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1. Introduction

The Stokes theorem or the Green formula plays a very important role in geometry and analysis
on manifolds. For example, we recall the proof of the Bochner vanishing theorem (e.g., [1] p. 185,
Theorem 4.5.2).

Theorem 1 (Bochner vanishing theorem). Let (M, g) be a connected oriented closed Riemannian manifold.
If the Ricci curvature Ric > 0 on M, then the first cohomology group H1(M;R) = 0.

From the proof of the Bochner vanishing theorem, it follows that, if the Stokes theorem does not
hold on an incomplete Riemannian manifold of positive Ricci curvature, then the Bochner vanishing
theorem for it might not hold. It is a natural question to ask whether or not the Stokes theorem
on general incomplete Riemannian manifolds holds. Indeed, Cheeger in [2] studied the Stokes
theorem and the Hodge theory on Riemannian manifolds with conical singularities, more generally,
Riemannian pseudomanifolds. The analysis on pseudomanifolds is, by definition, the L2-analysis on
the regular set that excludes the singular points. Then, there are many valuable results on Riemannian
pseudomainfolds (e.g., [3,4]). Indeed, Cheeger, Goresky and MacPherson in [4] stated that the
L2-cohomology groups of the regular sets of Riemannian pseudomanifolds are isomorphic to the
intersection cohomology groups with the lower middle perversities. These studies have still been
developing by many mathematicians (see [5–8]). Recently, Albin, Leichtnam, Mazzeo and Piazza in [9]
studied the Hodge theory on more general singular spaces, which were called Cheeger spaces.

On the other hand, Cheeger ([2] p. 140, Theorem 7.1 and [10] p. 34, Theorem 3) proved that
generalized Bochner-type vanishing theorems hold on some Riemannian pseudomanifolds with a
kind of “positive curvature”. This kind of “positive curvature” seems to behave like a positive
curvature operator.

However, it seems that there are no concrete examples where a Bochner-type vanishing theorem does
not hold. Thus, we construct a simple concrete example where a Bochner-type vanishing theorem does not
hold. Note that a Bochner-type vanishing theorem holds for complete Riemannian manifolds [11].
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In the present paper, we give an incomplete Riemannian manifold with positive Ricci curvature
for which a Bochner-type vanishing theorem does not hold. The construction of our manifold is the
following way. Let (Nn, h) be a connected oriented closed Riemannian manifold of dimension n.
We consider the suspension Σ(N) of N, and equip the smooth set of Σ(N) with a Riemannian metric g.
We denote by M the suspension of N:

M := Σ(N) = [0, π]× N
/
∼,

where the equivalent relation is

(r1, y1) ∼ (r2, y2)
equiv.⇐⇒ r1 = r2 = 0 or π

for (r1, y1), (r2, y2) ∈ [0, π]× N. Let M = Mreg be the regular set of M, which consists of all smooth
points of M, i.e., Mreg = (0, π) × N. The singular set is Msing := M \ Mreg, i.e., two vertices
corresponding to r = 0, π. We define an incomplete Riemannian metric g on this smooth part
M = (0, π)× N as

g := dr2 ⊕ sin2a(r)h

for some constant 0 < a < 1. In fact, we take a = 1
n . This metric is a warped product metric with the

warping function sina(r). Then, our main theorem is stated as follows:

Theorem 2. There exists an incomplete Riemannian manifold (Mm, g) of dimension m ≥ 2 satisfying the
following four properties:

(1) the Ricci curvature of (M, g) is Ric ≥ K > 0 for some constant K > 0;
(2) there exist non-trivial L2-harmonic p-forms on (M, g) for all 1 ≤ p ≤ m− 2;
(3) the L2-Stokes theorem for all 1 ≤ p ≤ m− 2 does not hold on (M, g);
(4) the capacity of the singular set satisfies Cap(Msing) = 0.

Remark 1. (i) In the case of p =1, Theorem 2 implies that a Bochner-type vanishing theorem does not hold
for an incomplete Riemannian manifold with Ric ≥ K > 0.

(ii) The curvature operator on (M, g) is not positive. However, we do not know whether or not the
Weitzenböck curvature tensor Fp is positive, where Fp is the curvature term in the Weitzenböck formula
for p-form ϕ:

−1
2

∆(|ϕ|2g) = −〈∆ϕ, ϕ〉g + |∇ϕ|2g + 〈Fp ϕ, ϕ〉g. (1)

Therefore, we do not apply the Bochner-type vanishing theorem for all p-forms by Gallot and Meyer [12],
p. 262, Proposition 0.9. Note that the Weitzenböck curvature tensor is estimated below by a lower bound
of the curvature operator (e.g., [13], p. 346, Corollary 9.3.4).

(iii) For harmonic 1-form ϕ = dθ on Tn, by the Equation (1) and F1 = Ric, there exists non-constant
subharmonic function |dθ|2g = sin−2/n(r) on M = (0, π)×Tn, that is, ∆(|ϕ|2g) ≤ 0 on M.

The present paper is organized as follows: In Section 2, we recall two important closed extensions
of the exterior derivative d, which are dmax and dmin, and the L2-Stokes theorem on Riemannian
manifolds with conical singularity by Cheeger [2]. In Section 3, we calculate L2-harmonic forms on a
warped product Riemannian manifold and the capacity of the vertex. In Section 4, the final section, we
prove Theorem 2.
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2. L2-Stokes Theorem

Let (Mm, g) be a connected oriented (possibly incomplete) Riemannian manifold of dimension m.
We denote by Ωp

0 (M) the set of all smooth p-forms on M with compact support, and by dp the exterior

derivative acting on smooth p-forms. We consider the de Rham complex dp : Ωp
0 (M) −→ Ωp+1

0 (M)

for p = 0, 1, 2, . . . , m− 1 with dp+1 ◦ dp ≡ 0. By using the Riemannian metric g, we define the L2-inner
product on Ωp

0 (M) as

(ϕ, ψ)L2(Λp M,g) :=
∫

M
〈ϕ, ψ〉g dµg

for any ϕ, ψ ∈ Ωp
0 (M), where dµg is the Riemannian measure and 〈 , 〉g is the fiber metric on the

exterior bundle ΛpT∗M induced from the Riemannian metric g. The space of L2 p-forms L2(Λp M, g)
is the completion of Ωp

0 (M) with respect to this L2-norm.
Next, we consider the completion of the exterior derivative dp, which induces a Hilbert complex

introduced by Brüning and Lesch [14], p. 90. (See also Bei [5], pp.6–8). There are two important
closed extensions of dp, one of which is the maximal extension dp,max and the other is the minimal
extension dp,min.

Definition 1 (maximal extension dp,max). The maximal extension dp,max is the operator acting on the domain:

Dom(dp,max) :=
{

ϕ ∈ L2(Λp M, g)
∣∣∣ There exists ψ ∈ L2(Λp+1M, g) such that

(ϕ, δp+1η)L2(Λp M,g) = (ψ, η)L2(Λp+1 M,g) for any η ∈ Ωp+1
0 (M)

}
,

and, in this case, we write

dp,max ϕ = ψ.

In other words, Dom(dp,max) is the largest set of differential p-forms ϕ ∈ L2(Λp M, g) such that the
distributional derivative dp ϕ is also in L2(Λp+1M, g).

Definition 2 (minimal extension dp,min). The minimal extension dp,min is given by the closure with respect
to the graph norm of dp in L2(Λp M, g), that is,

Dom(dp,min) :=
{

ϕ ∈ L2(Λp M, g)
∣∣∣ There exists {ϕi}i ∈ Ωp

0 (M) such that

ϕi → ϕ, dp ϕi → ψ ∈ L2(Λp+1M, g) (L2-strongly)
}

,

and, in this case, we write

dp,min ϕ = ψ.

In other words, dp,min is the smallest closed extension of dp, that is, dp,min = dp.

It is obvious that

Ωp
0 (M) ⊂ Dom(dp,min) ⊂ Dom(dp,max).
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In the same manner, from the co-differential operator δp := (−1)mp+m+1 ∗ dm−p∗ : Ωp
0 (M) −→

Ωp−1
0 (M), where ∗ is the Hodge ∗-operator on (M, g), we can define the maximal extension δp,max and

the minimal extension δp,min. These operators are mutually adjoint, that is,

(δp+1,min)
∗ = dp,max, (δp+1,max)

∗ = dp,min. (2)

Note that min and max are exchanged.
Now, we recall the definition of the L2-Stokes theorem for p-forms (see Cheeger [2] p. 95 (1,7), [15]

p. 72, Definition 2.2, [16] p. 40, Definition 4.1).

Definition 3 (L2-Stokes theorem). Let (Mm, g) be a connected oriented Riemannian manifold. The L2-Stokes
theorem for p-forms holds on (M, g), if

(dp,max ϕ, ψ)L2(Λp+1 M,g) = (ϕ, δp+1,maxψ)L2(Λp M,g) (3)

for any ϕ ∈ Dom(dp,max) and ψ ∈ Dom(δp+1,max).

For complete Riemannian manifolds, the L2-Stokes theorem for all p-forms always holds
(Gaffney [17,18]).

Since the Equation (3) implies dp,max = (δp+1,max)
∗, the L2-Stokes theorem for p-forms holds if

and only if dp,min = dp,max, i.e., a closed extension of dp is unique.
Now, for any ϕ ∈ Dom(dp,max) and ψ ∈ Dom(δp+1,max), we see that

(dmax ϕ, ψ)L2(Λp+1 M,g) − (ϕ, δmaxψ)L2(Λp M,g) =
∫

M
〈dmax ϕ, ψ〉dµg −

∫
M
〈ϕ, δmaxψ〉dµg

=
∫

M
dL1,max(ϕ ∧ ∗gψ),

where the last dL1,max is the maximal extension of dm−1 between L1(Λ∗ M, g), that is, the domain is
{ω ∈ L1(Λm−1 M, g)

∣∣ dω ∈ L1(Λm M, g) (in the distribution sense) }. Therefore, we have

Lemma 1. The L2-Stokes theorem for p-forms holds on (M, g) if and only if∫
M

dL1,max(ϕ ∧ ∗gψ) = 0

for any ϕ ∈ Dom(dp,max) and ψ ∈ Dom(δp+1,max).

Remark 2. Gaffney ([18] p. 141, Theorem) proved the L1-Stokes theorem, or the special Stokes theorem, for
oriented complete Riemannian manifolds: If any smooth (m− 1)-form ω on an oriented complete Riemannian
manifold of dimension m such that ω, dω are in L1(Λ∗ M, g), then∫

M
dω = 0.

This L1-Stokes theorem implies the L2-Stokes theorem for all p-forms, but the inverse does not hold
(see Grigor’yan and Masamune [19] p. 614, Proposition 2.4).

We recall connected oriented compact Riemannian manifolds with conical or horn singularity
(Cheeger [2,3]). Let (Nn, h) be a connected oriented closed Riemannian manifold of dimension n,
and let Mm

1 be a connected oriented compact manifold of dimension m = n + 1 with the boundary
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∂M1 = N. Let f : I = [0, l] −→ R+ be a smooth function with f (0) = 0 and f (r) > 0 for r > 0.
The metric f -horn C f (N) over (N, h) is defined as the metric space

C f (N) = I × N
/
∼,

where the equivalent relation is

(r1, y1) ∼ (r2, y2)
equiv.⇐⇒ r1 = r2 = 0

for (r1, y1), (r2, y2) ∈ I × N. The Riemannian metric g f on the regular set C f (N)reg = (0, l] × N is
defined as

g f := dr2 ⊕ f 2(r)h on (0, l]× N.

Then, we glue M1 to C f (N) along their boundary N, and the resulting manifold denotes M :=
M1 ∪N C f (N). We introduce a smooth Riemannian metric g on the regular part Mreg = M1 ∪N
C f (N)reg such that g smoothly extends to M1 from the f -horn metric g f on C f (N)reg = (0, l]× N.
Thus, we obtain a connected oriented compact Riemannian manifold with f -horn singularity

(Mm, g) = (M1, g) ∪N (C f (N), g f ).

Then, Cheeger proved the L2-Stokes theorem on a compact Riemannian manifold with
f -horn singularity.

Theorem 3. We use the same notation as above. Let (Mm, g) = (M1, g) ∪N (C f (N), g f ) be a connected
oriented compact Riemannian manifold with f -horn singularity. Suppose that the function f (r) = ra

with positive constant a ≥ 1. Then, for a compact Riemannian manifold with ra-horn singularity (Mm, g),
the following hold [Cheeger [2]] :

(1) If n = 2k + 1, the L2-Stokes theorem holds for all p-forms on (M, g);
(2) If n = 2k, the L2-Stokes theorem holds for all p-forms except p = k on (M, g);
(3) If n = 2k, and if Hk(N;R) = 0, the L2-Stokes theorem holds for k-forms on (M, g);
(4) If n = 2k, and if Hk(N;R) 6= 0, the L2-Stokes theorem does not hold for k-forms on (M, g).

Thus, Cheeger gave a necessary and sufficient condition that the L2-Stokes theorem holds on a
compact Riemannian manifold with ra-horn singularity for a ≥ 1.

Moreover, when n = 2k, Brüning and Lesch [20] p. 453, Theorem 3.8, gave a choice of ideal
boundary conditions. More precisely,

Theorem 4. In the case of a = 1 as in Theorem 3 [Brüning and Lesch [20]], we have

Dom(dp,max)
/

Dom(dp,min) ∼=
{

Hk(N;R), if n = 2k and p = k,

0, otherwise.

Remark 3. (i) Since dimHk(N;R) is finite, closed extensions of dp,min are at most finite.
(ii) In the case of more complicated singularities, Hunsicker and Mazzeo [21] proved the L2-Stokes theorem

on Riemannian manifolds with edges (see [21] p. 3250, Corollary 3.11, or [16] p. 64, Theorem 5.11).

3. Warped Product Manifolds

We consider L2-harmonic forms, the Ricci curvature, and the capacity of the Cauchy boundary for
a general warped product Riemannian manifold.
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Let (Nn, h) be a connected oriented closed Riemannian manifold of dimension n. Let f : (0, l) −→
R+ be a smooth positive function with f (+0) = 0. Suppose that f (r) is the same order of ra for some
constant 0 < a < 1, that is, there exists a positive constant C > 0 such that

C−1ra ≤ f (r) ≤ Cra (0 < r < l).

Then, we consider the warped product Riemannian manifold

M f = (Mm, g) := ((0, l)× N, dr2 ⊕ f (r)2h)

of dimension m := dim M f = n + 1. This Riemannian manifold (M, g) is incomplete at r = +0. We
denote by x0 the vertex of the f -horn C f (N) corresponding to r = 0.

Now, we can naturally extend p-forms on N to the p-forms on M = (0, l)× N: Ωp(N) ⊂ Ωp(M).

Lemma 2. For any harmonic p-form ϕ on (N, h), the natural extension ϕ on M is also a harmonic p-form
on (M, g).

Proof. First, we have dM ϕ = dN ϕ = 0 on M. Next, it is easy to see that

∗g(ϕ) = (−1)p f (r)n−2pdr ∧ ∗h(ϕ).

Hence, since dN(∗h(ϕ)) = 0 by the harmonicity of ϕ on (N, h), we have

dM(∗g ϕ) = (−1)p dM
(

f (r)n−2pdr ∧ ∗h(ϕ)
)

= (−1)p+1 f (r)n−2pdr ∧ dN
(
∗h ϕ

)
= 0.

Therefore, we find that ϕ is harmonic on (M, g)

Lemma 3. If p < 1
2
(
n + 1

a
)
, then any smooth p-form ϕ on N naturally extends to L2(Λp M, g).

Proof. For any ϕ ∈ Ωp(N), we have

‖ϕ‖2
L2(Λp M,g) =

∫ l

0

∫
N
|ϕ|2g dµg =

∫ l

0

∫
N
|ϕ|2f 2h f (r)n drdµh

=
∫ l

0
f n−2p(r)dr

∫
N
|ϕ|2h dµh ≤ Cn−2p

∫ l

0
ra(n−2p) dr‖ϕ‖2

L2(Λp N,h).

Since a(n− 2p) > −1, the integral
∫ l

0
ra(n−2p) dr converges. Thus, we find ϕ ∈ L2(Λp M, g).

Now, we take a cut-off function χ ∈ C∞(M) such that

χ(r) :=

{
1, if r ≤ l

4 ,

0, if l
2 ≤ r.

If we set

ϕ̃ := χ(r)ϕ on M = (0, l)× N, (4)

then we see that ϕ̃ ∈ Ωp(M) and the support supp(ϕ̃) ⊂ (0, l
2 ]× N.

Lemma 4. For any harmonic p-form ϕ ∈ Ωp(N), the p-form ϕ̃ on M satisfies

(1) ϕ̃ ∈ Dom(dp,max), if p <
1
2

(
n +

1
a

)
;
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(2) f (r)2p−ndr ∧ ϕ̃ ∈ Dom(δg p+1,max), if p >
1
2

(
n− 1

a

)
.

Proof. (1) First, since p < 1
2 (n + 1

a ), by Lemma 3, the p-form ϕ̃ ∈ Dom(dp,max) is in L2(Λp M, g).
Next, since dN ϕ = 0 by the harmonicity of ϕ on (N, h), then we have

dϕ̃ = d(χϕ) = dχ ∧ ϕ + χdN ϕ = χ′(r)dr ∧ ϕ on
[ l

4 , l
2
]
× N.

Hence, since

‖dϕ̃‖2
L2(Λp+1 M,g) = ‖dϕ̃‖2

L2(Λp+1[ l
4 , l

2 ]×N,g)
< ∞,

we see that dϕ̃ ∈ L2(Λp+1 M, g). Thus, we find ϕ̃ ∈ Dom(dp,max).

(2) We prove f (r)2p−ndr ∧ ϕ̃ ∈ Dom(δg p+1,max), if p > 1
2 (n−

1
a ). It is easy to see that

∗g ( f (r)2p−ndr ∧ ϕ̃) = ∗h(ϕ̃). (5)

Since ∗h(ϕ) ∈ Ωn−p(N) and n − p < 1
2 (n + 1

a ), by Lemma 3, we see ∗h(ϕ) ∈ L2(Λn−p M, g).
Thus, from the Equation (5), it follows that

‖ f (r)2p−ndr ∧ ϕ̃‖2
L2(Λp+1 M,g) = ‖ ∗h (ϕ̃)‖2

L2(Λn−p M,g) ≤ ‖ ∗h (ϕ)‖2
L2(Λn−p M,g) < ∞.

Hence, we see f (r)2p−ndr ∧ ϕ̃ ∈ L2(Λp+1 M, g).
Next, since dN(∗h ϕ) ≡ 0 by the harmonicity of ϕ on (N, h), we have

dM(∗h ϕ̃) = dM(χ ∗h (ϕ)) = χ′dr ∧ (∗h ϕ). (6)

Hence, from the proof of Lemma 4 (1), it follows that

‖δg( f (r)2p−ndr ∧ ϕ̃)‖2
L2(Λp M,g) = ‖d ∗g ( f (r)2p−ndr ∧ ϕ̃)‖2

L2(Λm−p M,g)

= ‖d ∗h (ϕ̃)‖2
L2(Λm−p M,g) (by the Equation (5))

= ‖χ′dr ∧ (∗h ϕ)‖2
L2(Λm−p M,g) (by the Equation (6))

= ‖χ′dr ∧ (∗h ϕ)‖2
L2(Λm−p [ l

4 , l
2 ]×N,g)

< ∞.

Therefore, we find f (r)2p−ndr ∧ ϕ̃ ∈ Dom(δg p+1,max).

If we make good choices of N and a, we have the following lemma.

Lemma 5. If Hp(N;R) 6= 0 for some p satisfying 1
2
(
n− 1

a
)
< p < 1

2
(
n + 1

a
)
, then the L2-Stokes theorem

for p-forms does not hold on (M, g).

Proof. Since Hp(N,R) 6= 0, by the de Rham–Hodge–Kodaira theory, there exists a non-zero harmonic
p-form ϕ 6= 0 on N. From Lemma 4, it follows that ϕ̃ ∈ Dom(dmax,p) and that f (r)2p−ndr ∧ ϕ̃ ∈
Dom(δgmax,p+1). Then, by the Equation (5), we have

ϕ̃ ∧ ∗g( f (r)2p−ndr ∧ ϕ̃) = ϕ̃ ∧ ∗h(ϕ̃) = χ2(r)|ϕ|2hvh,
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where vh is the volume form of (N, h). Since χ ≡ 1 on (0, l
4 ]× N, we have∫

M
d(ϕ̃∧ ∗g ( f (r)2p−ndr ∧ ϕ̃)) =

∫
M

d(χ2(r)|ϕ|2hvh)

=
∫
(0, l

4 ]×N
d(|ϕ|2hvh) +

∫
[ l

4 , l
2 ]×N

d(χ2(r)|ϕ|2hvh).

Since d(|ϕ|2hvh) is an (n + 1)-form on Nn, the first term is 0. Next, by the usual Stokes theorem,
the second term is∫

[ l
4 , l

2 ]×N
d(χ2(r)|ϕ|2hvh) =

∫
{ l

2 }×N
χ2( l

2 )|ϕ|
2
h vh −

∫
{ l

4 }×N
χ2( l

4 )|ϕ|
2
h vh

= −
∫
{ l

4 }×N
|ϕ|2h vh (since χ( l

4 ) = 1, χ( l
2 ) = 0)

= −‖ϕ‖2
L2(Λp N,h) 6= 0.

Therefore, we have ∫
M

d
(

ϕ̃ ∧ ∗g( f 2p−n(r)dr ∧ ϕ̃)
)
6= 0.

From Lemma 1, the L2-Stokes theorem for p-forms does not hold on (M, g).

Now, we recall the Ricci curvature of a warped product Riemannian manifold (M, g) (e.g., [22],
p. 266, Proposition 9.106).

Lemma 6 (Ricci curvature). Let {e1, . . . , en} be a local orthonormal frame of (Nn, h). We set the local
orthonormal local frame of (M, g) as {ẽ0 := ∂

∂r , ẽ1 := f−1e1, . . . , ẽn := f−1en}. Then, the Ricci operator on
(Mn+1, g) is given by

(1) Ricg(ẽ0) = −n
f ′′(r)
f (r)

ẽ0;

(2) Ricg(ẽi) = Rich(ẽi)−
{

f ′′(r)
f (r)

+ (n− 2)
(

f ′(r)
f (r)

)2
}

ẽi, (i = 1, . . . , n).

We recall the definition of the capacity of a subset (see [23] 2.1 pp. 64–65 or [19] p. 612).

Definition 4 (capacity). For any open subset U ⊂ M, the capacity, or 1-capacity, of U is defined as

Cap(U) := in f
{
‖u‖2

H1(M,g)

∣∣∣ u ∈ H1(M, g) and u ≥ 1 a.e. U
}

,

where ‖u‖2
H1(M,g) = ‖u‖

2
L2(M,g) + ‖du‖2

L2(Λ∗ M,g) is the Sobolev norm of u in the Sobolev space H1(M, g).
If there exist no such functions, then we define Cap(U) := ∞. For any subset A ⊂ M, we define

Cap(A) := in f
{

Cap(U)
∣∣∣ any open subset U with A ⊂ U ⊂ M

}
.

Now, we compute the capacity of the Cauchy boundary ∂c M := M \M = {x0}, where M is the
completion as the metric space M with respect to the Riemannian distance dg.

Lemma 7. If a ≥ 1
n , then we have Cap(∂c M) = 1.
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Proof. We take the cut-off function χε : [0, l)→ [0, 1] such that

χε(r) :=


1, (0 ≤ r ≤ ε),

1 +
2

log ε
log
( r

ε

)
, (ε ≤ r ≤

√
ε),

0, (
√

ε ≤ r).

(7)

Set χε(x) := χε(dg(x0, x)) for x ∈ M. Then, χε ∈ H1(M, g) and |χε| ≤ 1 on the geodesic ball of
radius

√
ε > 0 centered at x0.

We prove that ‖χε‖2
L2(M,g) → 0 as ε→ 0. First, it is easy to see that

‖χε‖2
L2(M,g) =

∫
M
|χε(r)|2dµg =

∫ √ε

0
|χε(r)|2 f (r)ndr

∫
N

dµh

≤
∫ √ε

0
f (r)ndr vol(N, h) ≤ Cn vol(N, h)

∫ √ε

0
rnadr

≤ Cn vol(N, h)
∫ √ε

0
1 dr (by na ≥ 1)

= Cn vol(N, h)
√

ε −→ 0 (as ε→ 0).

(8)

Next, we prove that ‖dχε‖2
L2(Λ1 M,g) → 0 as ε→ 0. From dχε = χ′εdr and |dr|g = 1, it follows that

|dχε|2g = |χ′εdr|2g = |χ′ε|2. Since a ≥ 1
n , we obtain

∫
M
|dχε|2g dµg =

∫ l

0

∫
N
|χ′ε(r)|2 f n(r) drdµh

≤ Cn vol(N, h)
∫ √ε

ε
|χ′ε|2 ran dr ( by f (r) ≤ Cra)

=
4Cn vol(N, h)
| log ε|2

∫ √ε

ε

∣∣∣1
r

∣∣∣2ran dr

=
4Cn vol(N, h)
| log ε|2

∫ √ε

ε
ran−2dr

=
4Cn vol(N, h)
| log ε|2


1

an− 1
[
ran−1]√ε

ε
if an > 1,

[log r]
√

ε
ε if an = 1

= 4Cn vol(N, h)


1

an− 1
· ε

an−1
2 − εan−1

| log ε|2 if an > 1,

1
2| log ε| if an = 1

−→ 0 (as ε→ 0).

(9)

Therefore, from the Equations (8) and (9), we find that Cap(∂c M) = Cap({x0}) = 0.

4. The Proof of Theorem 2

Proof of Theorem 2. Finally, we prove Theorem 2. We take an n-dimensional closed manifold (Nn, h) as
the flat n-torus (Tn, h), where h is a flat metric on Tn. We take the interval I = (0, π) (i.e., l = π) and
the warping function f (r) := sin1/n(r), where a := 1

n . Of course, this function f (r) satisfies f (r) > 0
on (0, π) and f (+0) = f (−π) = 0. Furthermore, there exists a positive constant C > 0 such that
C−1ra ≤ f (r) ≤ Cra on (0, π).

Then, we consider the warped product Riemannian manifold (Mn+1, g) = ((0, π)× Tn, dr2 ⊕
sin2a(r)h), which is homeomorphic to the regular set of the suspension Σ(Tn) of Tn. This
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incomplete Riemannian manifold (Mn+1, g) is gluing two copies of the regular set Csina(r)(Tn)reg

along their boundaries:

(Mn+1, g) = Csina(r)(Tn)reg ∪Tn

(
− Csina(r)(Tn)reg

)
,

where −means the opposite orientation. By means of the partition of the unity, it is enough to show
the properties (1) through (4) in Theorem 2 on the one side horn Csina(r)(Tn)reg = ((0, π

2 )×Tn, dr2 ⊕
sin2a(r)h).

Indeed,

(1) Since f (r) = sina(r) with a = 1
n and Rich ≡ 0, by Lemma 6, we have

• Ricg(ẽ0, ẽ0) = g(Ricg(ẽ0), ẽ0) = na
{

1 + (1− a)
cos2(r)
sin2(r)

}
≥ 1 > 0;

• Ricg(ẽi, ẽi) = g(Ricg(ẽi), ẽi) ≥ a
{

1 + (1− na)
cos2(r)
sin2(r)

}
=

1
n
> 0,

(i = 1, . . . , n).

Hence, we see that the Ricci curvature of (M, g) satisfies Ricg ≥
1
n
=: K > 0.

(2) Since Hp(Tn;R) 6= 0, by Lemmas 2 and 3, there exist non-trivial L2 harmonic p-forms on (M, g)
for all 1 ≤ p ≤ n− 1.

(3) In Lemma 5, since a =
1
n

, the range of p is 0 < p < n. Hence, the L2-Stokes theorem for p-forms

with all 1 ≤ p ≤ n− 1 does not hold on (M, g).
(4) From Lemma 7, we see Cap(Msing) = 0.

5. Conclusions

A closed, more generally, complete Riemannian manifold with positive Ricci curvature satisfies
the Bochner vanishing theorem. But, as we mentioned above, an incomplete Riemannian manifold
does not satisfy a Bochner-type theorem in general. A key point is that the L2-Stokes theorem does
not hold. So, the author thinks that it would be important to study incomplete Riemannian manifolds
where the L2-Stokes theorem does not hold. Therefore, new phenomena might be discovered in
geometry and analysis on manifolds with singularities.
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