An Upper Bound on the Minimum Weight of Type II $\mathbb{Z}_{2 k}$-Codes

Masaaki Harada*and Tsuyoshi Miezaki ${ }^{\dagger}$

February 5, 2010

Abstract

In this paper, we give a new upper bound on the minimum Euclidean weight of Type II $\mathbb{Z}_{2 k}$-codes and the concept of extremality for the Euclidean weights when $k=3,4,5,6$. Together with the known result, we demonstrate that there is an extremal Type II $\mathbb{Z}_{2 k}$-code of length $8 m(m \leq 8)$ when $k=3,4,5,6$.

Key Words: Type II code, Euclidean weight, extremal code, theta series 2000 Mathematics Subject Classification. Primary 94B05; Secondary 11F03.

1 Introduction

Let $\mathbb{Z}_{2 k}$ be the ring of integers modulo $2 k$, where k is a positive integer. In this paper, we take the set $\mathbb{Z}_{2 k}$ to be either $\{0,1, \ldots, 2 k-1\}$ or $\{0, \pm 1, \ldots, \pm(k-$ 1), $k\}$. A $\mathbb{Z}_{2 k}$-code C of length n (or a code C of length n over $\mathbb{Z}_{2 k}$) is a $\mathbb{Z}_{2 k^{-}}$ submodule of $\mathbb{Z}_{2 k}^{n}$. The Euclidean weight of a codeword $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is $\sum_{i=1}^{n} \min \left\{x_{i}^{2},\left(2 k-x_{i}\right)^{2}\right\}$. The minimum Euclidean weight $d_{E}(C)$ of C is the smallest Euclidean weight among all nonzero codewords of C.

A $\mathbb{Z}_{2 k}$-code C is self-dual if $C=C^{\perp}$, where the dual code C^{\perp} of C is defined as $C^{\perp}=\left\{x \in \mathbb{Z}_{2 k}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\}$ under the standard inner

[^0]product $x \cdot y$. As described in [14], self-dual codes are an important class of linear codes for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes of modest lengths and determine the largest minimum weight among self-dual codes of that length.

A binary doubly even self-dual code is often called Type II. For \mathbb{Z}_{4}-codes, Type II codes were first defined in [2] as self-dual codes containing a (± 1)vector and with the property that all Euclidean weights are divisible by eight. Then it was shown in [11] that, more generally, the condition of containing a (± 1)-vector is redundant. For general k, Type II $\mathbb{Z}_{2 k}$-codes were defined in [1] as self-dual codes with the property that all Euclidean weights are divisible by $4 k$. It is known that a Type II $\mathbb{Z}_{2 k}$-code of length n exists if and only if n is divisible by eight [1].

The aim of this paper is to show the following theorem.
Theorem 1. Let C be a Type II $\mathbb{Z}_{2 k}$-code of length n. If $k \leq 6$ then the minimum Euclidean weight $d_{E}(C)$ of C is bounded by

$$
\begin{equation*}
d_{E}(C) \leq 4 k\left\lfloor\frac{n}{24}\right\rfloor+4 k . \tag{1}
\end{equation*}
$$

Remark 2. The upper bound (1) is known for the cases $k=1$ [13] and $k=2$ [2]. For $k \geq 3$, the bound (1) is known under the assumption that $\lfloor n / 24\rfloor \leq k-2[1]$.

We say that a Type II $\mathbb{Z}_{2 k}$-code meeting the bound (1) with equality is extremal for $k \leq 6$. For the following cases

$$
(k, m)=(4,7),(4,8),(5,6),(5,7),(5,8),(6,4),(6,5),(6,6),(6,7) \text { and }(6,8),
$$

an extremal Type II $\mathbb{Z}_{2 k}$-code of length $8 m$ is constructed for the first time in Section 4. Together with the known results on the existences of extremal Type II codes, we have the following theorem.

Theorem 3. If $k \leq 6$ then there is an extremal Type II $\mathbb{Z}_{2 k}$-code of length $8 m$ for $m \leq 8$.

The existences of a binary extremal Type II code of length 72 and a $72-$ dimensional extremal even unimodular (Type II) lattice are long-standing open questions. In this paper, we propose the following question.

Question. Is there an extremal Type II $\mathbb{Z}_{2 k}$-code of length 72 for $k \leq 6$?
We remark that if there is an Type II $\mathbb{Z}_{2 k}$-code of length $72(k=4,5,6)$ then a 72 -dimensional extremal even unimodular lattice can be obtained by Construction A.

All computer calculations in this paper were done by Magma [3].

2 Preliminaries

An n-dimensional (Euclidean) lattice Λ is a subset of \mathbb{R}^{n} with the property that there exists a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n} such that $\Lambda=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus$ $\cdots \oplus \mathbb{Z} e_{n}$, i.e., Λ consists of all integral linear combinations of the vectors $e_{1}, e_{2}, \ldots, e_{n}$. The dual lattice Λ^{*} of Λ is the lattice $\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \in\right.$ \mathbb{Z} for all $y \in \Lambda\}$, where $\langle x, y\rangle$ is the standard inner product. A lattice with $\Lambda=\Lambda^{*}$ is called unimodular. The norm of a vector x is $\langle x, x\rangle$. A unimodular lattice with even norms is said to be even. A unimodular lattice containing a vector of odd norm is said to be odd. An n-dimensional even unimodular lattice exists if and only if $n \equiv 0(\bmod 8)$ while an odd unimodular lattice exists for every dimension. The minimum norm $\min (\Lambda)$ of Λ is the smallest norm among all nonzero vectors of Λ. For Λ and a positive integer m, the shell Λ_{m} of norm m is defined as $\{x \in \Lambda \mid\langle x, x\rangle=m\}$. Two lattices L and L^{\prime} are isomorphic, denoted $L \simeq L^{\prime}$, if there exists an orthogonal matrix A with $L^{\prime}=L \cdot A=\{x A \mid x \in L\}$. Two lattices L and L^{\prime} are neighbors if both lattices contain a sublattice of index 2 in common.

The theta series $\Theta_{\Lambda}(q)$ of Λ is the following formal power series

$$
\Theta_{\Lambda}(q)=\sum_{x \in \Lambda} q^{\langle x, x\rangle}=\sum_{m=0}^{\infty}\left|\Lambda_{m}\right| q^{m} .
$$

For example, when Λ is the E_{8}-lattice

$$
\begin{aligned}
\Theta_{\Lambda}(q)=E_{4}(q) & =1+240 \sum_{m=1}^{\infty} \sigma_{3}(m) q^{2 m} \\
& =1+240 q^{2}+2160 q^{4}+6720 q^{6}+\cdots,
\end{aligned}
$$

where $\sigma_{3}(m)$ is a divisor function $\sigma_{3}(m)=\sum_{0<d \mid m} d^{3}$. Moreover, the following theorem is known (see [6, Chap. 7]).

Theorem 4. If Λ is an even unimodular lattice then

$$
\Theta_{\Lambda}(q) \in \mathbb{C}\left[E_{4}(q), \Delta_{24}(q)\right],
$$

where $\Delta_{24}(q)=q^{2} \prod_{m=1}^{\infty}\left(1-q^{2 m}\right)^{24}$.
We now give a method to construct even unimodular lattices from Type II codes, which is called Construction A [1]. Let ρ be a map from $\mathbb{Z}_{2 k}$ to \mathbb{Z} sending $0,1, \ldots, k$ to $0,1, \ldots, k$ and $k+1, \ldots, 2 k-1$ to $1-k, \ldots,-1$, respectively. If C is a self-dual $\mathbb{Z}_{2 k}$-code of length n, then the lattice

$$
A_{2 k}(C)=\frac{1}{\sqrt{2 k}}\left\{\rho(C)+2 k \mathbb{Z}^{n}\right\}
$$

is an n-dimensional unimodular lattice, where

$$
\rho(C)=\left\{\left(\rho\left(c_{1}\right), \ldots, \rho\left(c_{n}\right)\right) \mid\left(c_{1}, \ldots, c_{n}\right) \in C\right\} .
$$

The minimum norm of $A_{2 k}(C)$ is $\min \left\{2 k, d_{E}(C) / 2 k\right\}$. Moreover, if C is Type II then the lattice $A_{2 k}(C)$ is an even unimodular lattice [1].

The symmetrized weight enumerator of a $\mathbb{Z}_{2 k}$-code C is

$$
\operatorname{swe}_{C}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\sum_{c \in C} x_{0}^{n_{0}(c)} x_{1}^{n_{1}(c)} \cdots x_{k-1}^{n_{k-1}(c)} x_{k}^{n_{k}(c)}
$$

where $n_{0}(c), n_{1}(c), \ldots, n_{k-1}(c), n_{k}(c)$ are the numbers of $0, \pm 1, \ldots, \pm(k-$ $1), k$ components of c, respectively [1]. Then the theta series of $A_{2 k}(C)$ can be found by replacing x_{i} by

$$
f_{i}=\sum_{x \in 2 k \mathbb{Z}+i} q^{x^{2} / 2 k},
$$

for all $0 \leq i \leq k$.

3 Proof of Theorem 1

In this section, we give a proof of Theorem 1. Our proof is an analogue of that of [2, Corollary 13] (see also [12]). We remark that in the proof of [2, Corollary 13] $\left(\Delta / E_{8}^{3} 4\right)$ (p. 973, right, l. -7$)$ should be $\left(t E_{4}^{3} / \Delta\right)$ and $(4 \mathbb{Z})^{8} / 2$ (p. 973, right, l. -5) should be $2 \mathbb{Z}^{8}$.

Proof. Let C be a Type II $\mathbb{Z}_{2 k}$-code of length n. Then the even unimodular lattice $A_{2 k}(C)$ contains a sublattice $\Lambda_{0}=\sqrt{2 k} \mathbb{Z}^{n}$ which has minimum norm $2 k$. We set $\Theta_{\Lambda_{0}}(q)=\theta_{0}, n=8 j$ and $j=3 \mu+\nu(\nu=0,1,2)$, that is, $\mu=\lfloor n / 24\rfloor$. In this proof, we denote $E_{4}(q)$ and $\Delta_{24}(q)$ by E_{4} and Δ, respectively. By Theorem 4, the theta series of $A_{2 k}(C)$ can be written as

$$
\Theta_{A_{2 k}(C)}(q)=\sum_{s=0}^{\mu} a_{s} E_{4}^{j-3 s} \Delta^{s}=\sum_{r \geq 0}\left|A_{2 k}(C)_{r}\right| q^{r}=\theta_{0}+\sum_{r \geq 1} \beta_{r} q^{r} .
$$

Suppose that $d_{E}(C) \geq 4 k(\mu+1)$. We remark that a codeword of Euclidean weight $4 k m$ gives a vector of norm $2 m$ in $A_{2 k}(C)$. Then we choose the $a_{0}, a_{1}, \ldots, a_{\mu}$ so that

$$
\Theta_{A_{2 k}(C)}(q)=\theta_{0}+\sum_{r \geq 2(\mu+1)} \beta_{r}^{*} q^{r} .
$$

Here, we set $b_{2 s}$ as $E_{4}^{-j} \theta_{0}=\sum_{s=0}^{\infty} b_{2 s}\left(\Delta / E_{4}^{3}\right)^{s}$. That is, $\theta_{0}=\sum_{s=0}^{\infty} b_{2 s} E_{4}^{j-3 s} \Delta^{s}$. Then

$$
\sum_{s=0}^{\mu} a_{s} E_{4}^{j-3 s} \Delta^{s}=\Theta_{A_{2 k}(C)}(q)=\sum_{s=0}^{\infty} b_{2 s} E_{4}^{j-3 s} \Delta^{s}+\sum_{r \geq 2(\mu+1)} \beta_{r}^{*} q^{r}
$$

Comparing the coefficients of $q^{i}(0 \leq i \leq 2 \mu)$, we get $a_{s}=b_{2 s}(0 \leq s \leq \mu)$. Hence we have

$$
\begin{equation*}
-\sum_{r \geq(\mu+1)} b_{2 r} E_{4}^{j-3 r} \Delta^{r}=\sum_{r \geq 2(\mu+1)} \beta_{r}^{*} q^{r} \tag{2}
\end{equation*}
$$

In (2), comparing the coefficient of $q^{2(\mu+1)}$, we have

$$
\beta_{2(\mu+1)}^{*}=-b_{2(\mu+1)} .
$$

All the series are in $q^{2}=t$, and Bürman's formula shows that

$$
b_{2 s}=\frac{1}{s!} \frac{d^{s-1}}{d t^{s-1}}\left(\left(\frac{d}{d t}\left(E_{4}^{-j} \theta_{0}\right)\right)\left(t E_{4}^{3} / \Delta\right)^{s}\right)_{\{t=0\}}
$$

Using the fact that $\theta_{0}=\theta_{1}^{j}$, where θ_{1} is the theta series of the lattice $\sqrt{2 k} \mathbb{Z}^{8}$,

$$
b_{2 s}=\frac{-j}{s!} \frac{d^{s-1}}{d t^{s-1}}\left(E_{4}^{3 s-j-1} \theta_{1}^{j-1}\left(\theta_{1} E_{4}^{\prime}-\theta_{1}^{\prime} E_{4}\right)(t / \Delta)^{s}\right)_{\{t=0\}}
$$

where f^{\prime} is the derivation of f with respect to $t=q^{2}$.
The condition that there is a codeword of Euclidean weight $4 k(\mu+1)$ is equivalent to the condition $\beta_{2(\mu+1)}^{*}>0$. It is sufficient to show that the coefficients of $\theta_{1}^{j-1}\left(\theta_{1} E_{4}^{\prime}-\theta_{1}^{\prime} E_{4}\right)$ are positive up to the exponent μ since E_{4} and $1 / \Delta$ have positive coefficients.

By Proposition 3.4 in [1], there exists a Type II $\mathbb{Z}_{2 k}$-code of length 8 for every k. Hence let C_{8} be a Type II $\mathbb{Z}_{2 k}$-code of length 8 . Then $A_{2 k}\left(C_{8}\right)$ is the E_{8}-lattice. In addition, we can write

$$
E_{4}=\operatorname{swe}_{C_{8}}\left(f_{0}, f_{1}, \ldots, f_{k}\right) \text { and } \theta_{1}=f_{0}^{8}
$$

Deriving

$$
E_{4} / \theta_{1}=\operatorname{swe}_{C_{8}}\left(1, f_{1} / f_{0}, \ldots, f_{k} / f_{0}\right),
$$

we find

$$
\theta_{1}^{j-1}\left(\theta_{1} E_{4}^{\prime}-\theta_{1}^{\prime} E_{4}\right)=\sum_{i=1}^{k} \frac{\partial \operatorname{swe}_{C_{8}}\left(f_{0}, f_{1}, \ldots, f_{k}\right)}{\partial x_{i}} f_{0}^{8 j-1}\left(f_{0} f_{i}^{\prime}-f_{0}^{\prime} f_{i}\right)
$$

Hence it is sufficient to show that $f_{0}^{8 j-1}\left(f_{0} f_{i}^{\prime}-f_{0}^{\prime} f_{i}\right)$ has positive coefficients up to μ for all $1 \leq i \leq k$. We only consider the case $f_{0}^{8 j-1}\left(f_{0} f_{1}^{\prime}-f_{0}^{\prime} f_{1}\right)$ and the other cases are similar. We have that

$$
t\left(f_{0} f_{1}^{\prime}-f_{0}^{\prime} f_{1}\right)=\sum_{x, y \in \mathbb{Z}} \frac{(1+2 k y)^{2}-(2 k x)^{2}}{4 k} t^{\left((1+2 k y)^{2}+(2 k x)^{2}\right) / 4 k}
$$

then

$$
\begin{align*}
& t f_{0}^{s}\left(f_{0} f_{1}^{\prime}-f_{0}^{\prime} f_{1}\right) \\
& =\sum_{x, y, x_{1}, \ldots, x_{s} \in \mathbb{Z}} \frac{(1+2 k y)^{2}-(2 k x)^{2}}{4 k} \cdot t^{\left((1+2 k y)^{2}+(2 k x)^{2}+\left(2 k x_{1}\right)^{2}+\cdots+\left(2 k x_{s}\right)^{2}\right) / 4 k} \tag{3}
\end{align*}
$$

Fix one of the choices $y, x, x_{1}, \ldots x_{s} \in \mathbb{Z}$ and define ℓ as follows:

$$
\begin{equation*}
\ell=(1+2 k y)^{2}+(2 k x)^{2}+\left(2 k x_{1}\right)^{2}+\cdots+\left(2 k x_{s}\right)^{2} . \tag{4}
\end{equation*}
$$

Consider all permutations on the set $\left\{x, x_{1}, \ldots, x_{s}\right\}$. As the sum of coefficients of $t^{\ell / 4 k}$ in the right hand side of (3) under these cases, we have that some positive constant multiple by

$$
\begin{align*}
& \frac{(s+1)(1+2 k y)^{2}-(2 k x)^{2}-\left(2 k x_{1}\right)^{2}-\cdots-\left(2 k x_{s}\right)^{2}}{4 k} \\
&=\frac{(s+2)(1+2 k y)^{2}-\ell}{4 k} . \tag{5}
\end{align*}
$$

If $\ell<s+2$ then (5) is positive. Since we consider the case $s=8 j-1$, $\ell<n+1$. Hence if the exponent $\ell / 4 k$ of t is less than $(n+1) / 4 k$ then (5) is positive. This means that if $\mu<(n+1) / 4 k$ then (5) is positive. This condition $\mu<(n+1) / 4 k$ is satisfied since $k \leq 6$. Thus for any choice y, $x, x_{1}, \ldots x_{s},(5)$ is positive. The coefficient of $t^{\ell / 4 k}$ in the right hand side of (3) is the sum of those coefficients (5), that is, positive. This completes the proof of Theorem 1.

4 Extremal Type II $\mathbb{Z}_{2 k}$-codes

An extremal Type II $\mathbb{Z}_{2 k}$-code of length $8 m$ is currently known for the cases (k, m) listed in the second column of Table 1. In this section, an extremal Type II $\mathbb{Z}_{2 k}$-code of length $8 m$ is constructed for the first time for the cases (k, m) listed in the last column of Table 1.

Table 1: Existence of extremal Type II $\mathbb{Z}_{2 k}$-codes of length $8 m$

k	m (known cases)			m (new cases)
1	$1,2, \ldots, 8,10,11,13,14,17$	$[6$, p. 194], $[8]$		
2	$1,2, \ldots, 8$	$[2],[4],[9]$		
3	$1,2, \ldots, 8$	$[5],[10]$		$\left(C_{8,56}, C_{8,64}\right)$
4	$1,2, \ldots, 6$	$[5],[7]$	7,8	(Proposition $\left.6, C_{10,56}, C_{10,64}\right)$
5	$1,2, \ldots, 5$	$[5],[7]$	$6,7,8$	$4,5,6,7,8$
6	$1,2,3$	$[5]$	(Proposition 7)	

Let A and B be $n \times n$ negacirculant matrices, that is, A and B have the following form

$$
\left(\begin{array}{ccccc}
r_{0} & r_{1} & r_{2} & \cdots & r_{n-1} \\
-r_{n-1} & r_{0} & r_{1} & \cdots & r_{n-2} \\
-r_{n-2} & -r_{n-1} & r_{0} & \cdots & r_{n-3} \\
\vdots & \vdots & \vdots & & \vdots \\
-r_{1} & -r_{2} & -r_{3} & \cdots & r_{0}
\end{array}\right)
$$

If $A A^{T}+B B^{T}=-I_{n}$, then it is trivial that

$$
\left(\begin{array}{ccc}
& A & B \tag{6}\\
I_{2 n} & -B^{T} & A^{T}
\end{array}\right)
$$

generates a self-dual code, where I_{n} denotes the identity matrix of order n and A^{T} is the transpose of A.

Table 2: New extremal Type II $\mathbb{Z}_{2 k}$-codes

Codes	r_{A}	r_{B}
$C_{8,56}$	$(0,0,4,3,4,1,6,3,1,1,1,1,1,2)$	$(1,1,0,0,0,0,0,3,2,0,0,0,0,4)$
$C_{8,64}$	$(0,0,0,2,0,7,3,2,0,0,5,3,1,4,0,2)$	$(0,0,1,0,0,0,0,1,7,1,3,0,1,2,2,0)$
$C_{10,56}$	$(0,0,0,2,5,1,4,1,2,0,5,0,4,1)$	$(0,0,0,0,0,1,0,5,7,0,3,9,1,0)$
$C_{10,64}$	$(0,0,4,3,2,0,0,1,9,0,0,0,9,1,2,0)$	$(1,3,0,1,0,6,9,4,6,2,0,5,0,0,2,3)$
$C_{12,32}$	$(0,0,7,6,0,1,7,10)$	$(0,1,0,4,1,0,3,11)$
$C_{12,40}$	$(0,0,0,2,1,10,5,9,2,10)$	$(0,1,0,1,0,0,11,1,0,4)$
$C_{12,56}$	$(2,11,2,2,4,11,0,5,0,0,6,1,5,7)$	$(1,0,5,3,0,8,0,2,0,7,7,0,0,4)$

Using the above construction method, we have found extremal Type II \mathbb{Z}_{8}-codes $C_{8,56}$ and $C_{8,64}$ of lengths 56 and 64 , respectively, and extremal Type II \mathbb{Z}_{10}-codes $C_{10,56}$ and $C_{10,64}$ of lengths 56 and 64 , respectively. The
first rows r_{A} and r_{B} of the matrices A and B in their generator matrices (6) are listed in Table 2. Hence we have the following:

Proposition 5. For lengths 56 and 64 , there is an extremal Type II $\mathbb{Z}_{2 k}$-code when $k=4$ and 5 .

An n-dimensional even unimodular lattice is called extremal if it has minimum norm $2\lfloor n / 24\rfloor+2$. The existence of an extremal Type II \mathbb{Z}_{10}-code of length 48 is established by considering the existence of a 10 -frame in some extremal even unimodular lattice. Recall that a set $\left\{f_{1}, \ldots, f_{n}\right\}$ of n vectors f_{1}, \ldots, f_{n} in an n-dimensional unimodular lattice L with $\left\langle f_{i}, f_{j}\right\rangle=\ell \delta_{i, j}$ is called an ℓ-frame of L, where $\delta_{i, j}$ is the Kronecker delta. It is known that an even unimodular lattice L contains a $2 k$-frame if and only if there is a Type II $\mathbb{Z}_{2 k}$-code C such that $A_{2 k}(C) \simeq L$.

Proposition 6. There is an extremal Type II \mathbb{Z}_{10}-code of length 48.
Proof. Let $C_{5,48}$ be the \mathbb{F}_{5}-code with generator matrix (6), where the first rows r_{A} and r_{B} of the matrices A and B are

$$
r_{A}=(2,3,0,2,2,3,2,2,3,2,2,0) \text { and } r_{B}=(3,0,4,4,0,1,0,0,4,0,0,1),
$$

respectively. Then this code $C_{5,48}$ is a self-dual code and the lattice $A_{5}\left(C_{5,48}\right)=$ $\frac{1}{\sqrt{5}}\left\{x \in \mathbb{Z}^{48} \mid x(\bmod 5) \in C_{5,48}\right\}$ is an odd unimodular lattice. The lattice has theta series $1+393216 q^{5}+26201600 q^{6}+\cdots$. We have verified that $A_{5}\left(C_{5,48}\right)$ has an even unimodular neighbor L_{48} which is extremal. Clearly, the lattice $A_{5}\left(C_{5,48}\right)$ contains the 5 -frame $\left\{\sqrt{5} e_{1}, \sqrt{5} e_{2}, \ldots, \sqrt{5} e_{48}\right\}$, where e_{i} $(i=1,2, \ldots, 48)$ denotes the i-th unit vector ($\delta_{i, 1}, \delta_{i, 2}, \ldots, \delta_{i, 48}$) of length 48. Then the set $F=\left\{\sqrt{5}\left(e_{2 i-1} \pm e_{2 i}\right) \mid i=1,2, \ldots, 24\right\}$ is a 10 -frame of the even sublattice of $A_{5}\left(C_{5,48}\right)$. Hence F is also a 10 -frame of the extremal even unimodular neighbor L_{48}. Therefore there is a Type II \mathbb{Z}_{10}-code $C_{10,48}$ of length 48 such that $A_{10}\left(C_{10,48}\right) \simeq L_{48}$. Moreover, the code $C_{10,48}$ must be extremal since the lattice L_{48} is extremal.

Similar to the above proposition, the existence of 12 -frames in extremal even unimodular lattices yields that of some extremal Type II \mathbb{Z}_{12}-codes.

Proposition 7. There is an extremal Type II \mathbb{Z}_{12}-code of length $8 m$ for $m=4,5,6,7$ and 8 .

Proof. It is known that there is an extremal Type II \mathbb{Z}_{6}-code of length $8 m$ for $m=4,5,6,7$ and 8 (see Table 1). We denote these codes by $C_{6,8 m}$ ($m=4,5,6,7$ and 8), respectively. Since $C_{6,8 m}$ is an extremal Type II code, the lattice $A_{6}\left(C_{6,8 m}\right)$ is an extremal even unimodular lattice for
$m=4,5,6,7$ and 8 . Moreover, clearly the lattice $A_{6}\left(C_{6,8 m}\right)$ contains the 6 -frame $\left\{\sqrt{6} e_{1}, \sqrt{6} e_{2}, \ldots, \sqrt{6} e_{8 m}\right\}$, where e_{i} denotes the i-th unit vector of length $8 m$. Then the set $\left\{\sqrt{6}\left(e_{2 i-1} \pm e_{2 i}\right) \mid i=1,2, \ldots, 4 m\right\}$ is a 12 -frame of $A_{6}\left(C_{6,8 m}\right)$. Hence there is a Type II \mathbb{Z}_{12}-code $N_{8 m}$ of length $8 m$ such that $A_{12}\left(N_{8 m}\right) \simeq A_{6}\left(C_{6,8 m}\right)$. Moreover, the code $N_{8 m}$ must be extremal since the lattice $A_{6}\left(C_{6,8 m}\right)$ is extremal.

Remark 8. Similar to Proposition 5, by considering generator matrices (6), we have found extremal Type II \mathbb{Z}_{12}-codes $C_{12,32}, C_{12,40}$ and $C_{12,56}$ of lengths 32,40 and 56 , respectively, where the first rows r_{A} and r_{B} of the matrices A and B in (6) are listed in Table 2.

Together with the known results on the existences of extremal Type II codes (see Table 1), Propositions 5, 6 and 7 give Theorem 3.

Acknowledgment. The authors would like to thank Kenichiro Tanabe for useful discussions, and Koichi Betsumiya for helpful conversations on the construction of extremal Type II codes.

References

[1] E. Bannai, S.T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory 45 (1999), 1194-1205.
[2] A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over \mathbb{Z}_{4}, IEEE Trans. Inform. Theory 43 (1997), 969-976.
[3] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu.au/magma/.
[4] A.R. Calderbank and N.J.A. Sloane, Double circulant codes over \mathbb{Z}_{4} and even unimodular lattices, J. Algebraic Combin. 6 (1997), 119-131.
[5] R. Chapman, Double circulant constructions of the Leech lattice, J. Aust. Math. Soc. Ser. A 69 (2000), 287-297.
[6] J.H. Conway and N.J.A. Sloane, Sphere Packing, Lattices and Groups (3rd ed.), Springer-Verlag, New York, 1999.
[7] T.A. Gulliver and M. Harada, Extremal self-dual codes over $\mathbb{Z}_{6}, \mathbb{Z}_{8}$ and \mathbb{Z}_{10}, AKCE Int. J. Graphs Comb. 2 (2005), 11-24.
[8] M. Harada, An extremal doubly even self-dual code of length 112, Electron. J. Combin. 15 (2008), Note 33, 5 pp.
[9] M. Harada, Extremal Type II \mathbb{Z}_{4}-codes of lengths 56 and 64, J. Combin. Theory Ser. A, (to appear).
[10] M. Harada, M. Kitazume and M. Ozeki, Ternary code construction of unimodular lattices and self-dual codes over \mathbb{Z}_{6}, J. Algebraic Combin. 16 (2002), 209-223.
[11] M. Harada, P. Solé and P. Gaborit, Self-dual codes over \mathbb{Z}_{4} and unimodular lattices: a survey, Algebras and combinatorics (Hong Kong, 1997), 255-275, Springer, Singapore, 1999.
[12] C.L. Mallows, A.M. Odlyzko and N.J.A. Sloane, Upper bounds for modular forms, lattices, and codes, J. Algebra 36 (1975), 68-76.
[13] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188-200.
[14] E. Rains and N.J.A. Sloane, "Self-dual codes," Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 177-294.

[^0]: *Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan and PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 3320012, Japan. email: mharada@sci.kj.yamagata-u.ac.jp. This work was partially supported by JSPS KAKENHI (20540103).
 ${ }^{\dagger}$ Research Fellow of the Japan Society for the Promotion of Science and Department of Mathematics, Hokkaido University, Hokkaido 060-0810, Japan. email: miezaki@math.sci.hokudai.ac.jp

