Hadamard Matrices of Order 32 and Extremal Ternary Self-Dual Codes

Koichi Betsumiya, Masaaki Harada[†]and Hiroshi Kimura[‡]

April 12, 2010

Abstract

A ternary self-dual code can be constructed from a Hadamard matrix of order congruent to 8 modulo 12. In this paper, we show that the Paley-Hadamard matrix is the only Hadamard matrix of order 32 which gives an extremal self-dual code of length 64. This gives a coding theoretic characterization of the Paley-Hadamard matrix of order 32.

Keywords: Hadamard matrix, Paley-Hadamard matrix, extremal self-dual code, ternary code

1 Introduction

As described in [7], self-dual codes are an important class of linear codes for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes of modest length and determine the largest minimum weight among self-dual codes of that length (see [7]). By the Gleason–Pierce theorem, there are nontrivial divisible self-dual codes over \mathbb{F}_q for q = 2, 3 and 4 only, where \mathbb{F}_q denotes the finite field of order q (see [7, Theorem 5]), and

^{*}Graduate School of Science and Technology, Hirosaki University, Hirosaki 036–8561, Japan. email: betsumi@cc.hirosaki-u.ac.jp

[†]Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan, and PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332– 0012, Japan. email: mharada@sci.kj.yamagata-u.ac.jp

[‡]2900–2 Oka, Fukaya 369–0201, Japan. email: kimurafuka@kind.ocn.ne.jp

this is one of the reasons why much work has been done concerning self-dual codes over these fields.

A code C over \mathbb{F}_3 is called *ternary*. All codes in this paper are ternary linear codes. A matrix whose rows are linearly independent and generate the code C is called a generator matrix of C. A code C of length n is said to be *self-dual* if $C = C^{\perp}$, where the dual code C^{\perp} of C is defined as $C^{\perp} = \{x \in \mathbb{F}_3^n | x \cdot y = 0 \text{ for all } y \in C\}$ under the standard Euclidean inner product $x \cdot y$. A self-dual code of length n exists if and only if $n \equiv 0 \pmod{4}$. It was shown in [6] that the minimum weight d of a self-dual code of length n is bounded by $d \leq 3[n/12] + 3$. If d = 3[n/12] + 3, then the code is called *extremal*. Two codes C and C' are *equivalent* if there exists a monomial matrix P over \mathbb{F}_3 with $C' = CP = \{xP \mid x \in C\}$.

A Hadamard matrix H of order n is an $n \times n$ matrix whose entries are from $\{1, -1\}$ such that $HH^T = nI$, where H^T is the transpose of H and I is the identity matrix. It is known that the order n is necessarily 1, 2, or a multiple of 4. A Hadamard matrix is *normalized* if its first row and column consist entirely of 1's. Two Hadamard matrices H and H' are said to be *equivalent* if there exist $(0, \pm 1)$ -signed permutation matrices P, Q with H' = PHQ. All Hadamard matrices of orders up to 28 have been classified (see [5]), and there are at least 13,708,126 inequivalent Hadamard matrices of order 32 (see [4]).

Let H_n be a Hadamard matrix of order n. Let $C(H_n)$ be the ternary code with generator matrix (I, H_n), where entries of the matrix are regarded as elements of \mathbb{F}_3 . It is known that if $n \equiv 8 \pmod{12}$, then $C(H_n)$ is self-dual [2]. Moreover, it was shown that if H is the Paley-Hadamard matrix of order 32, then C(H) is an extremal self-dual code of length 64 [2]. The goal of this paper is to give the following coding theoretic characterization of the Paley-Hadamard matrix of order 32.

Theorem 1. Let H be a Hadamard matrix of order 32. Let C(H) be the ternary self-dual code of length 64 with generator matrix (I, H). The code C(H) is extremal if and only if H is equivalent to the Paley-Hadamard matrix.

Remark 2. Only the above code is a currently known extremal self-dual code of length 64 (see [7, Table XII]).

In the process of proving the above theorem, we have the following partial classification of Hadamard matrices of order 32 (see Section 3 for the definition of type 3). **Proposition 3.** Let H be a Hadamard matrix of order 32. If both H and H^T are of type 3, then H is equivalent to the Paley-Hadamard matrix.

2 Self-dual codes constructed from Hadamard matrices

Let H be a Hadamard matrix of order n. Let C(H) be the ternary code with generator matrix (I, H), where entries of the matrix are regarded as elements of \mathbb{F}_3 .

Lemma 4 (Dawson [2]). If $n \equiv 8 \pmod{12}$, then C(H) is self-dual.

The following lemmas are somewhat trivial, but useful for our approach.

Lemma 5. Let H and H' be Hadamard matrices of order n. If H and H' are equivalent, then C(H) and C(H') are equivalent.

Proof. See e.g., [3, Lemma 3.1].

Thus, for the remainder of this paper, we assume that a Hadamard matrix is normalized, unless specified otherwise.

Lemma 6. If $n \equiv 8 \pmod{12}$, then C(H) and $C(H^T)$ are equivalent.

Proof. Since the dual code of C(H) has generator matrix $(-H^T, I), C(H)^{\perp}$ and $C(H^T)$ are equivalent. Since C(H) is self-dual, C(H) and $C(H^T)$ are equivalent.

The unique Hadamard matrix of order 8 constructs an extremal self-dual code of length 16 denoted by $2f_8$ in [1]. The three inequivalent Hadamard matrices of order 20 construct three inequivalent extremal self-dual codes of length 40 [3]. For order 32, if H is the Paley-Hadamard matrix, then C(H) is an extremal self-dual code of length 64 [2].

3 Hadamard matrices of order 32

3.1 Types of Hadamard matrices

By permuting and negating rows and columns, any four rows of a Hadamard matrix of order n can be converted to the following form:

(1)
$$\begin{pmatrix} 1_a & 1_a & 1_a & 1_a & 1_b & 1_b & 1_b & 1_b \\ 1_a & 1_a & -1_a & -1_a & 1_b & 1_b & -1_b & -1_b \\ 1_a & -1_a & 1_a & -1_a & 1_b & -1_b & 1_b & -1_b \\ 1_a & -1_a & -1_a & 1_a & -1_b & 1_b & 1_b & -1_b \end{pmatrix},$$

where $\mathbf{1}_m$ denotes the all-one vector of length m, a + b = n/4 and $0 \le a \le [n/8]$. The set of four rows, which has the above form, is called *type a*, due to [5]. A Hadamard matrix is of *type a* if it has a set of four rows of type *a* and no set of four rows of type a' < a. For order 32, there are five types of sets of four rows, namely types 0, 1, 2, 3 and 4.

We remark that types of Hadamard matrices given in [4] were defined for sets of four columns, and it has been shown that there are 13,680,757 inequivalent Hadamard matrices of order 32 which are of type 0 and there is no Hadamard matrix of order 32 which is of type 4. Hence, there are 13,680,757 inequivalent Hadamard matrices H of order 32 such that H^T are of type 0, and there is no Hadamard matrix of type 4 in our sense [4]. In the next subsection, we give a proof of the latter result for the sake of completeness.

In the next subsections, we consider Hadamard matrices of each type. In the remaining part of the paper, H denotes (K + J)/2, where K is a normalized Hadamard matrix of order 32 and J is the matrix with all one entries.

3.2 Type 4

Lemma 7 ([4]). For order 32, there is no Hadamard matrix of type 4.

Proof. Let H be a Hadamard matrix of type 4. We may assume that H has

the following form:

1	/ 1111	1111	1111	1111	1111	1111	1111	1111 `	Ι	
l	1111	1111	0000	0000	1111	1111	0000	0000		
I	1111	0000	1111	0000	1111	0000	1111	0000		,
l	1111	0000	0000	1111	0000	1111	1111	0000		
l	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	Ι	

where v_i (i = 0, 1, ..., 7) are vectors of length 4. Let n_i denote the number of 1's in v_i . From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_0 + n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 = 16,$$

$$n_0 + n_1 - n_2 - n_3 + n_4 + n_5 - n_6 - n_7 = 0,$$

$$n_0 - n_1 + n_2 - n_3 + n_4 - n_5 + n_6 - n_7 = 0,$$

$$n_0 - n_1 - n_2 + n_3 - n_4 + n_5 + n_6 - n_7 = 0.$$

Moreover, since the following fours set of four rows

$${r_1, r_2, r_3, r_5}, {r_1, r_2, r_4, r_5}, {r_1, r_3, r_4, r_5}, {r_2, r_3, r_4, r_5},$$

are also of type 4, where r_i denotes the *i*-th row in the above matrix, we also have the following:

$$n_0 + n_4 = n_1 + n_5 = n_2 + n_6 = n_3 + n_7 = 4,$$

$$n_0 + n_5 = n_1 + n_4 = n_2 + n_7 = n_3 + n_6 = 4,$$

$$n_0 + n_6 = n_1 + n_7 = n_2 + n_4 = n_3 + n_5 = 4,$$

$$n_0 + (4 - n_7) = n_1 + (4 - n_6) = (4 - n_2) + n_5 = (4 - n_3) + n_4 = 4,$$

respectively. This system of the equations has the following unique solution:

$$n_0 = n_1 = n_2 = n_3 = n_4 = n_5 = n_6 = n_7 = 2$$

Hence, the *i*-th row of *H* has $n_0 = 2$ for i = 5, 6, ..., 32. This gives the nonexistence of a Hadamard matrix of type 4.

3.3 Types 0 and 1

Lemma 8. Let H be a Hadamard matrix of order 32. If H has a set of four rows of type 1, then H^T is of type 0.

Proof. We may assume that H contains the following five rows:

ĺ	1	1	0	0	1111111	11111111	0000000	0000000	
	1	0	1	0	1111111	0000000	1111111	0000000	,
	1	0	0	1	0000000	1111111	1111111	0000000	
ĺ	1	v_1	v_2	v_3	v_4	v_5	v_6	v_7	/

where v_i (i = 1, 2, 3) are vectors of length 1 and v_i (i = 4, 5, 6, 7) are vectors of length 7. Let n_i denote the number of 1's in v_i (i = 1, 2, ..., 7). From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 = 15,$$

$$n_1 - n_2 - n_3 + n_4 + n_5 - n_6 - n_7 = -1,$$

$$-n_1 + n_2 - n_3 + n_4 - n_5 + n_6 - n_7 = -1,$$

$$-n_1 - n_2 + n_3 - n_4 + n_5 + n_6 - n_7 = -1.$$

This implies that

$$n_1 = 1 + n_6 - n_7, n_2 = 1 + n_5 - n_7, n_3 = 7 - n_5 - n_6, n_4 = 6 - n_5 - n_6 + n_7,$$

then $n_1 + n_2 + n_3 = 9 - 2n_7 \equiv 1 \pmod{2}$. Therefore, we have the following:

$$(n_1, n_2, n_3) = (1, 0, 0), (0, 1, 0), (0, 0, 1)$$
 or $(1, 1, 1).$

Let $r_i = (1, v_1, v_2, v_3, v_4, v_5, v_6, v_7)$ denote the *i*-th row of *H*. Let *s*, *t*, *u* and *v* be the numbers of *i* (*i* = 5, 6, ..., 32) with

$$(v_1, v_2, v_3) = (1, 1, 1), (1, 0, 0), (0, 1, 0)$$
 and $(0, 0, 1), (0, 1, 0)$

respectively. Note that s + t + u + v = 28. From the orthogonality of among *i*-th columns (i = 2, 3, 4),

$$s + v - t - u = 0, s + u - t - v = 0, s + t - u - v = 0.$$

Therefore, s = t = u = v = 7, and the set of the first four rows of H^T is of type 0.

Lemma 9. If H is of type 0 or 1, then C(H) is not extremal.

Proof. There is a codeword of weight 12 corresponding to some linear combination of the four rows of type 0. For a Hadamard matrix H of type 1, by Lemma 8, H^T is of type 0. Hence, $C(H^T)$ contains a codeword of weight 12. Since C(H) is self-dual, C(H) and $C(H^T)$ are equivalent, by Lemma 6. Hence, if H is of type 0 or 1, then C(H) contains a codeword of weight 12, that is, C(H) is not extremal.

Remark 10. By Lemmas 6 and 9, the 13,680,757 inequivalent Hadamard matrices found in [4] give no extremal self-dual code.

3.4 Type 2

Suppose that H is of type 2. By Lemma 6, C(H) and $C(H^T)$ are equivalent. By Lemma 9, if H^T is of type 0 or 1, then C(H) is not extremal. Hence, we may assume that H^T has no set of four rows of type 0 or 1. Moreover, we may assume that H has the following form:

	v_0	v_1	v_2	v_2	v_{A}	v_5	v_{e}	v_{7}	/
	11	00	00	11	000000	111111	111111	000000	
	11	00	11	00	111111	000000	111111	000000	
	11	11	00	00	111111	111111	000000	000000	
(11	11	11	11	111111	111111	111111	111111 `	\

where v_i (i = 0, 1, 2, 3) are vectors of length 2 and v_i (i = 4, 5, 6, 7) are vectors of length 6. Let n_i denote the number of 1's in v_i . From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_0 + n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 = 16,$$

$$n_0 + n_1 - n_2 - n_3 + n_4 + n_5 - n_6 - n_7 = 0,$$

$$n_0 - n_1 + n_2 - n_3 + n_4 - n_5 + n_6 - n_7 = 0,$$

$$n_0 - n_1 - n_2 + n_3 - n_4 + n_5 + n_6 - n_7 = 0.$$

We remark that this gives

$$n_4 = 4 + \frac{1}{2}(-n_0 - n_1 - n_2 + n_3), n_5 = 4 + \frac{1}{2}(-n_0 - n_1 + n_2 - n_3),$$

$$n_6 = 4 + \frac{1}{2}(-n_0 + n_1 - n_2 - n_3), n_7 = 4 + \frac{1}{2}(n_0 - n_1 - n_2 - n_3).$$

s_i	n_0	n_1	n_2	n_3	s_i	n_0	n_1	n_2	n_3	s_i	n_0	n_1	n_2	n_3
s_1	2	2	2	2	s_{10}	2	0	2	2	s_{19}	1	1	2	2
s_2	2	2	2	0	s_{11}	2	0	2	0	s_{20}	1	1	2	0
s_3	2	2	1	1	s_{12}	2	0	1	1	s_{21}	1	1	1	1
s_4	2	2	0	2	s_{13}	2	0	0	2	s_{22}	1	1	0	2
s_5	2	2	0	0	s_{14}	2	0	0	0	s_{23}	1	1	0	0
s_6	2	1	2	1	s_{15}	1	2	2	1	s_{24}	1	0	2	1
s_7	2	1	1	2	s_{16}	1	2	1	2	s_{25}	1	0	1	2
s_8	2	1	1	0	s_{17}	1	2	1	0	s_{26}	1	0	1	0
s_9	2	1	0	1	s_{18}	1	2	0	1	s_{27}	1	0	0	1

Table 1: (n_0, n_1, n_2, n_3) for the solutions s_i

Since *H* is normalized, $v_0 = (11)$ or (10). Hence, $n_0 = 2$ or 1. Under this condition, this system of equations has 27 solutions s_i (i = 1, 2, ..., 27), where (n_0, n_1, n_2, n_3) are listed in Table 1 for each solution s_i .

By considering the orthogonality of columns, types of sets of four columns among the first eight columns, and the condition that $C(H^T)$ is extremal, we determined the sets of the possible solutions $s_{i_5}, s_{i_6}, \ldots, s_{i_{32}}$ corresponding to the rows r_5, r_6, \ldots, r_{32} , respectively, where r_j denotes the *j*-th row of *H*. By permuting rows, it is sufficient to consider the possible solutions under the following conditions:

- 1. $i_5, i_6, \ldots, i_{16} \in \{1, 2, \ldots, 14\},\$
- 2. $i_{17}, i_{18}, \ldots, i_{32} \in \{15, 16, \ldots, 27\},\$
- 3. $i_j \leq i_{j+1}$ for $j = 5, 6, \dots, 31$.

Then there are 43 such sets, and the solutions $(i_5, i_6, \ldots, i_{32})$ are listed in Table 2. By considering the possible solutions in Table 2, we constructed 32×8 submatrices in Figure 1, column by column. Then we found 1045 12×6 matrices A_1 in Figure 1. For each of the 1045 matrices A_1 , based on the possible solutions in Table 2, we tried to construct Hadamard matrices, row by row under the assumption that H is of type 2, H^T has no set of four rows of type 0 and 1, and C(H) is extremal. However, no Hadamard matrix is obtained under the above assumption. Therefore, we have the following:

Lemma 11. If H is of type 2, then C(H) is not extremal.

Table 2: Possible solutions for each row r_j (j = 5, 6, ..., 32)

(1, 3, 3, 3, 6, 8, 8, 9, 12, 12, 12, 13, 16, 17, 19, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24)(1, 3, 3, 3, 6, 8, 8, 9, 12, 12, 12, 13, 16, 18, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25)(1, 3, 3, 3, 6, 8, 9, 9, 11, 12, 12, 13, 16, 17, 19, 20, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25)(1, 3, 3, 3, 6, 8, 9, 9, 11, 12, 12, 13, 16, 18, 19, 20, 20, 21, 21, 21, 21, 21, 21, 21, 23, 23, 25, 25)(1, 3, 3, 3, 6, 8, 9, 9, 12, 12, 12, 12, 16, 17, 19, 20, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25)(1, 3, 3, 3, 6, 8, 9, 9, 12, 12, 12, 12, 16, 18, 19, 20, 20, 20, 21, 21, 21, 21, 22, 23, 23, 25, 25)(1, 3, 3, 3, 6, 9, 9, 9, 11, 12, 12, 12, 16, 17, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 25, 25)(1, 3, 3, 5, 6, 6, 9, 9, 11, 12, 12, 13, 16, 16, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 23, 23, 25, 25)(1, 3, 3, 5, 6, 6, 9, 9, 11, 12, 12, 13, 16, 17, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 25, 26)(1, 3, 3, 5, 6, 6, 9, 9, 12, 12, 12, 12, 16, 16, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 25, 25)(1, 3, 3, 5, 6, 6, 9, 9, 12, 12, 12, 12, 16, 17, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 25, 26)(1, 3, 3, 5, 6, 7, 8, 9, 11, 12, 12, 13, 15, 16, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25)(1, 3, 3, 5, 6, 7, 8, 9, 11, 12, 12, 13, 15, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 25, 26)(1, 3, 3, 5, 6, 7, 8, 9, 12, 12, 12, 12, 15, 16, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25)(1, 3, 3, 5, 6, 7, 8, 9, 12, 12, 12, 12, 15, 17, 19, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 23, 24, 26)(1, 3, 3, 5, 6, 7, 8, 9, 12, 12, 12, 12, 15, 18, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 25, 26)(1, 3, 3, 6, 6, 8, 8, 9, 9, 12, 12, 13, 16, 16, 17, 20, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 25)(1, 3, 3, 6, 6, 8, 8, 9, 9, 12, 12, 13, 16, 16, 18, 20, 20, 21, 21, 21, 21, 21, 21, 23, 23, 24, 25, 25)(1, 3, 3, 6, 6, 8, 8, 9, 9, 12, 12, 13, 16, 17, 18, 19, 20, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26)(1, 3, 3, 6, 6, 8, 9, 9, 9, 12, 12, 12, 16, 16, 17, 20, 20, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25, 25)(1, 3, 3, 6, 6, 8, 9, 9, 9, 12, 12, 12, 16, 16, 18, 20, 20, 20, 21, 21, 21, 21, 21, 23, 23, 25, 25, 25)(1, 3, 3, 6, 6, 8, 9, 9, 9, 12, 12, 12, 16, 17, 17, 19, 20, 21, 21, 21, 21, 21, 22, 22, 23, 24, 25, 26)(1, 3, 3, 6, 7, 8, 8, 8, 9, 12, 12, 13, 15, 16, 17, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 24)(1, 3, 3, 6, 7, 8, 8, 8, 9, 12, 12, 13, 15, 16, 18, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 25)(1, 3, 3, 6, 7, 8, 8, 8, 9, 12, 12, 13, 15, 18, 18, 19, 20, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26)(1, 3, 3, 6, 7, 8, 8, 9, 9, 11, 12, 13, 15, 16, 17, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 25)(1, 3, 3, 6, 7, 8, 8, 9, 9, 11, 12, 13, 15, 17, 18, 19, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26)(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 16, 17, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25)(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 17, 17, 19, 21, 21, 21, 21, 21, 22, 22, 23, 24, 24, 26)(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 17, 18, 19, 20, 21, 21, 21, 21, 21, 22, 22, 23, 24, 25, 26)(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 18, 18, 19, 20, 20, 21, 21, 21, 21, 21, 22, 23, 25, 25, 26)(3, 3, 3, 3, 6, 6, 9, 9, 12, 12, 12, 12, 16, 16, 19, 20, 20, 20, 21, 21, 21, 21, 22, 23, 23, 23, 25, 25)(3, 3, 3, 3, 6, 6, 9, 9, 12, 12, 12, 12, 16, 17, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 25, 26)(3, 3, 3, 3, 6, 7, 8, 9, 12, 12, 12, 12, 15, 16, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25)(3, 3, 3, 3, 3, 6, 7, 8, 9, 12, 12, 12, 12, 15, 18, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 25, 26)(3, 3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 16, 16, 16, 20, 20, 20, 21, 21, 21, 23, 23, 23, 25, 25, 25)(3, 3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 16, 16, 17, 19, 20, 20, 21, 21, 21, 22, 23, 23, 25, 25, 26)(3, 3, 3, 6, 6, 7, 8, 9, 9, 12, 12, 12, 15, 16, 16, 20, 20, 21, 21, 21, 21, 22, 23, 23, 23, 24, 25, 25)(3, 3, 3, 6, 6, 7, 8, 9, 9, 12, 12, 12, 15, 16, 17, 19, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25, 26)(3, 3, 3, 6, 6, 7, 8, 9, 9, 12, 12, 12, 15, 16, 18, 19, 20, 20, 21, 21, 21, 21, 22, 23, 23, 25, 25, 26)(3, 3, 6, 6, 7, 7, 8, 8, 9, 9, 12, 12, 15, 15, 16, 17, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 26)(3, 3, 6, 6, 7, 7, 8, 8, 9, 9, 12, 12, 15, 15, 16, 18, 20, 21, 21, 21, 21, 22, 23, 23, 24, 25, 25, 26)(3, 3, 6, 6, 7, 7, 8, 8, 9, 9, 12, 12, 15, 16, 17, 18, 19, 20, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27)

	$\begin{pmatrix} 11\\ 11\\ 11\\ 11\\ 11\\ 11 \end{pmatrix}$	111111 110000 001100 000011	111111 111111 111111 0000000	111111 111111 000000 111111	111111 000000 111111 111111	111111 000000 000000 000000
H =	11 : 11	A_1				
	$ \begin{array}{c} 10 \\ 10 \\ \vdots \\ 10 \\ 10 \\ 10 \end{array} $					

Figure 1: A Hadamard matrix of type 2

3.5 Type 3

Suppose that H is of type 3. If H^T is of type 0, 1 or 2, then by Lemmas 6, 9 and 11, C(H) is not extremal. Hence, for the remainder of this subsection, we assume that both H and H^T are of type 3, unless specified otherwise.

We first show that every Hadamard matrix of type 3 has a set of rows of type 4. To make it computationally feasible, it is better to use the four rows of type 4.

Lemma 12. If both H and H^T are of type 3, then H contains a set of four rows of type 4.

Proof. We may assume that H contains the following five rows:

$$M_{3} = \begin{pmatrix} 11111 & 111 & 111 & 111 & 1111 & 11111 & 11111 & 11111 \\ 11111 & 111 & 111 & 000 & 000 & 11111 & 00000 & 00000 \\ 11111 & 111 & 000 & 111 & 000 & 00000 & 11111 & 00000 \\ 11111 & 000 & 1111 & 111 & 000 & 00000 & 00000 & 11111 \\ v_{0} & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \end{pmatrix}$$

where v_i (i = 0, 5, 6, 7) are vectors of length 5 and v_i (i = 1, 2, 3, 4) are vectors of length 3. Let n_i denote the number of 1's in v_i . We remark that the above form is slightly different from that in (1). Because there are eight columns such that all entries in the first three rows are 1 from the property of the corresponding Hadamard 2-designs, we take these columns as the first eight

ones. Moreover, we may assume that v_0 has the form of one of the following three cases:

Case	3-1	3-2	3-3
v_0	(11111)	(11110)	(11100)

• Case 3-1: First we show that $n_1 = n_2 = n_3 = 0$ and $n_4 = 3$. Suppose contrary, that is, for some i (i = 1, 2, 3) $n_i > 0$ or $n_4 \le 2$. Then there is a set of four rows among the first five rows which is of type ≤ 2 . Hence, $n_1 = n_2 = n_3 = 0$ and $n_4 = 3$. From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_5 + n_6 + n_7 = 8,$$

$$n_5 - n_6 - n_7 = -2,$$

$$-n_5 + n_6 - n_7 = -2,$$

$$-n_5 - n_6 + n_7 = -2.$$

This system of equations has no solution.

• Case 3-2: From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 = 12,$$

$$n_1 + n_2 - n_3 - n_4 + n_5 - n_6 - n_7 = -4,$$

$$n_1 - n_2 + n_3 - n_4 - n_5 + n_6 - n_7 = -4,$$

$$-n_1 + n_2 + n_3 - n_4 - n_5 - n_6 + n_7 = -4.$$

This gives the following:

$$n_4 = n_1 + n_2 + n_3, n_5 = 4 - n_1 - n_2,$$

 $n_6 = 4 - n_1 - n_3, n_7 = -4 - n_2 - n_3.$

If $n_i \geq 2$ (i = 1, 2, 3), then, by interchanging the 5-th row and the (5 - i)-th row, the set of the first four rows is of type ≤ 2 . Then we may assume that $n_1 \leq 1$, $n_2 \leq 1$ and $n_3 \leq 1$. Similarly, we have $n_4 \geq 2$. Hence, we have the following four possible (n_1, n_2, n_3, n_4) :

	n_1	n_2	n_3	n_4
(a)	1	1	0	2
(b)	1	0	1	2
(c)	0	1	1	2
(d)	1	1	1	3

For (a), the set of the *i*-th rows (i = 1, 3, 4, 5) is of type 4. Similarly, for (b) and (c), there is a set of four rows of type 4. For (d), by interchanging the first row and the second row, the matrix satisfies the condition (a).

• Case 3-3: If for some $i n_i = 1$ (i = 1, 2, 3) or $n_4 = 2$, then, by interchanging the 5-th row and the *j*-th row (j = 1, 2, 3, 4), the set of the first four rows is of type 4. Similarly, if $n_i = 3$ (i = 1, 2, 3) or $n_4 = 0$, then we have a set of four rows of type ≤ 2 . Hence, we have the following:

(2)
$$n_1, n_2, n_3, 3 - n_4 \in \{0, 2\}.$$

From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 = 13,$$

$$n_1 + n_2 - n_3 - n_4 + n_5 - n_6 - n_7 = -3,$$

$$n_1 - n_2 + n_3 - n_4 - n_5 + n_6 - n_7 = -3,$$

$$-n_1 + n_2 + n_3 - n_4 - n_5 - n_6 + n_7 = -3.$$

So, we have $n_1 + n_2 + n_3 = n_4 + 2$. This contradicts (2).

This completes the proof.

By the above lemma, we may assume that H contains the following five rows:

$$M_4 = \begin{pmatrix} 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 \\ 1111 & 1111 & 1111 & 0000 & 0000 & 1111 & 0000 & 0000 \\ 1111 & 1111 & 0000 & 1111 & 0000 & 0000 & 1111 & 0000 \\ 1111 & 0000 & 1111 & 1111 & 0000 & 0000 & 0000 & 1111 \\ v_0 & v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 \end{pmatrix},$$

where v_i (i = 0, ..., 7) are vectors of length 4. Similar to the proof of Lemma 12, we consider the above form instead of that in (1). Let n_i denote the number of 1's in v_i . From the property of the corresponding Hadamard 2-designs, we may assume that v_0 has the form of one of the following two cases:

Case	4-1	4-2
v_0	(1111)	(1110)

• Case 4-2: For $n_1 = 3$, we may assume that $v_1 = (1110)$. The first, second, third rows and 5-th row can be converted to the following form:

1	´ 1111	1111	1111	1111	1111	1111	1111	1111	\
	1111	1111	1111	0000	0000	1111	0000	0000	
	1111	1111	0000	1111	0000	0000	1111	0000	
	1111	1100	v_2	v_3	v_4	v_5	v_6	v_7	/

by interchanging the 4-th and 6-th columns. The set of the four rows is of type 2. For $n_1 = 0$ or 4, this case is contained in Case 4-1 by permuting and negating rows and columns. For $n_1 = 2$, the set of the *i*-th rows (i = 1, 2, 3, 5, 6) of H^T is in Case 4-1, which is discussed below.

Now consider $n_1 = 1$. By an argument similar to the above, we may assume that $n_2 = n_3 = 1$. Indeed, if $n_2 \neq 1$ or $n_3 \neq 1$, then each of H, H^T is in Case 4-1 or of type ≤ 2 . From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_4 + n_5 + n_6 + n_7 = 10,$$

$$-n_4 + n_5 - n_6 - n_7 = -4,$$

$$-n_4 - n_5 + n_6 - n_7 = -4,$$

$$-n_4 - n_5 - n_6 + n_7 = -4.$$

This system of equations has the following unique solution:

$$n_4 = 1, n_5 = 3, n_6 = 3, n_7 = 3.$$

By considering permutations, we may assume that $v_i = (1000)$ (i = 1, 2, 3, 4) and $v_i = (1110)$ (i = 5, 6, 7). Hence, the first five rows are as follows:

1	´ 1111	1111	1111	1111	1111	1111	1111	1111 \	
	1111	1111	1111	0000	0000	1111	0000	0000	
	1111	1111	0000	1111	0000	0000	1111	0000	
	1111	0000	1111	1111	0000	0000	0000	1111	
	1110	1000	1000	1000	1000	1110	1110	1110 /	

By considering the *i*-th rows (i = 2, 3, 4, 5), *H* is of type ≤ 2 .

• Case 4-1: If for some $i \ n_i \ge 2$ (i = 1, 2, 3), then, by interchanging the 5-th row and the (5 - i)-th row, the set of the first four rows is of type ≤ 2 . Then we may assume that $n_1 \le 1$, $n_2 \le 1$ and $n_3 \le 1$. Similarly, we have $n_4 \ge 3$. From the orthogonality of the 5-th row to each of the other rows, we have the following:

$$n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 = 12,$$

$$n_1 + n_2 - n_3 - n_4 + n_5 - n_6 - n_7 = -4,$$

$$n_1 - n_2 + n_3 - n_4 - n_5 + n_6 - n_7 = -4,$$

$$-n_1 + n_2 + n_3 - n_4 - n_5 - n_6 + n_7 = -4.$$

Hence, we have $n_1 + n_2 + n_3 = n_4$, which gives:

$$n_1 = n_2 = n_3 = 1$$
 and $n_4 = 3$.

Since H^T is of type 3, we may assume that H has the form given in Figure 2 which is not a normalized Hadamard matrix. This form is obtained by negating the *i*-th rows (i = 15, 16, 17) and the *j*-columns (j = 17, 18, 19, 20) of a normalized Hadamard matrix. The above form reduces our computation for finding the possible Hadamard matrices by considering the conditions given below.

Let H' be the submatrix of the (0, 1)-Hadamard matrix (H+J)/2 consisting of the *i*-th rows (i = 6, ..., 32) and *j*-th columns (j = 5, ..., 32). Here we define an order on the set of (0, 1)-vectors of length 28. For a (0, 1)-vector $v = (e_1, e_2, ..., e_{28})$ of length 28, we define

$$\alpha(v) = \sum_{i=1}^{4} 8^{4-i} n_{\sigma(i)},$$

$$\beta(v) = 2^{16} \alpha(v) + \sum_{j=1}^{16} 2^{16-j} e_j \text{ and}$$

$$\gamma(v) = 2^{12} \beta(v) + \sum_{j=17}^{28} 2^{28-j} e_j,$$

where σ is a permutation of $\{1, 2, 3, 4\}$ satisfying $n_{\sigma(1)} \ge n_{\sigma(2)} \ge n_{\sigma(3)} \ge n_{\sigma(4)}$ for $n_i = 4e_{4i-3} + e_{4i-2} + e_{4i-1} + e_{4i}$ (i = 1, 2, 3, 4). In fact, $\gamma(v)$ gives a total order in the set of vectors of length 28.

/ 1111	1111	1111	1111	0000	1111	1111	1111 \
1111	1111	1111	0000	1111	1111	0000	0000
1111	1111	0000	1111	1111	0000	1111	0000
1111	0000	1111	1111	1111	0000	0000	1111
1111	1000	1000	1000	1000	1100	1100	1100
1110							
1110	$A_{1,1}$	$A_{1,2}$	$A_{1,3}$	$A_{1,4}$			
1110							
1101							
1101	$A_{2,1}$	$A_{2,2}$	$A_{2,3}$	$A_{2,4}$			
1101							
1011							
1011	$A_{3,1}$	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$			
1011							
0111							
0111	$A_{4,1}$	$A_{4,2}$	$A_{4,3}$	$A_{4,4}$			
0111							
1100							
:							
100							
1010							
:							
1010							
1001							
\ 1001)
	$ \begin{pmatrix} 1111\\ 1111\\ 1111\\ 1111\\ 1111\\ 1111\\ 1110\\ 1110\\ 1110\\ 1101\\ 1001\\ 1001\\ 1011\\ 0111\\ 0011\\ 0110\\ 0111\\ 0110\\ 0111\\ 0100\\ 0100\\ 0$	$ \left(\begin{array}{ccccccc} 1111 & 1111 \\ 1111 & 1111 \\ 1111 & 1111 \\ 1111 & 1000 \\ \hline \\ 1110 & & & \\ 1110 & & & \\ 1100 & & & \\ 1101 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1011 & & & \\ 1010 & & & \\ \vdots & & \\ 1000 & & & \\ \vdots & & \\ 1001 & & & \\ 1001 & & \\ \end{array} \right) $	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$				

Figure 2: A Hadamard matrix in Case 4-1

Each of $A_{i,j}$ in H can be moved to the place of $A_{1,1}$ preserving the *i*-th rows (i = 1, 2, 3, 4, 5) and the *j*-th columns (j = 1, 2, 3, 4) by permuting rows and columns and negating some of *i*-th rows $(i = 18, 19, \ldots, 32)$ and some of *j*-th columns $(j = 17, 18, \ldots, 32)$. Hence, by permuting and negating rows and columns, H can be converted to a matrix preserving the *i*-rows (i = 1, 2, 3, 4, 5) and the *j*-th columns (j = 1, 2, 3, 4) of H and satisfying the following conditions:

- 1. $\beta(r_1) = \max\{\beta(r) \mid \alpha(r) = \alpha(r_1), r \in \{0, 1\}^{28}\},\$
- 2. $\gamma(r_i) \ge \gamma(r_{i+1}) \ge \gamma(r_{i+2})$ for i = 1, 4, 7, 10,
- 3. $\gamma(r_1) \ge \gamma(r_4) \ge \gamma(r_7) \ge \gamma(r_{10})$ and
- 4. $\gamma(r_i) \ge \gamma(r_{i+1}) \ge \gamma(r_{i+2}) \ge \gamma(r_{i+3}) \ge \gamma(r_{i+4})$ for i = 13, 18, 23,

where r_i is the *i*-th row of its 27×28 submatrix H'.

Starting from the first five rows, we tried to construct Hadamard matrices H, row by row under the above four conditions in such a way that both H and H^T are of type 3. We found exactly twelve Hadamard matrices. Finally, we verified that each of the matrices and their transposed matrices is equivalent to the Paley-Hadamard matrix.

The above argument shows that if both H and H^T are of type 3, then H is equivalent to the Paley-Hadamard matrix, which completes the proof of Proposition 3. In addition, by considering the case which does not assume that H^T is of type 3, we have the following:

Lemma 13. If H is of type 3, then either H is equivalent to the Paley-Hadamard matrix or C(H) is not extremal.

By Lemmas 9, 11 and 13, any Hadamard matrix H of order 32 satisfies one of the following:

- (1) H is equivalent to the Paley-Hadamard matrix,
- (2) C(H) is not extremal.

This completes the proof of Theorem 1.

Acknowledgments. The authors would like to thank Hadi Kharaghani for sending a preprint of [4]. The authors would also like to thank the anonymous referees for their useful comments on the manuscript.

References

- J.H. Conway, V. Pless and N.J.A. Sloane, Self-dual codes over GF(3) and GF(4) of length not exceeding 16, *IEEE Trans. Inform. Theory* 25 (1979), 312–322.
- [2] E. Dawson, Self-dual ternary codes and Hadamard matrices, Ars Combin. 19 (1985), 303–308.
- [3] M. Harada, New extremal ternary self-dual codes, Australas. J. Combin. 17 (1998), 133–145.

- [4] H. Kharaghani and B. Tayfeh-Rezaie, On the classification of Hadamard matrices of order 32, *J. Combin. Designs*, (to appear).
- [5] H. Kimura, Classification of Hadamard matrices of order 28, Discrete Math. 133 (1994), 171–180.
- [6] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188–200.
- [7] E. Rains and N.J.A. Sloane, "Self-dual codes," Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 177–294.