj ∩Uk = ∅ and a partition of unity {ρi}Ki=1 subordinated to {Ui}Ki=1.

If we set np :=
∑
i<j

dimHp−1(Uij;R), where Uij := Ui ∩ Uj, and

Cg(ρ) := max
i=1,...,K

max
x∈Ui

{
|dρi|2g(x)

}
,

then we have

λ
′(p)
np+1(M, g) ≥

1

8
K∑
i=1


1

ν
′(p)
1 (Ui, g)

+
∑
j ̸=i

Ui∩Uj ̸=∅

(
Cg(ρ)

ν
′(p−1)
1 (Uij, g)

+ 1

)(
1

ν
′(p)
1 (Ui, g)

+
1

ν
′(p)
1 (Uj, g)

)
.
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Proof of Theorem 4.1. We take an open covering {U1, U2, U3} of M as follows:

U1 := Sp ×
(
[0, 3]× Sm−p−1

)
,

U2 := Sp ×
(
[2, L+ 2]× Sm−p−1

)
,

U3 :=
(
Sp ×

(
[L+ 1, L+ 2]× Sm−p−1

))
∪
(
Dp+1 ×Sm−p−1

)
.

Then,

U12 = U1 ∩ U2 = Sp ×
(
[2, 3]× Sm−p−1

)
,

U13 = U1 ∩ U3 = ∅,
U23 = U2 ∩ U3 = Sp ×

(
[L+ 1, L+ 2]× Sm−p−1

)
and U123 := U1 ∩ U2 ∩ U3 = ∅. Since both U12 and U23 are isometric to Sp ×(
[0, 1]×Sm−p−1

)
, their eigenvalues do not depend on L. Therefore, only ν

′(p)
1 (U2, gp,L)

depends on L.

We can take a partition of unity {ρi}i=1,2,3 subordinate to this open covering

{U1, U2, U3} such that the supports of dρi are in U12 or U23. Since the C0-norms of

dρi are independent of L, the constant Cg(ρ) is also independent of L.

Now, we compute nq. Since both U12 and U23 are homotopy equivalent to Sp ×
Sm−p−1, by the Künneth formula, we have

nq = dimHq−1(U12;R) + dimHq−1(U23;R)
= 2 dimHq−1(Sp × Sm−p−1;R)

=



4 if (p, q) = (
m− 1

2
,
m+ 1

2
) and m is odd,

2 if q = 1, p+ 1,m− p,m,

except for (p, q) = (
m− 1

2
,
m+ 1

2
) if m is odd,

0 otherwise.

Next, we estimate the eigenvalue ν
′(q)
1 (U2, gp,L) from below. If 0 is the eigenvalue

for s-forms on (N, h), we denote it by λ
(s)
0 (N, h). From the Künneth formula for the

eigenvalues of the Hodge-Laplacian (e.g., [GLP99], p.38, Example 1.5.7), we have

ν
′(q)
1 (U2, gp,L) ≥ ν

(q)
1 (U2, gp,L) = ν

(q)
1 ([0, L]× Sp × Sm−p−1)

= min
a+b=q
i+j≥1

{
ν
(a)
i ([0, L]) + λ

(b)
j (Sp × Sm−p−1)

}
= min

a+b=q
i+j≥1

{
L−2 ν

(a)
i ([0, 1]) + λ

(b)
j (Sp × Sm−p−1)

}
.

(4.1)

To proceed with the calculation, we consider whether or not 0 is the eigenvalue

on [0, 1] and Sp × Sm−p−1. By the Hodge theory, this follows from the cohomology
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groups

Ha([0, 1];R)

{
̸= 0 if a = 0,

= 0 if a = 1,

Hb(Sp × Sm−p−1;R)

{
̸= 0 if b = 0, p,m− p− 1,m− 1,

= 0 otherwise.

(4.2)

If q = p,m−p−1,m−1, by (4.2), 0 is the eigenvalue for q-forms on Sp×Sm−p−1.

Hence, we have for sufficiently large L,

ν
′(q)
1 (U2, gp,L) ≥ min

a+b=q
i+j≥1

{
L−2 ν

(a)
i ([0, 1]) + λ

(b)
j (Sp × Sm−p−1)

}
= min

j≥0

{
L−2 ν

(0)
0 ([0, 1])︸ ︷︷ ︸

=0

+λ
(q)
1 (Sp × Sm−p−1), L−2ν

(0)
1 ([0, 1]) + λ

(q)
0 (Sp × Sm−p−1)︸ ︷︷ ︸

=0

,

L−2ν
(1)
1 ([0, 1]) + λ

(q−1)
j (Sp × Sm−p−1)

}
≥ L−2 min

{
ν
(0)
1 ([0, 1]), ν

(1)
1 ([0, 1])

}
.

Similarly, if q = 1, p+ 1,m− p,m, by (4.2), 0 is the eigenvalue for (q − 1)-forms on

Sp × Sm−p−1. Hence, we have for sufficiently large L,

ν
′(q)
1 (U2, gp,L) ≥ min

a+b=q
i+j≥1

{
L−2 ν

(a)
i ([0, 1]) + λ

(b)
j (Sp × Sm−p−1)

}
= min

j≥0

{
L−2 ν

(0)
0 ([0, 1])︸ ︷︷ ︸

=0

+λ
(q)
1 (Sp × Sm−p−1), L−2ν

(0)
1 ([0, 1]) + λ

(q)
j (Sp × Sm−p−1),

L−2ν
(1)
1 ([0, 1]) + λ

(q−1)
0 (Sp × Sm−p−1)︸ ︷︷ ︸

=0

}
≥ L−2 min

{
ν
(0)
1 ([0, 1]), ν

(1)
1 ([0, 1])

}
.

Therefore, if q = 1, p, p+1,m− p− 1,m− p,m− 1,m, from Lemma 4.4, there exist

positive constants C1, C2 > 0 independent of L such that

λ
′(q)
nq+1(Sm, gp,L) ≥

1

C1L2 + C2

.

If q ̸= 1, p, p+ 1,m− p− 1,m− p,m− 1,m, by (4.2), 0 is neither eigenvalue for

(q − 1)-forms nor for q-forms on Sp × Sm−p−1. Hence, for any L > 0, we have

ν
′(q)
1 (U2, gp,L) ≥ min

{
λ
(q)
1 (Sp × Sm−p−1), L−2ν

(0)
1 ([0, 1]) + λ

(q)
1 (Sp × Sm−p−1),

L−2ν
(1)
1 ([0, 1]) + λ

(q−1)
1 (Sp × Sm−p−1)

}
≥ min

{
λ
(q)
1 (Sp × Sm−p−1), λ

(q−1)
1 (Sp × Sm−p−1)

}
> 0.
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In this case, we have nq = 0. Thus, we obtain a lower bound C > 0 independent of

L such that

λ
′(q)
1 (Sm, gp,L) ≥ C > 0.

5 General manifold

5.1 Gluing theorem

To prove Theorem 1.2, we need a gluing theorem for the eigenvalues on a connected

sum. The gluing theorem we use here is obtained from the convergence of the eigen-

values of the Laplacian, when one side of a connected sum of two closed Riemannian

manifolds collapses to a point. We call it collapsing of connected sums. This was

studied in the case of the Laplacian acting on functions in [Tak02], and in the case

of the Hodge-Laplacian acting on p-forms in [Tak03], [AT12]. We recall it.

Let (Mi, gi), i = 1, 2, be connected oriented closed Riemannian manifolds of

the same dimension m (m ≥ 2). For simplicity, we suppose that each metric gi
is flat on the geodesic ball B(xi, ri) with the radius ri > 0 centered at xi ∈ Mi,

where ri is smaller than the injectivity radius of (Mi, gi). By changing the scale

of g2, we may suppose r2 = 2. Set Mi(r) := Mi \ B(xi, r). For any ε > 0 with

0 < ε < min{r1, 1}, since both boundaries of ∂(M1(ε), g1) and ∂(M2(1), ε
2g2) are

isometric to the (m − 1)-dimensional sphere of radius ε in Rm, we glue (M1(ε), g1)

to (M2(1), ε
2g2) along their boundaries. After deforming g2 on a neighborhood of

∂M2(1), we obtain the new closed smooth Riemannian manifold

(M, gε) := (M1(ε), g1) ∪∂ (M2(1), ε
2g2). (5.1)

If we choose suitable orientations of M1 and M2, M is also oriented.

From the construction of (M, gε), it is easy to see that

lim
ε→0

vol(M, gε) = vol(M1, g1). (5.2)

In our previous works [AT12], [Tak02], we have the following convergence theo-

rem for the eigenvalues of the Hodge-Laplacian acting on exact and co-exact p-forms.

In fact, by considering the convergence of eigenforms, we find that all the eigenvalues

for exact and co-exact forms still converge.

Lemma 5.1. For all k = 1, 2, . . . , we have

lim
ε→0

λ
′(p)
k (M, gε) = λ

′(p)
k (M1, g1),

lim
ε→0

λ
′′(p)
k (M, gε) = λ

′′(p)
k (M1, g1).
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We also have the convergence of the eigenvalues of the rough Laplacian acting

on p-forms.

Theorem 5.2. For all k = 1, 2, . . . , we have

lim
ε→0

λ
(p)

k (M, gε) = λ
(p)

k (M1, g1).

In fact, in the same way as the proof of Theorem 4.4 in [Tak03], p.21, we see the

upper bound for the eigenvalues of the rough Laplacian acting on p-forms.

Lemma 5.3. For all k = 1, 2, . . . , we have

lim sup
ε→0

λ
(p)

k (M, gε) ≤ λ
(p)

k (M1, g1).

On the other hand, we will give the proof of the lower bound for the eigenvalues

of the rough Laplacian acting on p-forms in Section 6, Appendix.

Proof of Lemma 5.3. To prove Lemma 5.3, we use a standard cut-off argument for

the min-max principle for eigenvalues of the rough Laplacian. Let {φ1, . . . , φk} be

an L2(M1, g1)-orthonormal system of the eigen p-forms of the rough Laplacian on

(M1, g1) associated with the eigenvalue λ
(p)

j (M1, g1) for j = 1, 2, . . . , k. We take a

cut-off function χε(r) on M1 defined as

χε(r) :=


0 (0 ≤ r ≤ ε),

− 2

log ε
log
(r
ε

)
(ε ≤ r ≤

√
ε),

1 (
√
ε ≤ r),

(5.3)

where r is the Riemannian distance from x1 ∈M1 with respect to g1.We take a linear

subspace Eε inH
1(ΛpM, g1) spanned by {χεφ1, . . . , χεφk}, and we see dimEε = k. If

we take this subspace Eε as a test k-dimensional subspace for the min-max principle

for the eigenvalues of the rough Laplacian acting on p-forms, we obtain

λ
(p)

k (M, gε) ≤ sup
φε ̸=0∈Eε

{
∥∇φε ∥2L2(M,gε)

∥φε ∥2L2(M,gε)

}
≤ λ

(p)

k (M1, g1) + δ(ε), (5.4)

where δ(ε) → 0 as ε → 0. For details, see the proof of Theorem 4.4 in [Tak03],

p.21.

5.2 Proof of Theorem 1.2

We prove Theorem 1.2 for a general manifold M . The main idea is to perform a

connected sum of this manifoldM and the sphere Sm equipped with the Riemannian

metric constructed in Theorem 1.1.
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Proof of Theorem 1.2. Let Mm be a connected oriented closed C∞-manifold of di-

mension m ≥ 2. We fixed a degree p with 1 ≤ p ≤ m. We take any smooth

Riemannian metric g2 on M such that g2 is flat on the geodesic ball B(x2, 2) with

the radius 2 centered at x2 ∈M .

For any η > 0 and any index k ≥ 1, from Theorem 1.1, there exists some Lp > 0

such that for all L > Lp,

λ
(p)

k (Sm, gp,L) <
η

2
and λ

′′(p)
k (Sm, gp,L) <

η

2
, (5.5)

where gp,L is the volume normalized Riemannian metric on Sm constructed in The-

orem 1.1. By the continuity of the eigenvalues of the rough and Hodge Laplacians

acting on co-exact forms in the C0-topology of Riemannian metrics (see [Do82],

[CPR01, p.297]), after C0-perturbation of gp,L, we may suppose that gp,L is flat on

a small geodesic ball B(x1, r1) with the radius r1 > 0 centered at x1 ∈ Sm such that

(5.5) still holds.

Now, we set (M1, g1) := (Sm, gp,L) and (M2, g2) := (M, g). By the construction of

collapsing of the connected sum (M, gε) from (M1, g1) and (M2, g2) as in Subsection

5.1 (5.1), we obtain a family of Riemannian metrics gε on the connected sum M ∼=
Sm♯M such that

(M, gε) := (Sm(ε), gp,L) ∪∂ (M(1), ε2g).

(Sm(ε), gp,L)

(M(1), ε2g)

Figure 4: (M, gp,ε)

From Lemmas 5.1 and 5.3, there exists some ε0 > 0 such that for any ε < ε0,

0 ≤ λ
(p)

k (M, gε) ≤ λ
(p)

k (Sm, gp,L) +
η

2
,

0 < λ
′′(p)
k (M, gε) ≤ λ

′′(p)
k (Sm, gp,L) +

η

2
.

(5.6)

By substituting (5.5) to (5.6), we obtain

0 ≤ λ
(p)

k (M, gε) < η and 0 < λ
′′(p)
k (M, gε) < η.

Finally, we normalize a Riemannian metric gε onM . If we set a new Riemannian

metric

gε := vol(M, gε)
− 2

m gε,
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then vol(M, gε) ≡ 1. From the volume convergence (5.2), there exists smaller ε1 ≤ ε0,

if necessary, such that for all ε < ε1, vol(M, gε) ≤ 2. Therefore, we have

λ
(p)

k (M, gε) = λ
(p)

k (M, gε) · vol(M, gε)
2
m < η · 2

2
m ,

and similarly λ
′′(p)
k (M, gε) < η · 2 2

m . Since η > 0 is arbitrary, we have finished the

proof of Theorem 1.2.

5.3 Proof of Theorem 1.3

Proof of Theorem 1.3. We prove it in the same way as in the proof of Theorem 1.2.

Let Mm be a connected oriented closed C∞-manifold of dimension m ≥ 2. We take

a smooth Riemannian metric g on M such that g is flat on (m− 1) disjoint geodesic

balls B(xi, 2) for i = 1, 2, . . . ,m− 1 with the radius 2, centered at distinct (m− 1)

points xi ∈M . By rescaling of g, we can do this.

For any η > 0 and any index k ≥ 1, as in the proof of Theorem 1.2, we can take

a positive number Lp > 0 safisfying that the inequalities (5.5) hold. For all L >

max
p=1,2,...,m−1

Lp, the inequalities (5.5) hold uniformly for all degrees p = 1, 2, . . . ,m−1.

We consider now the (m− 1) spheres (Sm, g1,L), (Sm, g2,L), . . . , (Sm, gm−1,L) and

fix a point x0 ∈ Sm, it defines on each of them a point x0,p. From the continuity of

the eigenvalues of the rough and Hodge Laplacians acting on co-exact forms in the

C0-topology of Riemannian metrics, we may suppose that each metric gp,L on Sm

for p = 1, 2, . . . ,m − 1 is flat on each geodesic ball B(x0,p, r1) centered at x0,p with

radius r1 > 0 small enough, such that the inequalities (5.5) still hold.

We now perform the connected sum of M and these (m− 1) spheres (Sm, g1,L),

(Sm, g2,L), . . . , (Sm, gm−1,L), where xp ∈M is related to x0,p ∈ Sm equipped with the

metric gp,L (See Figure 5). We denote the resulting manifold by

(M, gε) :=
(
(Sm(ε), g1,L) ⊔ (Sm(ε), g2,L) ⊔ · · · ⊔ (Sm(ε), gm−1,L)

)
∪∂ (M \ ⊔m−1

p=1 B(xp, 1), ε
2g),

where Sm(ε) := Sm \ B(x0, ε). After smoothing the Riemannian metric g on each

neighborhood of ∂(M \B(xp, 1)) for p = 1, 2, . . . ,m−1, we obtain a family of closed

smooth Riemannian manifolds (M, gε) for ε > 0.
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(M, ε2g)

(Sm(ε), g1,L)(Sm(ε), g2,L)

(Sm(ε), gp,L)(Sm(ε), gp−1,L)

Figure 5: (M, gε)

For this (M, gε), we find that the same statement as in Lemma 5.3 holds for the

Hodge-Laplacian and rough Laplacian. In fact, we take the same cut-off function as

in (5.3) for each component, and estimate the Rayleigh-Ritz quotients from above.

Since a contribution from each cut-off function is within its own component, we

obtain the same estimate as in (5.4).

Therefore, there exists some ε0 > 0 such that for any ε < ε0 and p = 1, 2, . . . ,m−
1

0 ≤ λ
(p)

k (M, gε) ≤ λ
(p)

k (Sm, gp,L) +
η

2
,

0 < λ
′′(p)
k (M, gε) ≤ λ

′′(p)
k (Sm, gp,L) +

η

2
.

(5.7)

By substituting the same inequalities as in (5.5) to (5.7), for small ε > 0, we obtain

0 ≤ λ
(p)

k (M, gε) < η and 0 < λ
′′(p)
k (M, gε) < η

for all p = 1, 2, . . . ,m− 1. Since vol(Sm, gp,L) is alomost 1 (because of small pertur-

bation around one point), we find

vol(M, gε) ≤
m−1∑
p=1

vol(Sm, gp,L) + vol(M, ε2g) ≤ m.

After normalization of Riemannian metric gε onM , we can find a Riemannian metric

gε on M such that vol(M, gε) ≡ 1 and

λ
(p)

k (M, gε) < η ·m
2
m and λ

′′(p)
k (M, gε) < η ·m

2
m

for all p = 1, 2, . . . ,m− 1.

Thus, we have finished the proof of Theorem 1.3.
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6 Appendix: Convergence of the eigenvalues of

the rough Laplacian

We study here the convergence of the eigenvalues of the rough Laplacian acting

on p-forms, when one side of a connected sum of two closed Riemannian manifolds

collapses to a point. Our setting is the same as in the beginning of Subsection 5.1.

Theorem 6.1. For all p with 0 ≤ p ≤ m and for all k = 1, 2, . . . , we have

lim
ε→0

λ
(p)

k (M, gε) = λ
(p)

k (M1, g1).

To prove this Theorem 6.1, we follow the schema of [AT12] which dealt with the

Hodge Laplacian, but with less difficulties: when working with the rough Laplacian

the related quadratic form is exactly the one involved in the H1-norm and we are

rather in the situation of [Tak02] which dealt with functions. Nevertheless notice

that we use here cut-off functions, while [Tak02] used a technique by means of the

harmonic extension.

Let φε be a normalized eigen p-form of the rough Laplacian associated with the

eigenvalue λ
(p)

k (ε) = λ
(p)

k (M, gε):

∆φε = λ
(p)

k (ε)φε and ∥φε ∥L2(M,gε) ≡ 1.

By Lemma 5.3, we already know that the family {λ(p)k (ε)}ε>0 is bounded. So, we set

λ
(p)

k = lim inf
ε→0

λ
(p)

k (M, gε), and decompose the eigen p-form φε on the connected sum

into

φj,ε =
(
φ1
ε, ε

p−m
2 φ2

ε

)
with φ1

ε ∈ H1(ΛpM1(ε), g1), φ
2
ε ∈ H1(ΛpM2(1), g2).

Then, these satisfy

∥φ1
ε ∥2L2(M1(ε),g1)

+ ∥φ2
ε ∥2L2(M2(1),g2)

≡ 1,

φ2
ε = ε

m
2
−p φ1

ε on the boundary.
(6.1)

Furthermore, since φε is a normalized eigenform, we have

λ
(p)

k (M, gε) =

∫
M1(ε)

|∇φ1
ε |2dµg1 +

1

ε2

∫
M2(1)

|∇φ2
ε |2dµg2

= ∥∇φ1
ε ∥2L2(M1(ε),g1)

+
1

ε2
∥∇φ2

ε ∥2L2(M2(1),g2)
.

(6.2)

From (6.1) and (6.2), it follows that

∥φ2
ε ∥2H1(M2(1),g2)

= ∥φ2
ε ∥2L2(M2(1),g2)

+ ∥∇φ2
ε ∥2L2(M2(1),g2)

≤ 1 + ε2λ
(p)

k (M, gε).

By Lemma 5.3, we see that the family {φ2
ε}ε>0 is bounded in H1(ΛpM2(1), g2). Since

M2(1) is compact, there exists a subsequence {φ2
εi
}∞i=1 which converges weakly to φ2

in H1(ΛpM2(1), g2) and strongly in L2(ΛpM2(1), g2).

– 20 –



Small eigenvalues of the rough and Hodge Laplacians, C. Anné and J. Takahashi

Lemma 6.2. The sequence {φ2
εi
} converges strongly to φ2 in H1(ΛpM2(1), g2), and

the limit φ2 is parallel on (M2(1), g2).

Proof. From the lower semi-continuity of the weak limit and Lemma 5.3, it follows

that

∥∇φ2 ∥2L2(M2(1),g2)
≤ lim inf

ε→0
∥∇φ2

ε ∥2L2(M2(1),g2)

≤ lim inf
ε→0

ε2λ
(p)

k (M, gε) = 0,

that is, φ2 is parallel on (M2(1), g2). Therefore, we have

∥φ2
εi
−φ2 ∥2H1(M2(1),g2)

= ∥φ2
εi
−φ2 ∥2L2(M2(1),g2)

+ ∥∇φ2
εi
∥2L2(M2(1),g2)

−→ 0 (i→ ∞).

The following boundary value estimate is crucial in our argument.

Lemma 6.3. There exists a constant C > 0 such that for any r with ε ≤ r ≤ r1,
φ ∈ H1(M1(r), g1) satisfies

∥φ ↾∂M1(r) ∥2L2(∂M1(r),g1,∂)
≤


Cr

m− 2
∥φ ∥2H1(M1(r),g1)

if m ≥ 3,

Cr
∣∣ log r∣∣ ∥φ ∥2H1(M1(r),g1)

if m = 2.

Note that since φ ∈ H1(M1(r), g1), the boundary value φ ↾∂M1(r) on ∂M1(r) is consid-

ered in the sense of the trace operator H1(ΛpM1(r), g1) −→ L2(ΛpM1(r), g1)↾∂M1(r) .

Proof. We may assume that φ is smooth. By using the polar coordinates (r, θ)

on the geodesic ball B(x1, r1), we denote a p-form φ = α+dr ∧ β and the metric

g1 = dr2 + r2h, where h is the standard metric of Sm−1. Then, the point-wise norm

of φ at (r, θ) is expressed as

|φ(r, θ)|2g1 = r−2p|α(r, θ)|2h + r−2p+2| β(r, θ)|2h.

We take a cut-off function χ on the ball B(x1, r1) satisfying χ(s) = 1 for s ≤ r

and χ(r1) = 0 (We may take r1 < 1, if necessary). From the Kato inequality

|∇|φ || ≤ |∇φ | and the Schwarz inequality, it follows that

|φ(r, θ)|g1 =
∫ r1

r

∂s
(
|χφ(s, θ)|g1

)
ds ≤

∫ r1

r

|∇(χφ)(s, θ)|g1 ds

≤

√∫ r1

r

s1−m ds ·

√∫ r1

r

|∇(χφ)(s, θ)|2g1s
m−1 ds.
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Therefore, we have

∥φ ↾∂M1(r) ∥2L2(∂M1(r),g1,∂)
=

∫
∂M1(r)

|φ(r, θ)|2g1 dµr2h = rm−1

∫
Sm−1

|φ(r, θ)|2g1 dµh

≤ rm−1

∫ r1

r

s1−m ds ·
∫ r1

r

∫
Sm−1

|∇(χφ)(s, θ)|2g1s
m−1 ds dµh

= rm−1

∫ r1

r

s1−m ds ·
∫ r1

r

∫
Sm−1

|∇χ⊗ φ+χ∇φ |2g1s
m−1 ds dµh

≤ C rm−1

∫ r1

r

s1−m ds ·
∥∥φ ∥∥2

H1(M1(r),g1)
,

where C is a positive constant depending only on χ and ∇χ. By combining this

with

∫ r1

r

s1−m ds ≤


r2−m

m− 2
if m ≥ 3,∣∣ log r∣∣ if m = 2,

we obtain the boundary value estimate.

Lemma 6.4. The limit φ2 = 0 a.e. (M2(1), g2).

Proof. Since φ2 is parallel, it is sufficient to prove that the boundary value of φ2 to

∂M2(1) in the sense of the trace is zero. Since the trace operator is continuous and
φ2
εi
−→ φ2 strongly in H1(M2(1), g2), we have

∥φ2
εi
↾∂M2(1) −φ2 ↾∂M2(1) ∥2L2(∂M2(1),g2,∂)

≤ C∥φ2
εi
−φ2 ∥2H1(M2(1),g2)

→ 0 (i→ ∞).

Thus, we see the norm convergence:

∥φ2 ↾∂M2(1) ∥L2(∂M2(1),g2,∂) = lim
i→∞

∥φ2
εi
↾∂M2(1) ∥L2(∂M2(1),g2,∂).

From the gluing condition (6.1) at the boundary, we have

∥φ2
εi
↾∂M2(1) ∥2L2(∂M2(1),g2,∂)

=

∫
∂M2(1)

|φ2
εi
↾∂M2(1) |2g2 dµh

=

∫
∂M1(1)

|εi
m
2
−p φ1

εi
↾∂M1(εi) |2g2 dµh (by (6.1))

= εi

∫
∂M1(εi)

εi
−2p|φ1

εi
↾∂M1(εi) |2g2 dµεi2h

= εi

∫
∂M1(εi)

|φ1
εi
↾∂M1(εi) |2g1 dµεi2h

= εi ∥φ1
εi
↾∂M1(εi) ∥2L2(∂M1(εi),g1,∂)

.

By Lemma 6.3, we find that the boundary value of φ2 is zero. Therefore, the limit
φ2 must be zero.
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We take again the cut-off function χε on M1 as in (5.3), and set

ψε := χε φ
1
ε on M1. (6.3)

Lemma 6.5. The family {ψε}ε>0 is bounded in H1(ΛpM1, g1).

Proof. It is easy to see that the L2-norm of ψε is bounded by 1. Now, we have∫
M1

|∇(χε φ
1
ε)|2g1dµg1 =

∫
M1

|∇χε ⊗ φ1
ε +χε∇φ1

ε |2g1 dµg1

≤ 2
( 2

log ε

)2 ∫ √
ε

ε

∫
Sm−1

|φ1
ε(r, θ)|2g1 r

m−3 dr dµh + 2

∫
M1(ε)

|∇φ1
ε |2g1 dµg1

=
8

| log ε|2

∫ √
ε

ε

∥φ1
ε ∥2L2(∂M1(r),g1,∂)

r−2 dr + 2 ∥∇φ1
ε ∥2L2(M1(ε),g1)

.

For the first term, by applying Lemma 6.3, we have, if m ≥ 3,

8

| log ε|2

∫ √
ε

ε

∥φ1
ε ∥2L2(∂M1(r),g1,∂)

r−2 dr ≤ C

m− 2
· 8

| log ε|2
∥φ1

ε ∥2H1(M1(r),g1)

∫ √
ε

ε

r−1 dr

≤ C

m− 2
· 4

| log ε|
∥φ1

ε ∥2H1(M1(r),g1)
,

and if m = 2,

8

| log ε|2

∫ √
ε

ε

∥φ1
ε ∥2L2(∂M1(r),g1,∂)

r−2 dr ≤ 8C

| log ε|2
∥φ1

ε ∥2H1(M1(r),g1)

∫ √
ε

ε

| log r| r−1 dr

≤ 8C

| log ε|
∥φ1

ε ∥2H1(M1(r),g1)

∫ √
ε

ε

r−1dr

= 4C ∥φ1
ε ∥2H1(M1(r),g1)

.

For the second term, we have

∥∇φε ∥2L2(M1(ε),g1)
≤ ∥∇φε ∥2L2(M,gε)

= λ
(p)

k (M, gε),

which is uniformly bounded by Lemma 5.3.

Therefore, we find that {ψε}ε>0 is bounded in H1(ΛpM1, g1).

The following lemma is obtained from the same method as in [AT12, Corollary

15], p.1732.

Lemma 6.6. We can extract a subsequence {ψεi} which converges weakly to ψ in

H1(ΛpM1, g1) and strongly in L2(ΛpM1, g1) such that

∆M1ψ = λ
(p)

k ψ and ∥ψ∥L2(M1,g1) = 1.
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Proof. From Lemma 6.5, a family {ψε} is uniformly bounded in H1(ΛpM1, g1). By

the weak compactness for a Hilbert space and the Rellich-Kondrachov theorem,

there exist a subsequence {ψεi}i and the limit ψ ∈ H1(ΛpM1, g1) such that ψεi → ψ

weakly in H1(ΛpM1, g1) and strongly in L2(ΛpM1, g1) as i→ ∞.

For any smooth p-form ω ∈ Ωp
0(M1 \ {x1}), there exists ε0 > 0 such that the

support of ω is in M1 \B(x1, 2
√
ε0). So on this support we have ψεi = φ1

εi
= φεi as

far as εi < ε0. We label with (⋆) when we use this fact. By Lemma 6.4, we have

(ψ,∆g1ω)L2(M1,g1) = lim
i→∞

(ψεi ,∆g1ω)L2(M1,g1)

=
(⋆)

lim
i→∞

(φεi ,∆gεi
ω)L2(M1(εi),g1)

= lim
i→∞

(φεi ,∆gεi
ω)L2(M,gεi )

(by Lemma 6.4)

= lim
i→∞

λ
(p)

k (M, gεi)(φεi , ω)L2(M,gεi )
= λ

(p)

k lim
i→∞

(φ1
εi
, ω)L2(M1(εi),g1)

=
(⋆)
λ
(p)

k lim
i→∞

(ψεi , ω)L2(M1,g1) = λ
(p)

k (ψ, ω)L2(M1,g1).

Since m ≥ 2, Ωp
0(M1 \ {x1}) is dense in H1(ΛpM1, g1), and we conclude that

∆g1ψ = λ
(p)

k ψ weakly.

Furthermore, by the regularity theorem of weak solutions to elliptic equations, the

limit ψ in fact is a smooth p-form on M1.

Next, from the normalization ∥φεi ∥L2(M,gεi )
≡ 1 and Lemma 6.4, we have

∥ψ∥L2(M1,g1) = 1. Hence, the limit ψ is a non-zero smooth eigenform on (M1, g1)

with the eigenvalue λ
(p)

k .

To complete the proof of Theorem 6.1, we have only to prove the following

lemma.

Lemma 6.7. Let {φ1,εi , . . . , φk,εi} be L2(M, gεi)-orthonormal eigenforms on (M, gε)

associated with the eigenvalues λ
(p)

1 (M, gεi), . . . , λ
(p)

k (M, gεi), and let {ψ1, . . . , ψk} be

the limits obtained from {φ1,εi , . . . , φk,εi}. Then, {ψ1, . . . , ψk} are also L2(M1, g1)-

orthonormal eigenforms on (M1, g1) associated with the eigenvalues λ
(p)

1 (M1, g1), . . . ,

λ
(p)

k (M1, g1).
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Proof. We first calculate:

∥(χεi − 1)φεi ∥2L2(M1(ε),g1)
≤
∫ √

εi

εi

∫
Sm−1

|φεi |2g rm−1drdµh

≤ C


1

m− 2

∫ √
εi

εi

r dr ∥φεi ∥2H1(M1(εi),g1)
if m ≥ 3,

| log εi|
∫ √

εi

εi

r dr ∥φεi ∥2H1(M1(εi),g1)
if m = 2

≤ C


εi

m− 2
∥φεi ∥2H1(M1(εi),g1)

if m ≥ 3,

| log εi|εi ∥φεi ∥2H1(M1(εi),g1)
if m = 2

−→ 0 (i→ ∞).

(6.4)

Then, from lim
i→∞

φ2
j,εi

= 0 by Lemma 6.4 and (6.4), it follows that for all j, l =

1, . . . , k,

(ψj, ψl)L2(M1,g1) = lim
i→∞

(χεi
φj,εi , χεi

φl,εi)L2(M1,g1)

= lim
i→∞

{
(φ1

j,εi
, φ1

l,εi
)L2(M1(εi),g1) + ((χ2

εi
− 1)φ1

j,εi
, φ1

l,εi
)L2(M1(εi),g1)

}
= lim

i→∞

{
(φ1

j,εi
, φ1

l,εi
)L2(M1(εi),g1) + (φ2

j,εi
, φ2

l,εi
)L2(M2(1),g2)

}
+ lim

i→∞
((χ2

εi
− 1)φ1

j,εi
, φ1

l,εi
)L2(M1(εi),g1)

= lim
i→∞

(φj,εi , φl,εi)L2(M,gεi )
+ lim

i→∞
((χ2

εi
− 1)φ1

j,εi
, φ1

l,εi
)L2(M1(εi),g1)

= δjl.

Here, the last equality follows from (6.4). Therefore, we conclude that λ
(p)

j =

lim
i→∞

λ
(p)

j (M, gεi) for j = 1, . . . , k belong to the set of all eigenvalues of the rough

Laplacian acting on p-forms on (M1, g1). Hence, we have finished the proof of The-

orem 6.1.
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