Hadamard Matrices of Order 32 and Extremal Ternary Self-Dual Codes

Koichi Betsumiya, ${ }^{*}$ Masaaki Harada ${ }^{\dagger}$ and Hiroshi Kimura ${ }^{\ddagger}$

April 12, 2010

Abstract

A ternary self-dual code can be constructed from a Hadamard matrix of order congruent to 8 modulo 12. In this paper, we show that the Paley-Hadamard matrix is the only Hadamard matrix of order 32 which gives an extremal self-dual code of length 64 . This gives a coding theoretic characterization of the Paley-Hadamard matrix of order 32 .

Keywords: Hadamard matrix, Paley-Hadamard matrix, extremal self-dual code, ternary code

1 Introduction

As described in [7], self-dual codes are an important class of linear codes for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes of modest length and determine the largest minimum weight among self-dual codes of that length (see [7]). By the Gleason-Pierce theorem, there are nontrivial divisible self-dual codes over \mathbb{F}_{q} for $q=2,3$ and 4 only, where \mathbb{F}_{q} denotes the finite field of order q (see [7, Theorem 5]), and

[^0]this is one of the reasons why much work has been done concerning self-dual codes over these fields.

A code C over \mathbb{F}_{3} is called ternary. All codes in this paper are ternary linear codes. A matrix whose rows are linearly independent and generate the code C is called a generator matrix of C. A code C of length n is said to be self-dual if $C=C^{\perp}$, where the dual code C^{\perp} of C is defined as $C^{\perp}=\left\{x \in \mathbb{F}_{3}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\}$ under the standard Euclidean inner product $x \cdot y$. A self-dual code of length n exists if and only if $n \equiv 0(\bmod 4)$. It was shown in [6] that the minimum weight d of a self-dual code of length n is bounded by $d \leq 3[n / 12]+3$. If $d=3[n / 12]+3$, then the code is called extremal. Two codes C and C^{\prime} are equivalent if there exists a monomial matrix P over \mathbb{F}_{3} with $C^{\prime}=C P=\{x P \mid x \in C\}$.

A Hadamard matrix H of order n is an $n \times n$ matrix whose entries are from $\{1,-1\}$ such that $H H^{T}=n I$, where H^{T} is the transpose of H and I is the identity matrix. It is known that the order n is necessarily 1,2 , or a multiple of 4. A Hadamard matrix is normalized if its first row and column consist entirely of 1's. Two Hadamard matrices H and H^{\prime} are said to be equivalent if there exist $(0, \pm 1)$-signed permutation matrices P, Q with $H^{\prime}=P H Q$. All Hadamard matrices of orders up to 28 have been classified (see [5]), and there are at least 13, 708, 126 inequivalent Hadamard matrices of order 32 (see [4]).

Let H_{n} be a Hadamard matrix of order n. Let $C\left(H_{n}\right)$ be the ternary code with generator matrix $\left(I, H_{n}\right)$, where entries of the matrix are regarded as elements of \mathbb{F}_{3}. It is known that if $n \equiv 8(\bmod 12)$, then $C\left(H_{n}\right)$ is self-dual [2]. Moreover, it was shown that if H is the Paley-Hadamard matrix of order 32, then $C(H)$ is an extremal self-dual code of length 64 [2]. The goal of this paper is to give the following coding theoretic characterization of the Paley-Hadamard matrix of order 32.

Theorem 1. Let H be a Hadamard matrix of order 32. Let $C(H)$ be the ternary self-dual code of length 64 with generator matrix (I, H). The code $C(H)$ is extremal if and only if H is equivalent to the Paley-Hadamard matrix.

Remark 2. Only the above code is a currently known extremal self-dual code of length 64 (see [7, Table XII]).

In the process of proving the above theorem, we have the following partial classification of Hadamard matrices of order 32 (see Section 3 for the definition of type 3).

Proposition 3. Let H be a Hadamard matrix of order 32. If both H and H^{T} are of type 3, then H is equivalent to the Paley-Hadamard matrix.

2 Self-dual codes constructed from Hadamard matrices

Let H be a Hadamard matrix of order n. Let $C(H)$ be the ternary code with generator matrix (I, H), where entries of the matrix are regarded as elements of \mathbb{F}_{3}.

Lemma 4 (Dawson [2]). If $n \equiv 8(\bmod 12)$, then $C(H)$ is self-dual.
The following lemmas are somewhat trivial, but useful for our approach.
Lemma 5. Let H and H^{\prime} be Hadamard matrices of order n. If H and H^{\prime} are equivalent, then $C(H)$ and $C\left(H^{\prime}\right)$ are equivalent.

Proof. See e.g., [3, Lemma 3.1].
Thus, for the remainder of this paper, we assume that a Hadamard matrix is normalized, unless specified otherwise.

Lemma 6. If $n \equiv 8(\bmod 12)$, then $C(H)$ and $C\left(H^{T}\right)$ are equivalent.
Proof. Since the dual code of $C(H)$ has generator matrix ($-H^{T}, I$), $C(H)^{\perp}$ and $C\left(H^{T}\right)$ are equivalent. Since $C(H)$ is self-dual, $C(H)$ and $C\left(H^{T}\right)$ are equivalent.

The unique Hadamard matrix of order 8 constructs an extremal self-dual code of length 16 denoted by $2 f_{8}$ in [1]. The three inequivalent Hadamard matrices of order 20 construct three inequivalent extremal self-dual codes of length 40 [3]. For order 32, if H is the Paley-Hadamard matrix, then $C(H)$ is an extremal self-dual code of length 64 [2].

3 Hadamard matrices of order 32

3.1 Types of Hadamard matrices

By permuting and negating rows and columns, any four rows of a Hadamard matrix of order n can be converted to the following form:

$$
\left(\begin{array}{rrrrrrrr}
\mathbf{1}_{a} & \mathbf{1}_{a} & \mathbf{1}_{a} & \mathbf{1}_{a} & \mathbf{1}_{b} & \mathbf{1}_{b} & \mathbf{1}_{b} & \mathbf{1}_{b} \tag{1}\\
\mathbf{1}_{a} & \mathbf{1}_{a} & -\mathbf{1}_{a} & -\mathbf{1}_{a} & \mathbf{1}_{b} & \mathbf{1}_{b} & -\mathbf{1}_{b} & -\mathbf{1}_{b} \\
\mathbf{1}_{a} & -\mathbf{1}_{a} & \mathbf{1}_{a} & -\mathbf{1}_{a} & \mathbf{1}_{b} & -\mathbf{1}_{b} & \mathbf{1}_{b} & -\mathbf{1}_{b} \\
\mathbf{1}_{a} & -\mathbf{1}_{a} & -\mathbf{1}_{a} & \mathbf{1}_{a} & -\mathbf{1}_{b} & \mathbf{1}_{b} & \mathbf{1}_{b} & -\mathbf{1}_{b}
\end{array}\right),
$$

where $\mathbf{1}_{m}$ denotes the all-one vector of length $m, a+b=n / 4$ and $0 \leq a \leq$ $[n / 8]$. The set of four rows, which has the above form, is called type a, due to [5]. A Hadamard matrix is of type a if it has a set of four rows of type a and no set of four rows of type $a^{\prime}<a$. For order 32, there are five types of sets of four rows, namely types $0,1,2,3$ and 4 .

We remark that types of Hadamard matrices given in [4] were defined for sets of four columns, and it has been shown that there are $13,680,757$ inequivalent Hadamard matrices of order 32 which are of type 0 and there is no Hadamard matrix of order 32 which is of type 4 . Hence, there are 13, 680, 757 inequivalent Hadamard matrices H of order 32 such that H^{T} are of type 0 , and there is no Hadamard matrix of type 4 in our sense [4]. In the next subsection, we give a proof of the latter result for the sake of completeness.

In the next subsections, we consider Hadamard matrices of each type. In the remaining part of the paper, H denotes $(K+J) / 2$, where K is a normalized Hadamard matrix of order 32 and J is the matrix with all one entries.

$3.2 \quad$ Type 4

Lemma 7 ([4]). For order 32, there is no Hadamard matrix of type 4.
Proof. Let H be a Hadamard matrix of type 4. We may assume that H has
the following form:

$$
\left(\begin{array}{c|c|c|c|c|c|c|c}
1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 \\
1111 & 1111 & 0000 & 0000 & 1111 & 1111 & 0000 & 0000 \\
1111 & 0000 & 1111 & 0000 & 1111 & 0000 & 1111 & 0000 \\
1111 & 0000 & 0000 & 1111 & 0000 & 1111 & 1111 & 0000 \\
v_{0} & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}
\end{array}\right)
$$

where $v_{i}(i=0,1, \ldots, 7)$ are vectors of length 4 . Let n_{i} denote the number of 1 's in v_{i}. From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
& n_{0}+n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}+n_{7}=16, \\
& n_{0}+n_{1}-n_{2}-n_{3}+n_{4}+n_{5}-n_{6}-n_{7}=0, \\
& n_{0}-n_{1}+n_{2}-n_{3}+n_{4}-n_{5}+n_{6}-n_{7}=0, \\
& n_{0}-n_{1}-n_{2}+n_{3}-n_{4}+n_{5}+n_{6}-n_{7}=0 .
\end{aligned}
$$

Moreover, since the following fours set of four rows

$$
\left\{r_{1}, r_{2}, r_{3}, r_{5}\right\},\left\{r_{1}, r_{2}, r_{4}, r_{5}\right\},\left\{r_{1}, r_{3}, r_{4}, r_{5}\right\},\left\{r_{2}, r_{3}, r_{4}, r_{5}\right\},
$$

are also of type 4 , where r_{i} denotes the i-th row in the above matrix, we also have the following:

$$
\begin{array}{r}
n_{0}+n_{4}=n_{1}+n_{5}=n_{2}+n_{6}=n_{3}+n_{7}=4, \\
n_{0}+n_{5}=n_{1}+n_{4}=n_{2}+n_{7}=n_{3}+n_{6}=4, \\
n_{0}+n_{6}=n_{1}+n_{7}=n_{2}+n_{4}=n_{3}+n_{5}=4, \\
n_{0}+\left(4-n_{7}\right)=n_{1}+\left(4-n_{6}\right)=\left(4-n_{2}\right)+n_{5}=\left(4-n_{3}\right)+n_{4}=4,
\end{array}
$$

respectively. This system of the equations has the following unique solution:

$$
n_{0}=n_{1}=n_{2}=n_{3}=n_{4}=n_{5}=n_{6}=n_{7}=2 .
$$

Hence, the i-th row of H has $n_{0}=2$ for $i=5,6, \ldots, 32$. This gives the nonexistence of a Hadamard matrix of type 4.

3.3 Types 0 and 1

Lemma 8. Let H be a Hadamard matrix of order 32. If H has a set of four rows of type 1 , then H^{T} is of type 0 .

Proof. We may assume that H contains the following five rows:

$$
\left(\begin{array}{c|ccc|c|c|c|c}
1 & 1 & 1 & 1 & 1111111 & 1111111 & 1111111 & 1111111 \\
1 & 1 & 0 & 0 & 1111111 & 1111111 & 0000000 & 0000000 \\
1 & 0 & 1 & 0 & 1111111 & 0000000 & 1111111 & 0000000 \\
1 & 0 & 0 & 1 & 0000000 & 1111111 & 1111111 & 0000000 \\
1 & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}
\end{array}\right)
$$

where $v_{i}(i=1,2,3)$ are vectors of length 1 and $v_{i}(i=4,5,6,7)$ are vectors of length 7 . Let n_{i} denote the number of 1 's in $v_{i}(i=1,2, \ldots, 7)$. From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}+n_{7} & =15 \\
n_{1}-n_{2}-n_{3}+n_{4}+n_{5}-n_{6}-n_{7} & =-1 \\
-n_{1}+n_{2}-n_{3}+n_{4}-n_{5}+n_{6}-n_{7} & =-1 \\
-n_{1}-n_{2}+n_{3}-n_{4}+n_{5}+n_{6}-n_{7} & =-1
\end{aligned}
$$

This implies that
$n_{1}=1+n_{6}-n_{7}, n_{2}=1+n_{5}-n_{7}, n_{3}=7-n_{5}-n_{6}, n_{4}=6-n_{5}-n_{6}+n_{7}$, then $n_{1}+n_{2}+n_{3}=9-2 n_{7} \equiv 1(\bmod 2)$. Therefore, we have the following:

$$
\left(n_{1}, n_{2}, n_{3}\right)=(1,0,0),(0,1,0),(0,0,1) \text { or }(1,1,1)
$$

Let $r_{i}=\left(1, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right)$ denote the i-th row of H. Let s, t, u and v be the numbers of $i(i=5,6, \ldots, 32)$ with

$$
\left(v_{1}, v_{2}, v_{3}\right)=(1,1,1),(1,0,0),(0,1,0) \text { and }(0,0,1),
$$

respectively. Note that $s+t+u+v=28$. From the orthogonality of among i-th columns ($i=2,3,4$),

$$
s+v-t-u=0, s+u-t-v=0, s+t-u-v=0 .
$$

Therefore, $s=t=u=v=7$, and the set of the first four rows of H^{T} is of type 0 .

Lemma 9. If H is of type 0 or 1, then $C(H)$ is not extremal.

Proof. There is a codeword of weight 12 corresponding to some linear combination of the four rows of type 0 . For a Hadamard matrix H of type 1, by Lemma $8, H^{T}$ is of type 0 . Hence, $C\left(H^{T}\right)$ contains a codeword of weight 12. Since $C(H)$ is self-dual, $C(H)$ and $C\left(H^{T}\right)$ are equivalent, by Lemma 6 . Hence, if H is of type 0 or 1 , then $C(H)$ contains a codeword of weight 12, that is, $C(H)$ is not extremal.

Remark 10. By Lemmas 6 and 9, the 13, 680, 757 inequivalent Hadamard matrices found in [4] give no extremal self-dual code.

3.4 Type 2

Suppose that H is of type 2. By Lemma 6, $C(H)$ and $C\left(H^{T}\right)$ are equivalent. By Lemma 9, if H^{T} is of type 0 or 1 , then $C(H)$ is not extremal. Hence, we may assume that H^{T} has no set of four rows of type 0 or 1 . Moreover, we may assume that H has the following form:

$$
\left(\begin{array}{c|c|c|c|c|c|c|c}
11 & 11 & 11 & 11 & 111111 & 111111 & 111111 & 111111 \\
11 & 11 & 00 & 00 & 111111 & 111111 & 000000 & 000000 \\
11 & 00 & 11 & 00 & 111111 & 000000 & 111111 & 000000 \\
11 & 00 & 00 & 11 & 000000 & 111111 & 111111 & 000000 \\
v_{0} & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}
\end{array}\right)
$$

where $v_{i}(i=0,1,2,3)$ are vectors of length 2 and $v_{i}(i=4,5,6,7)$ are vectors of length 6 . Let n_{i} denote the number of 1 's in v_{i}. From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
& n_{0}+n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}+n_{7}=16 \\
& n_{0}+n_{1}-n_{2}-n_{3}+n_{4}+n_{5}-n_{6}-n_{7}=0 \\
& n_{0}-n_{1}+n_{2}-n_{3}+n_{4}-n_{5}+n_{6}-n_{7}=0 \\
& n_{0}-n_{1}-n_{2}+n_{3}-n_{4}+n_{5}+n_{6}-n_{7}=0
\end{aligned}
$$

We remark that this gives

$$
\begin{aligned}
& n_{4}=4+\frac{1}{2}\left(-n_{0}-n_{1}-n_{2}+n_{3}\right), n_{5}=4+\frac{1}{2}\left(-n_{0}-n_{1}+n_{2}-n_{3}\right), \\
& n_{6}=4+\frac{1}{2}\left(-n_{0}+n_{1}-n_{2}-n_{3}\right), n_{7}=4+\frac{1}{2}\left(n_{0}-n_{1}-n_{2}-n_{3}\right) .
\end{aligned}
$$

Table 1: $\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$ for the solutions s_{i}

s_{i}	n_{0}	n_{1}	n_{2}	n_{3}	s_{i}	n_{0}	n_{1}	n_{2}	n_{3}	s_{i}	n_{0}	n_{1}	n_{2}	n_{3}
s_{1}	2	2	2	2	s_{10}	2	0	2	2	s_{19}	1	1	2	2
s_{2}	2	2	2	0	s_{11}	2	0	2	0	s_{20}	1	1	2	0
s_{3}	2	2	1	1	s_{12}	2	0	1	1	s_{21}	1	1	1	1
s_{4}	2	2	0	2	s_{13}	2	0	0	2	s_{22}	1	1	0	2
s_{5}	2	2	0	0	s_{14}	2	0	0	0	s_{23}	1	1	0	0
s_{6}	2	1	2	1	s_{15}	1	2	2	1	s_{24}	1	0	2	1
s_{7}	2	1	1	2	s_{16}	1	2	1	2	s_{25}	1	0	1	2
s_{8}	2	1	1	0	s_{17}	1	2	1	0	s_{26}	1	0	1	0
s_{9}	2	1	0	1	s_{18}	1	2	0	1	s_{27}	1	0	0	1

Since H is normalized, $v_{0}=(11)$ or (10). Hence, $n_{0}=2$ or 1 . Under this condition, this system of equations has 27 solutions $s_{i}(i=1,2, \ldots, 27)$, where $\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$ are listed in Table 1 for each solution s_{i}.

By considering the orthogonality of columns, types of sets of four columns among the first eight columns, and the condition that $C\left(H^{T}\right)$ is extremal, we determined the sets of the possible solutions $s_{i_{5}}, s_{i_{6}}, \ldots, s_{i_{32}}$ corresponding to the rows $r_{5}, r_{6}, \ldots, r_{32}$, respectively, where r_{j} denotes the j-th row of H. By permuting rows, it is sufficient to consider the possible solutions under the following conditions:

1. $i_{5}, i_{6}, \ldots, i_{16} \in\{1,2, \ldots, 14\}$,
2. $i_{17}, i_{18}, \ldots, i_{32} \in\{15,16, \ldots, 27\}$,
3. $i_{j} \leq i_{j+1}$ for $j=5,6, \ldots, 31$.

Then there are 43 such sets, and the solutions $\left(i_{5}, i_{6}, \ldots, i_{32}\right)$ are listed in Table 2. By considering the possible solutions in Table 2, we constructed 32×8 submatrices in Figure 1, column by column. Then we found 1045 12×6 matrices A_{1} in Figure 1. For each of the 1045 matrices A_{1}, based on the possible solutions in Table 2, we tried to construct Hadamard matrices, row by row under the assumption that H is of type $2, H^{T}$ has no set of four rows of type 0 and 1 , and $C(H)$ is extremal. However, no Hadamard matrix is obtained under the above assumption. Therefore, we have the following:
Lemma 11. If H is of type 2, then $C(H)$ is not extremal.

Table 2: Possible solutions for each row $r_{j}(j=5,6, \ldots, 32)$

)
	, $3,3,3,6,8,9,9,11,12,12,13,16,18,19,20,20,21,21,21,21,21,21,21,23,23,25,25)$
	$3,3,6,8,9,9,12,12,12,12,16,17,19,20,20,21,21,21,21,21,22,22,23,23,24,25)$
)
	5)
	, 3, 3, 5, 6, 6, 9, 9, 12, 12, 12, 12, 16, 17, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 25, 26)
	, $3,3,5,6,7,8,9,11,12,12,13,15,16,20,21,21,21,21,21,21,21,21,22,23,23,24,25)$
	(1, 3, 3, 5, 6, 7, 8, 9, 11, 12, 12, 13, 15, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 25, 26)
	, $3,3,5,6,7,8,9,12,12,12,12,15,16,20,20,21,21,21,21,21,21,22,22,23,23,24,25)$
	$3,5,6,7,8,9,12,12,12,12,15,17,19,20,21,21,21,21,21,21,22,22,22,23,24,26)$
	, $3,5,6,7,8,9,12,12,12,12,15,18,19,20,20,21,21,21,21,21,21,22,22,23,25,26)$
	3, $3,6,6,8,8,9,9,12,12$,
	(1) $3,3,6,6,8,8,9,9,12,12,13,16,16,18,20,20,21,21,21,21,21,21,23,23,24,25,25)$
	, $6,6,8,8,9,9,12,12,13,16,17,18,19,20,21,21,21,21,21,21,22,23,24,25,26)$
	3, $6,6,8,9,9,9,12,12,12,16,16,17,20,20,21,21,21,21,21,22,23,23,24,25,25)$
	, 3, 6, 6, 8, 9, 9,
	($3,3,6,6,8,9,9,9,12,12,12,16,17,17,19,20,21,21,21,21,21,22,22,23,24,25,26)$
	3, $, 7,8,8,8,9,12,12,13,15,16,17,21,21,21,21,21,21,22,22,23,23,24,24,24)$
	6, $, ~ 8,8,8,9,12,12,13,15,16,18,20,21,21,21,21,21,21,22,23,23,24,24,25)$
	, $3,6,7,8,8,8,9,12,12,13,15,18,18,19,20,21,21,21,21,21,21,22,23,24,25,26)$
	($3,3,6,7,8,8,9,9,11,12,13,15,16,17,21,21,21,21,21,21,21,22,23,23,24,24,25)$
	, $3,3,6,7,8,8,9,9,11,12,13,15,17,18,19,21,21,21,21,21,21,21,22,23,24,25,26)$
	, $3,3,6,7,8,8,9,9,12,12,12,15,16,17,20,21,21,21,21,21,22,22,23,23,24,24,25)$
	, $3,6,7,8,8,9,9,12,12,12,15,17,17,19,21,21,21,21,21,22,22,22,23,24,24,26)$
	3, $3,6,7,8,8$
	(1) $3,3,6,7,8,8,9,9,12,12,12,15,18,18,19,20,20,21,21,21,21,21,22,23,25,25,26)$
	, $3,3,3,6,6,9,9,12,12,12,12,16,16,19,20,20,20,21,21,21,21,22,23,23,23,25,25)$
	, $3,3,3,6,6,9,9,12,12,12,12,16,17,19,19,20,20,21,21,21,21,22,22,23,23,25,26)$
	, $3,3,3,6,7,8,9,12,12,12,12,15,16,19,20,20,21,21,21,21,22,22,23,23,23,24,25)$
	$(3,3,3,3,6,7,8,9,12,12,12,12,15,18,19,19,20,20,21,21,21,21,22,22,23,23,25,26)$
	, $3,3,6,6,6,9,9,9,12,12,12,16,16,16,20,20,20,21,21,21,21,23,23,23,25,25,25)$
	($3,3,6,6,6,9,9,9,12,12,12,16,16,17,19,20,20,21,21,21,21,22,23,23,25,25,26)$
	, $3,3,6,6,7,8,9,9,12,12,12,15,16,16,20,20,21,21,21,21,22,23,23,23,24,25,25)$
	$(3,3,3,6,6,7,8,9,9,12,12,12,15,16,17,19,20,21,21,21,21,22,22,23,23,24,25,26)$
	$(3,3,3,6,6,7,8,9,9,12,12,12,15,16,18,19,20,20,21,21,21,21,22,23,23,25,25,26)$
	, $3,6,6,7,7,8,8,9,9,12,12,15,15,16,17,21,21,21,21,22,22,23,23,24,24,25,26)$
	(3, 3, 6, 6, 7, 7, 8, 8, 9, 9, 12, 12, 15, 15, 16, 18, 20, 21, 21, 21, 21, 22, 23, 23, 24, 25, 25, 26)
	$(3,3,6,6,7,7,8,8,9,9,12,12,15,16,17,18,19,20,21,21,21,21,22,23,24,25,26,27)$

$H=\left(\begin{array}{c|c|c|c|c|c}11 & 111111 & 111111 & 111111 & 111111 & 111111 \\ 11 & 110000 & 111111 & 111111 & 000000 & 000000 \\ 11 & 001100 & 111111 & 000000 & 111111 & 000000 \\ 11 & 000011 & 000000 & 111111 & 111111 & 000000 \\ \hline 11 & & & & & \\ \vdots & A_{1} & & & & \\ 11 & & & & & \\ \hline 10 & & & & & \\ 10 & & & & & \\ \vdots & & & & & \\ 10 & & & & & \\ 10 & & & & & \end{array}\right)$

Figure 1: A Hadamard matrix of type 2

3.5 Type 3

Suppose that H is of type 3. If H^{T} is of type 0,1 or 2 , then by Lemmas 6,9 and $11, C(H)$ is not extremal. Hence, for the remainder of this subsection, we assume that both H and H^{T} are of type 3 , unless specified otherwise.

We first show that every Hadamard matrix of type 3 has a set of rows of type 4. To make it computationally feasible, it is better to use the four rows of type 4 .

Lemma 12. If both H and H^{T} are of type 3, then H contains a set of four rows of type 4 .

Proof. We may assume that H contains the following five rows:

$$
M_{3}=\left(\begin{array}{c|c|c|c|c|c|c|c}
11111 & 111 & 111 & 111 & 111 & 11111 & 11111 & 11111 \\
11111 & 111 & 111 & 000 & 000 & 11111 & 00000 & 00000 \\
11111 & 111 & 000 & 111 & 000 & 00000 & 11111 & 00000 \\
11111 & 000 & 111 & 111 & 000 & 00000 & 00000 & 11111 \\
v_{0} & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}
\end{array}\right)
$$

where $v_{i}(i=0,5,6,7)$ are vectors of length 5 and $v_{i}(i=1,2,3,4)$ are vectors of length 3 . Let n_{i} denote the number of 1 's in v_{i}. We remark that the above form is slightly different from that in (1). Because there are eight columns such that all entries in the first three rows are 1 from the property of the corresponding Hadamard 2-designs, we take these columns as the first eight
ones. Moreover, we may assume that v_{0} has the form of one of the following three cases:

Case	$3-1$	$3-2$	$3-3$
v_{0}	(11111)	(11110)	(11100)

- Case 3-1: First we show that $n_{1}=n_{2}=n_{3}=0$ and $n_{4}=3$. Suppose contrary, that is, for some $i(i=1,2,3) n_{i}>0$ or $n_{4} \leq 2$. Then there is a set of four rows among the first five rows which is of type ≤ 2. Hence, $n_{1}=n_{2}=n_{3}=0$ and $n_{4}=3$. From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
n_{5}+n_{6}+n_{7} & =8 \\
n_{5}-n_{6}-n_{7} & =-2 \\
-n_{5}+n_{6}-n_{7} & =-2, \\
-n_{5}-n_{6}+n_{7} & =-2 .
\end{aligned}
$$

This system of equations has no solution.

- Case 3-2: From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}+n_{7} & =12 \\
n_{1}+n_{2}-n_{3}-n_{4}+n_{5}-n_{6}-n_{7} & =-4 \\
n_{1}-n_{2}+n_{3}-n_{4}-n_{5}+n_{6}-n_{7} & =-4 \\
-n_{1}+n_{2}+n_{3}-n_{4}-n_{5}-n_{6}+n_{7} & =-4 .
\end{aligned}
$$

This gives the following:

$$
\begin{aligned}
& n_{4}=n_{1}+n_{2}+n_{3}, n_{5}=4-n_{1}-n_{2}, \\
& n_{6}=4-n_{1}-n_{3}, n_{7}=-4-n_{2}-n_{3} .
\end{aligned}
$$

If $n_{i} \geq 2(i=1,2,3)$, then, by interchanging the 5 -th row and the ($5-i$)-th row, the set of the first four rows is of type ≤ 2. Then we may assume that $n_{1} \leq 1, n_{2} \leq 1$ and $n_{3} \leq 1$. Similarly, we have $n_{4} \geq 2$. Hence, we have the following four possible ($n_{1}, n_{2}, n_{3}, n_{4}$):

	n_{1}	n_{2}	n_{3}	n_{4}
(a)	1	1	0	2
(b)	1	0	1	2
(c)	0	1	1	2
(d)	1	1	1	3

For (a), the set of the i-th rows $(i=1,3,4,5)$ is of type 4. Similarly, for (b) and (c), there is a set of four rows of type 4. For (d), by interchanging the first row and the second row, the matrix satisfies the condition (a).

- Case 3-3: If for some $i n_{i}=1(i=1,2,3)$ or $n_{4}=2$, then, by interchanging the 5 -th row and the j-th row $(j=1,2,3,4)$, the set of the first four rows is of type 4. Similarly, if $n_{i}=3(i=1,2,3)$ or $n_{4}=0$, then we have a set of four rows of type ≤ 2. Hence, we have the following:

$$
\begin{equation*}
n_{1}, n_{2}, n_{3}, 3-n_{4} \in\{0,2\} \tag{2}
\end{equation*}
$$

From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}+n_{7} & =13 \\
n_{1}+n_{2}-n_{3}-n_{4}+n_{5}-n_{6}-n_{7} & =-3 \\
n_{1}-n_{2}+n_{3}-n_{4}-n_{5}+n_{6}-n_{7} & =-3 \\
-n_{1}+n_{2}+n_{3}-n_{4}-n_{5}-n_{6}+n_{7} & =-3
\end{aligned}
$$

So, we have $n_{1}+n_{2}+n_{3}=n_{4}+2$. This contradicts (2).
This completes the proof.
By the above lemma, we may assume that H contains the following five rows:

$$
M_{4}=\left(\begin{array}{c|c|c|c|c|c|c|c}
1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 \\
1111 & 1111 & 1111 & 0000 & 0000 & 1111 & 0000 & 0000 \\
1111 & 1111 & 0000 & 1111 & 0000 & 0000 & 1111 & 0000 \\
1111 & 0000 & 1111 & 1111 & 0000 & 0000 & 0000 & 1111 \\
v_{0} & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}
\end{array}\right)
$$

where $v_{i}(i=0, \ldots, 7)$ are vectors of length 4 . Similar to the proof of Lemma 12, we consider the above form instead of that in (1). Let n_{i} denote the number of 1 's in v_{i}. From the property of the corresponding Hadamard 2-designs, we may assume that v_{0} has the form of one of the following two cases:

Case	$4-1$	$4-2$
v_{0}	(1111)	(1110)

- Case 4-2: For $n_{1}=3$, we may assume that $v_{1}=$ (1110). The first, second, third rows and 5 -th row can be converted to the following form:

$$
\left(\begin{array}{c|c|c|c|c|c|c|c}
1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 \\
1111 & 1111 & 1111 & 0000 & 0000 & 1111 & 0000 & 0000 \\
1111 & 1111 & 0000 & 1111 & 0000 & 0000 & 1111 & 0000 \\
1111 & 1100 & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}
\end{array}\right),
$$

by interchanging the 4 -th and 6 -th columns. The set of the four rows is of type 2 . For $n_{1}=0$ or 4 , this case is contained in Case $4-1$ by permuting and negating rows and columns. For $n_{1}=2$, the set of the i-th rows ($i=1,2,3,5,6$) of H^{T} is in Case 4-1, which is discussed below.

Now consider $n_{1}=1$. By an argument similar to the above, we may assume that $n_{2}=n_{3}=1$. Indeed, if $n_{2} \neq 1$ or $n_{3} \neq 1$, then each of H, H^{T} is in Case $4-1$ or of type ≤ 2. From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
n_{4}+n_{5}+n_{6}+n_{7} & =10, \\
-n_{4}+n_{5}-n_{6}-n_{7} & =-4, \\
-n_{4}-n_{5}+n_{6}-n_{7} & =-4, \\
-n_{4}-n_{5}-n_{6}+n_{7} & =-4 .
\end{aligned}
$$

This system of equations has the following unique solution:

$$
n_{4}=1, n_{5}=3, n_{6}=3, n_{7}=3 .
$$

By considering permutations, we may assume that $v_{i}=(1000)(i=$ $1,2,3,4)$ and $v_{i}=(1110)(i=5,6,7)$. Hence, the first five rows are as follows:

$$
\left(\begin{array}{c|c|c|c|c|c|c|c}
1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 \\
1111 & 1111 & 1111 & 0000 & 0000 & 1111 & 0000 & 0000 \\
1111 & 1111 & 0000 & 1111 & 0000 & 0000 & 1111 & 0000 \\
1111 & 0000 & 1111 & 1111 & 0000 & 0000 & 0000 & 1111 \\
1110 & 1000 & 1000 & 1000 & 1000 & 1110 & 1110 & 1110
\end{array}\right) .
$$

By considering the i-th rows $(i=2,3,4,5), H$ is of type ≤ 2.

- Case 4-1: If for some $i n_{i} \geq 2(i=1,2,3)$, then, by interchanging the 5 -th row and the $(5-i)$-th row, the set of the first four rows is of type ≤ 2. Then we may assume that $n_{1} \leq 1, n_{2} \leq 1$ and $n_{3} \leq 1$. Similarly, we have $n_{4} \geq 3$. From the orthogonality of the 5 -th row to each of the other rows, we have the following:

$$
\begin{aligned}
n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}+n_{7} & =12 \\
n_{1}+n_{2}-n_{3}-n_{4}+n_{5}-n_{6}-n_{7} & =-4 \\
n_{1}-n_{2}+n_{3}-n_{4}-n_{5}+n_{6}-n_{7} & =-4 \\
-n_{1}+n_{2}+n_{3}-n_{4}-n_{5}-n_{6}+n_{7} & =-4 .
\end{aligned}
$$

Hence, we have $n_{1}+n_{2}+n_{3}=n_{4}$, which gives:

$$
n_{1}=n_{2}=n_{3}=1 \text { and } n_{4}=3 .
$$

Since H^{T} is of type 3, we may assume that H has the form given in Figure 2 which is not a normalized Hadamard matrix. This form is obtained by negating the i-th rows ($i=15,16,17$) and the j-columns $(j=17,18,19,20)$ of a normalized Hadamard matrix. The above form reduces our computation for finding the possible Hadamard matrices by considering the conditions given below.
Let H^{\prime} be the submatrix of the $(0,1)$-Hadamard matrix $(H+J) / 2$ consisting of the i-th rows $(i=6, \ldots, 32)$ and j-th columns $(j=5, \ldots, 32)$. Here we define an order on the set of $(0,1)$-vectors of length 28 . For a $(0,1)$-vector $v=\left(e_{1}, e_{2}, \ldots, e_{28}\right)$ of length 28 , we define

$$
\begin{aligned}
& \alpha(v)=\sum_{i=1}^{4} 8^{4-i} n_{\sigma(i)}, \\
& \beta(v)=2^{16} \alpha(v)+\sum_{j=1}^{16} 2^{16-j} e_{j} \text { and } \\
& \gamma(v)=2^{12} \beta(v)+\sum_{j=17}^{28} 2^{28-j} e_{j},
\end{aligned}
$$

where σ is a permutation of $\{1,2,3,4\}$ satisfying $n_{\sigma(1)} \geq n_{\sigma(2)} \geq n_{\sigma(3)} \geq$ $n_{\sigma(4)}$ for $n_{i}=4 e_{4 i-3}+e_{4 i-2}+e_{4 i-1}+e_{4 i}(i=1,2,3,4)$. In fact, $\gamma(v)$ gives a total order in the set of vectors of length 28 .

Figure 2: A Hadamard matrix in Case 4-1

Each of $A_{i, j}$ in H can be moved to the place of $A_{1,1}$ preserving the i-th rows ($i=1,2,3,4,5$) and the j-th columns $(j=1,2,3,4)$ by permuting rows and columns and negating some of i-th rows $(i=18,19, \ldots, 32)$ and some of j-th columns $(j=17,18, \ldots 32)$. Hence, by permuting and negating rows and columns, H can be converted to a matrix preserving the i-rows ($i=1,2,3,4,5$) and the j-th columns $(j=1,2,3,4)$ of H and satisfying the following conditions:

1. $\beta\left(r_{1}\right)=\max \left\{\beta(r) \mid \alpha(r)=\alpha\left(r_{1}\right), r \in\{0,1\}^{28}\right\}$,
2. $\gamma\left(r_{i}\right) \geq \gamma\left(r_{i+1}\right) \geq \gamma\left(r_{i+2}\right)$ for $i=1,4,7,10$,
3. $\gamma\left(r_{1}\right) \geq \gamma\left(r_{4}\right) \geq \gamma\left(r_{7}\right) \geq \gamma\left(r_{10}\right)$ and
4. $\gamma\left(r_{i}\right) \geq \gamma\left(r_{i+1}\right) \geq \gamma\left(r_{i+2}\right) \geq \gamma\left(r_{i+3}\right) \geq \gamma\left(r_{i+4}\right)$ for $i=13,18,23$,
where r_{i} is the i-th row of its 27×28 submatrix H^{\prime}.
Starting from the first five rows, we tried to construct Hadamard matrices H, row by row under the above four conditions in such a way that both H and H^{T} are of type 3 . We found exactly twelve Hadamard matrices. Finally, we verified that each of the matrices and their transposed matrices is equivalent to the Paley-Hadamard matrix.

The above argument shows that if both H and H^{T} are of type 3, then H is equivalent to the Paley-Hadamard matrix, which completes the proof of Proposition 3. In addition, by considering the case which does not assume that H^{T} is of type 3 , we have the following:

Lemma 13. If H is of type 3, then either H is equivalent to the PaleyHadamard matrix or $C(H)$ is not extremal.

By Lemmas 9, 11 and 13, any Hadamard matrix H of order 32 satisfies one of the following:
(1) H is equivalent to the Paley-Hadamard matrix,
(2) $C(H)$ is not extremal.

This completes the proof of Theorem 1.
Acknowledgments. The authors would like to thank Hadi Kharaghani for sending a preprint of [4]. The authors would also like to thank the anonymous referees for their useful comments on the manuscript.

References

[1] J.H. Conway, V. Pless and N.J.A. Sloane, Self-dual codes over GF(3) and GF(4) of length not exceeding 16, IEEE Trans. Inform. Theory 25 (1979), 312-322.
[2] E. Dawson, Self-dual ternary codes and Hadamard matrices, Ars Combin. 19 (1985), 303-308.
[3] M. Harada, New extremal ternary self-dual codes, Australas. J. Combin. 17 (1998), 133-145.
[4] H. Kharaghani and B. Tayfeh-Rezaie, On the classification of Hadamard matrices of order 32, J. Combin. Designs, (to appear).
[5] H. Kimura, Classification of Hadamard matrices of order 28, Discrete Math. 133 (1994), 171-180.
[6] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188-200.
[7] E. Rains and N.J.A. Sloane, "Self-dual codes," Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 177-294.

[^0]: *Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan. email: betsumi@cc.hirosaki-u.ac.jp
 ${ }^{\dagger}$ Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan, and PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 3320012, Japan. email: mharada@sci.kj.yamagata-u.ac.jp
 ${ }^{\ddagger}$ 2900-2 Oka, Fukaya 369-0201, Japan. email: kimurafuka@kind.ocn.ne.jp

