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Abstract

A complete classification of binary self-dual codes of length 36 is
given.
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1 Introduction

As described in [9], self-dual codes are an important class of linear codes
for both theoretical and practical reasons. It is a fundamental problem to
classify self-dual codes of modest lengths and much work has been done
towards classifying self-dual codes over Fq for q = 2 and 3, where Fq denotes
the finite field of order q and q is a prime power (see [9]).

Codes over F2 are called binary and all codes in this paper are binary
unless otherwise noted. The dual code C⊥ of a code C of length n is defined
as C⊥ = {x ∈ Fn

2 | x · y = 0 for all y ∈ C}, where x · y is the standard
inner product. A code C is called self-orthogonal if C ⊂ C⊥, and C is called
self-dual if C = C⊥. A self-dual code C is doubly even if all codewords of C
have weight divisible by four, and singly even if there is at least one codeword
of weight ≡ 2 (mod 4). It is known that a self-dual code of length n exists
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if and only if n is even, and a doubly even self-dual code of length n exists
if and only if n is divisible by eight. Two codes are equivalent if one can be
obtained from the other by permuting the coordinates. An automorphism
of C is a permutation of the coordinates of C which preserves C. The set
consisting of all automorphisms of C is called the automorphism group of C
and it is denoted by Aut(C).

A classification of self-dual codes of lengths up to 30 and doubly even
self-dual codes of length 32 is known (see [9, Table I]). A classification of
singly even self-dual codes of length 32 is given in [3]. The classification is
extended to length 34 [2]. Using the classification of self-dual codes of length
34 and minimum weight 6, extremal self-dual codes of length 36, that is,
those with minimum weight 8, were classified in [8].

The main aim of this paper is to give a complete classification of self-dual
codes of length 36, confirming in particular, the partial classification given
in [8].

Theorem 1. There are 519492 inequivalent self-dual codes of length 36. Of
these 41 are extremal, 58671 have minimum weight 6, 436633 have minimum
weight 4, and 24147 have minimum weight 2.

Generator matrices of all inequivalent self-dual codes of length 36, as well
as those of shorter lengths, can be obtained electronically from [6]. As a
summary, we list in Table 1 the total number #T of inequivalent self-dual
codes of length n and the number #d of inequivalent self-dual codes of length
n and minimum weight d for n = 2, 4, . . . , 36. All computer calculations in
this paper were done by Magma [4].

2 Preliminaries

2.1 Classification method

Here we describe a method for classifying self-dual codes. This method is
similar to that given in [7].

Suppose that C is a self-dual [n, n/2, d] code with d ≥ 4. Define a subcode
of C as follows

C0 = {(x1, x2, . . . , xn) ∈ C | xn−1 = xn}.

Since C⊥ has no codeword of weight 2, C0 has dimension n/2 − 1. Per-
muting coordinates if necessary, we may assume that there is a codeword
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Table 1: Numbers of self-dual codes

n #T #2 #4 n #T #2 #4 #6 #8

2 1 1 0 20 16 9 7 0 0
4 1 1 0 22 25 16 8 1 0
6 1 1 0 24 55 25 28 1 1
8 2 1 1 26 103 55 47 1 0
10 2 2 0 28 261 103 155 3 0
12 3 2 1 30 731 261 457 13 0
14 4 3 1 32 3295 731 2482 74 8
16 7 4 3 34 24147 3295 19914 938 0
18 9 7 2 36 519492 24147 436633 58671 41

x = (x1, . . . , xn) of weight d in C with xn−1 = xn 6= 0. Then, the following
code

C1 = {(x1, x2, . . . , xn−2) | (x1, x2, . . . , xn) ∈ C0}
is a self-dual [n− 2, n/2− 1, d− 2] code. Thus, the subcode C0 has generator
matrix of the form

G0 =

 a1 a1

G1
...

...
an/2−1 an/2−1

 , (1)

where G1 is a generator matrix of C1 and ai ∈ F2 (i = 1, . . . , n/2 − 1). It
follows that every self-dual [n, n/2, d] code is constructed as the code 〈C0, x〉
for some code C0 with generator matrix of the form (1) and some vector
x ∈ C⊥

0 \ C0, where 〈C0, x〉 denotes the code generated by the codewords of
C0 and x. Note that there is essentially a unique choice for 〈C0, x〉, for a
given C0. Indeed, among the three self-dual codes lying between C⊥

0 and C0,
two of them are equivalent, while the remaining code has minimum weight
2.

In this way, all self-dual [n, n/2, d] codes D, which must be checked fur-
ther for equivalence, are constructed, by taking generator matrices of all
inequivalent self-dual [n− 2, n/2− 1, d− 2] codes D1 as matrices G1, and by
considering ai ∈ F2 (i = 1, . . . , n/2 − 1) in (1).

As described in [7], the number of possibilities for ai (i = 2, . . . , n/2−1) is
decreased by applying elements of Aut(D1) to the first n−2 coordinates of D.
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This can be made more precise and more general as follows. Two codes C and
C ′ over Fq are monomially equivalent if there is some monomial matrix M
over Fq such that C ′ = CM = {cM | c ∈ C}. The monomial automorphism
group of C is the set of monomial matrices M with C = CM and it is denoted
by MAut(C). Let D1 be a linear [n, k] code over Fq with k × n generator
matrix G1. Then there exists a homomorphism f : MAut(D1) → GL(k, q)
defined by f(P )G1 = G1P , where P ∈ MAut(D1). The image Im(f) is a
subgroup of GL(k, q). With this notation, we have the following sufficient
condition for monomial equivalence.

Lemma 2. Let m be a positive integer, and let a, b ∈ Fk
q . Suppose that

aT and bT belong to the same Im(f)-orbit (under the left action), where aT

denotes the transpose of a. Then the [n + m, k] codes over Fq with generator
matrices (

G1 aT · · · aT
)

and
(
G1 bT · · · bT

)
are monomially equivalent.

Proof. There exists a monomial matrix P ∈ MAut(D1) such that aT =
f(P )bT . Then the monomial matrix(

P O
OT Im

)
gives a monomial equivalence of the two codes above, where Im denotes the
identity matrix of order m and O denotes the n × m zero matrix.

In our case (n, q) = (36, 2), we only need to consider (a1, . . . , a17) ∈ F17
2

in (1), up to the action of Im(f) by Lemma 2. Orbit representatives for a
subgroup of GL(17, 2) can easily be found by Magma [4].

2.2 Mass formula for weight enumerators

Now we give a mass formula for weight enumerators of self-dual codes.

Lemma 3 (Thompson [10]). Let n be an even positive integer. Let WC(y)
denote the weight enumerator of a code C. Then

∑
C

WC(y) =
( n/2−1∏

i=1

(2i + 1)
)
(1 + yn) +

n/2−1∑
j=1

(
n

2j

) n/2−2∏
i=1

(2i + 1)y2j, (2)

where C runs through the set of all self-dual codes of length n.
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As a consequence, we have the following:

Lemma 4. Let n and d be even positive integers. Let C be a family of
inequivalent self-dual codes of length n and minimum weight at most d. Then
C is a complete set of representatives for equivalence classes of self-dual codes
of length n and minimum weight at most d, if and only if

∑
C∈C

n!

# Aut(C)
#{x ∈ C | wt(x) = d} =

(
n

d

) n/2−2∏
i=1

(2i + 1). (3)

Proof. Consider the coefficient of yd in the formula (2) in Lemma 3.

3 Classification of self-dual codes of length 36

In this section, we give a complete classification of self-dual codes of length
36.

Any self-dual code of length n+2 and minimum weight 2 is decomposable
as i2 ⊕ Cn, where i2 is the unique self-dual code of length 2 and Cn is some
self-dual code of length n. Since there are 24147 inequivalent self-dual codes
of length 34 [2], there are 24147 inequivalent self-dual [36, 18, 2] codes. We
denote the set of these 24147 codes by C36,2.

For each self-dual [34, 17, 2] code given in [2], the method given in Sub-
section 2.1 produces a number of self-dual [36, 18, 4] codes. We continue the
process until we obtain a set C36,4 of inequivalent self-dual [36, 18, 4] codes
such that C = C36,2 ∪ C36,4 satisfies (3). Lemma 4 implies that there is no
other self-dual [36, 18, 4] code.

Similarly, we found the set C36,6 of the 58671 inequivalent self-dual [36, 18, 6]
codes from the set of inequivalent self-dual [34, 17, 4] codes. Setting C =
C36,2 ∪C36,4 ∪C36,6 in Lemma 4, one can verify that there is no other self-dual
[36, 18, 6] code.

From our results, together with the set of extremal self-dual codes found
by [8], we obtain the set C36 of 519492 inequivalent self-dual codes satisfying

∑
C∈C36

36!

# Aut(C)
=

17∏
i=1

(2i + 1),

which is the usual mass formula appearing as the constant term of (2). Since
this constant term gives the number of distinct self-dual codes of length 36,
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it follows that there is no other self-dual code of length 36. Therefore, we
have Theorem 1.

4 Some properties

The weight enumerator of a self-dual code of length 36 can be written as

1 + αy2 + (12α + β)y4 + (64α + 6β + γ)y6 + (33 + 196α + 11β + 64δ)y8

+ (3168 + 364α − 4β − 6γ − 384δ)y10 + (7059 + 364α − 39β + 832δ)y12

+ (30336 − 38β + 15γ − 512δ)y14 + (58443 − 572α + 27β − 896δ)y16

+ (64064 − 858α + 72β − 20γ + 1792δ)y18 + · · · + y36,

where α, β, γ, δ are integers. The numbers of distinct weight enumerators of
self-dual codes of length 36 are listed in Table 2 for each minimum weight d.
In particular, we list in Table 3 the numbers of self-dual codes with d = 6 for
each weight enumerator, where the numbers # of codes and (γ, δ) are listed.

Table 2: Numbers of weight enumerators

d 2 4 6 8
# 1264 2210 28 2

Table 3: Numbers of weight enumerators for d = 6

# (γ, δ) # (γ, δ) # (γ, δ) # (γ, δ)
107 (2, 3) 257 (8, 4) 8493 (16, 3) 146 (28, 3)
41 (2, 4) 7710 (10, 3) 1 (16, 4) 122 (30, 3)

559 (4, 3) 183 (10, 4) 6432 (18, 3) 20 (32, 3)
111 (4, 4) 9739 (12, 3) 3773 (20, 3) 25 (34, 3)

1971 (6, 3) 82 (12, 4) 2319 (22, 3) 4 (36, 3)
214 (6, 4) 10262 (14, 3) 954 (24, 3) 5 (38, 3)

4535 (8, 3) 22 (14, 4) 579 (26, 3) 5 (42, 3)

The smallest order # Auts and the largest order # Autl among automor-
phism groups of self-dual codes of length 36 are listed in Table 4 for each
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minimum weight d. In particular, for d = 6, the number N of the codes with
an automorphism group of order # Aut is listed in Table 5. There is no self-
dual code with a trivial automorphism group for lengths up to 32 (see [3]).
At length 34, there are 159 inequivalent self-dual [34, 17, 6] codes with trivial
automorphism groups. Compared to self-dual codes of length 34, there are a
great number of self-dual codes with trivial automorphism groups for length
36.

Table 4: Orders of the automorphism groups

d 2 4 6 8
#Auts 2 4 1 6
#Autl 218 · 18! 217 · 18! 21504 34560

Table 5: Orders of the automorphism groups for d = 6

#Aut N #Aut N # Aut N #Aut N #Aut N #Aut N
1 41019 14 1 56 1 192 25 576 2 3456 1
2 11242 16 643 64 118 240 3 768 12 4608 1
3 37 18 3 72 7 256 21 864 1 5376 1
4 3368 20 2 80 1 288 7 1152 4 5760 1
6 137 24 59 96 43 336 1 1344 1 12960 2
7 2 32 251 108 1 384 18 1536 5 21504 1
8 1297 36 21 128 45 432 1 1728 3
12 166 48 78 144 9 512 8 2304 1

Let C be a singly even self-dual code and let C0 denote the subcode of
codewords having weight ≡ 0 (mod 4). Then C0 is a subcode of codimension
1. The shadow S of C is defined to be C⊥

0 \C. Let d and s denote the minimum
weights of a self-dual code of length 36 and its shadow, respectively. It was
shown in [1] that 2d + s ≤ 22. The numbers #s of self-dual codes with
shadows of minimum weight s are listed in Table 6 for each minimum weight
d. Note that there is no self-dual [36, 18, 4] code meeting the bound. A
classification of self-dual [36, 18, 6] codes meeting the bound can be found
in [8].

The covering radius R(C) of a code C is the smallest integer R such that
spheres of radius R around codewords of C cover the space Fn

2 . The covering
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Table 6: Minimum weights of the shadows

d #2 #6 #10 #14 #18

2 679 22883 577 7 1
4 22541 414068 24 0 -
6 911 57755 5 - -
8 16 25 - - -

radius is a basic and important geometric parameter of a code (see [5]). Let
C be a self-dual [36, 18, d] code. By [5, Eq. (2)] and the Delsarte bound
(see [5, Theorem 2]),

6 ≤ R(C) ≤ 20 − d.

The numbers #Rr of self-dual codes of length 36 with covering radii r are
listed in Table 7 for each minimum weight d. There is a unique self-dual
[36, 18, 6] code with covering radius 6. This code C36 has generator matrix
( I18 , M ) where M is listed in Figure 1. The code C36 has weight enumerator
with (α, β, γ, δ) = (0, 0, 12, 4), it has shadow of minimum weight 2 and it has
automorphism group of order 5760.

Table 7: Covering radii of self-dual codes of length 36

d #R6 #R7 #R8 #R9 #R10 #R11 #R12

2 0 23 20148 3010 830 87 34
4 23 372396 63599 587 28 0 0
6 1 53226 5439 0 5 0 0
8 3 38 0 0 0 0 0
d #R13 #R14 #R15 #R16 #R17 #R18

2 5 7 1 1 0 1
4 0 0 0 0 - -
6 0 0 - - - -

We end this paper with some remark on the classification of self-dual
codes of length 38. Since∏18

i=1(2
i + 1)

38!
> 13644432.203,
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M =



001100000010100010
001100000010101101
000110000001110101
000110000001000110
001000000001100101
001000000010011001
101110001000111111
101110110111111100
110001000100100110
110010111011010110
010011011000110011
011100010111001111
001011100111000000
111011101000000011
010000101111100101
101111011111011010
110111110111101010
001011111011100110



Figure 1: A self-dual [36, 18, 6] code with covering radius 6

there are at least 13644433 inequivalent self-dual codes of length 38.
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