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Abstract

In this paper, we determine the dimensions of the residue codes of
extremal Type II Z4-codes for lengths 32 and 40. We demonstrate that
every binary doubly even self-dual code of length 32 can be realized as
the residue code of some extremal Type II Z4-code. It is also shown
that there is a unique extremal Type II Z4-code of length 32 whose
residue code has the smallest dimension 6 up to equivalence. As a
consequence, many new extremal Type II Z4-codes of lengths 32 and
40 are constructed.
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1 Introduction

As described in [19], self-dual codes are an important class of linear codes
for both theoretical and practical reasons. It is a fundamental problem to
classify self-dual codes of modest length, and construct self-dual codes with
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the largest minimum weight among self-dual codes of that length. Among
self-dual Zk-codes, self-dual Z4-codes have been widely studied because such
codes have applications to unimodular lattices and nonlinear binary codes,
where Zk denotes the ring of integers modulo k and k is a positive integer.

A Z4-code C is Type II if C is self-dual and the Euclidean weights of
all codewords of C are divisible by 8 [2, 14]. This is a remarkable class of
self-dual Z4-codes related to even unimodular lattices. A Type II Z4-code of
length n exists if and only if n ≡ 0 (mod 8), and the minimum Euclidean
weight dE of a Type II Z4-code of length n is bounded by dE ≤ 8bn/24c+8 [2].
A Type II Z4-code meeting this bound with equality is called extremal. If
C is a Type II Z4-code, then the residue code C(1) is a binary doubly even
code containing the all-ones vector 1 [7, 14].

It follows from the mass formula in [8] that for a given binary doubly even
code B containing 1 there is a Type II Z4-code C with C(1) = B. However, it
is not known in general whether there is an extremal Type II Z4-code C with
C(1) = B or not. Recently, at length 24, binary doubly even codes which are
the residue codes of extremal Type II Z4-codes have been classified in [13].
In particular, there is an extremal Type II Z4-code whose residue code has
dimension k if and only if k ∈ {6, 7, . . . , 12} [13, Table 1]. It is shown that
there is a unique extremal Type II Z4-code with residue code of dimension
6 up to equivalence [13]. Also, every binary doubly even self-dual code of
length 24 can be realized as the residue code of some extremal Type II Z4-
code [5, Postscript] (see also [13]). Since extremal Type II Z4-codes of length
24 and their residue codes are related to the Leech lattice [2, 5] and structure
codes of the moonshine vertex operator algebra [13], respectively, this length
is of special interest. For the next two lengths n = 32 and 40, a number
of extremal Type II Z4-codes are known (see [15]). However, only a few
extremal Type II Z4-codes which have residue codes of dimension less than
n/2 are known for these lengths n. This motivates us to study the dimensions
of the residue codes of extremal Type II Z4-codes for these lengths.

In this paper, it is shown that there is an extremal Type II Z4-code of
length 32 whose residue code has dimension k if and only if k ∈ {6, 7, . . . , 16}.
In particular, we study two cases k = 6 and 16. We demonstrate that every
binary doubly even self-dual code of length 32 can be realized as the residue
code of some extremal Type II Z4-code. It is also shown that there is a unique
extremal Type II Z4-code of length 32 with residue code of dimension 6 up to
equivalence. Finally, it is shown that there is an extremal Type II Z4-code of
length 40 whose residue code has dimension k if and only if k ∈ {7, 8, . . . , 20}.
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As a consequence, many new extremal Type II Z4-codes of lengths 32 and
40 are constructed. Extremal Type II Z4-codes of lengths 32 and 40 are used
to construct extremal even unimodular lattices by Construction A (see [2]).
All computer calculations in this paper were done by Magma [3].

2 Preliminaries

2.1 Extremal Type II Z4-codes

Let Z4 (= {0, 1, 2, 3}) denote the ring of integers modulo 4. A Z4-code C of
length n is a Z4-submodule of Zn

4 . Two Z4-codes are equivalent if one can
be obtained from the other by permuting the coordinates and (if necessary)
changing the signs of certain coordinates. The dual code C⊥ of C is defined
as C⊥ = {x ∈ Zn

4 | x · y = 0 for all y ∈ C}, where x · y = x1y1 + · · · + xnyn

for x = (x1, . . . , xn) and y = (y1, . . . , yn). A code C is self-dual if C = C⊥.
The Euclidean weight of a codeword x = (x1, . . . , xn) of C is n1(x) +

4n2(x) + n3(x), where nα(x) denotes the number of components i with xi =
α (α = 1, 2, 3). The minimum Euclidean weight dE of C is the smallest
Euclidean weight among all nonzero codewords of C. A Z4-code C is Type II
if C is self-dual and the Euclidean weights of all codewords of C are divisible
by 8 [2, 14]. A Type II Z4-code of length n exists if and only if n ≡ 0
(mod 8), and the minimum Euclidean weight dE of a Type II Z4-code of
length n is bounded by dE ≤ 8bn/24c + 8 [2]. A Type II Z4-code meeting
this bound with equality is called extremal.

The classification of Type II Z4-codes has been done for lengths 8 and
16 [7, 16]. At lengths 24, 32 and 40, a number of extremal Type II Z4-codes
are known (see [15]). At length 48, only two inequivalent extremal Type II
Z4-codes are known [2, 12]. At lengths 56 and 64, recently, an extremal
Type II Z4-code has been constructed in [11].

2.2 Binary doubly even self-dual codes

Throughout this paper, we denote by dim(B) the dimension of a binary code
B. Also, for a binary code B and a binary vector v, we denote by 〈B, v〉
the binary code generated by the codewords of B and v. A binary code
B is called doubly even if wt(x) ≡ 0 (mod 4) for any codeword x ∈ B,
where wt(x) denotes the weight of x. A binary doubly even self-dual code of
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length n exists if and only if n ≡ 0 (mod 8), and the minimum weight d of a
binary doubly even self-dual code of length n is bounded by d ≤ 4bn/24c+4
(see [15, 19]). A binary doubly even self-dual code meeting this bound with
equality is called extremal.

Two binary codes B and B′ are equivalent, denoted B ∼= B′, if B can be
obtained from B′ by permuting the coordinates. The classification of binary
doubly even self-dual codes has been done for lengths up to 32 (see [6, 15, 19]).
There are 85 inequivalent binary doubly even self-dual codes of length 32,
five of which are extremal [6].

2.3 Residue codes of Z4-codes

Every Z4-code C of length n has two binary codes C(1) and C(2) associated
with C:

C(1) = {c mod 2 | c ∈ C} and C(2) = {c mod 2 | c ∈ Zn
4 , 2c ∈ C} .

The binary codes C(1) and C(2) are called the residue and torsion codes of
C, respectively. If C is self-dual, then C(1) is a binary doubly even code with

C(2) = C(1)⊥ [7]. If C is Type II, then C(1) contains the all-ones vector 1 [14].
The following two lemmas can be easily shown (see [13] for length 24).

Lemma 2.1. Let B be the residue code of an extremal Type II Z4-code of
length n ∈ {24, 32, 40}. Then B satisfies the following conditions:

B is doubly even;(1)

1 ∈ B;(2)

B⊥ has minimum weight at least 4.(3)

Proof. The assertions (1) and (2) follow from [7] and [14], respectively, as
described above. If C is an extremal Type II Z4-code of length n, then
C(2) has minimum weight at least 2bn/24c + 2 (see [11]). The assertion (3)
follows.

Lemma 2.2. Let B be the residue code of an extremal Type II Z4-code of
length n. Then, 6 ≤ dim(B) ≤ 16 if n = 32, and 7 ≤ dim(B) ≤ 20 if n =
40.
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Proof. Since a binary doubly even code is self-orthogonal, dim(B) ≤ n/2.
From (3), B⊥ has minimum weight at least 4. It is known that a [32, k, 4]
code exists only if k ≤ 26 and a [40, k, 4] code exists only if k ≤ 33 (see [4]).
The result follows.

In this paper, we consider the existence of an extremal Type II Z4-code
with residue code of dimension k for a given k. To do this, the following
lemma is useful, and it was shown in [13] for length 24. Since its modification
to lengths 32 and 40 is straightforward, we omit the proof.

Lemma 2.3. Let C be an extremal Type II Z4-code of length n ∈ {24, 32, 40}.
Let v be a binary vector of length n and weight 4 such that v 6∈ C(1) and the
code 〈C(1), v〉 is doubly even. Then there is an extremal Type II Z4-code C ′

such that C ′(1) = 〈C(1), v〉.

2.4 Construction method

In this subsection, we review the method of construction of Type II Z4-codes,
which was given in [16]. Let C1 be a binary code of length n ≡ 0 (mod 8)
and dimension k satisfying conditions (1) and (2). Without loss of generality,
we may assume that C1 has generator matrix of the following form:

(4) G1 =
(

A Ĩk

)
,

where A is a k×(n−k) matrix which has the property that the first row is 1,

Ĩk =


1 · · · 1
0
... Ik−1

0

 , and Ik−1 denotes the identity matrix of order k − 1.

Since C1 is self-orthogonal, the matrix G1 can be extended to a generator

matrix

(
G1

D

)
of C⊥

1 . Then we have a generator matrix of a Type II Z4-code

C as follows:

(5)

(
A Ĩk + 2B

2D

)
,

where B is a k × k (1, 0)-matrices and we regard the matrices as matrices
over Z4. Here, we can choose freely the entries above the diagonal elements
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and the (1, 1)-entry of B, and the rest is completely determined from the
property that C is Type II. Hence, there are 21+k(k−1)/2 k × k (1, 0)-matrices
B in (5), and there are 21+k(k−1)/2 Type II Z4-codes C with C(1) = C1 [8, 16].

Since any Type II Z4-code is equivalent to some Type II Z4-code con-
taining 1 [14], without loss of generality, we may assume that the first row
of B is the zero vector. This reduces our search space for finding extremal
Type II Z4-codes. In fact, there are only 2(k−1)(k−2)/2 Type II Z4-codes C
with C(1) = C1 containing 1 (see also [1]).

3 Extremal Type II Z4-codes of length 32

3.1 Known extremal Type II Z4-codes of length 32

Currently, 57 inequivalent extremal Type II Z4-codes of length 32 are known
(see [9, 15]). Among the 57 known codes, 54 codes have residue codes which
are extremal doubly even self-dual codes. In particular, for every binary
extremal doubly even self-dual code B of length 32, there is an extremal
Type II Z4-code C with C(1) ∼= B [9].

Only C5,1 in [2] and C̃31,2, C̃31,3 in [17] are known extremal Type II Z4-
codes whose residue codes are not extremal doubly even self-dual codes
(see [9]). The residue codes of C̃31,2, C̃31,3 in [17] have dimension 11. The
residue code of C5,1 in [2] is the first order Reed–Muller code RM(1, 5) of

length 32, thus, dim(C
(1)
5,1) = 6. In Section 3.4, we show that there is a unique

extremal Type II Z4-code of length 32 with residue code of dimension 6, up
to equivalence.

3.2 Determination of dimensions of residue codes

By Lemma 2.2, if C is an extremal Type II Z4-code of length 32, then 6 ≤
dim(C(1)) ≤ 16. In this subsection, we show the converse assertion using
Lemma 2.3. To do this, we first fix the coordinates of RM(1, 5) by considering
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the following matrix as a generator matrix of RM(1, 5):

(6)


11111111 11111111 11111111 11111111
11111111 11111111 00000000 00000000
11111111 00000000 11111111 00000000
11110000 11110000 11110000 11110000
11001100 11001100 11001100 11001100
10101010 10101010 10101010 10101010

 .

It is well known that RM(1, 5) has the following weight enumerator:

(7) 1 + 62y16 + y32.

For i = 7, 8, . . . , 15, we define B32,i to be the binary code 〈B32,i−1, vi〉,
where B32,6 = RM(1, 5) and the support supp(vi) of the vector vi is listed
in Table 1. The weight distributions of B32,i (i = 7, 8, . . . , 15) are also listed
in the table, where Aj denotes the number of codewords of weight j (j =
4, 8, 12, 16). From the weight distributions, one can easily verify that vi 6∈
B32,i−1 and B32,i is doubly even for i = 7, 8, . . . , 15. Note that the code
C5,1 in [2] is an extremal Type II Z4-code with residue code RM(1, 5), and
there are extremal Type II Z4-codes with residue codes of dimension 16. By
Lemma 2.3, we have the following:

Proposition 3.1. There is an extremal Type II Z4-code of length 32 whose
residue code has dimension k if and only if k ∈ {6, 7, . . . , 16}.

Remark 3.2. In the next two subsections, we study two cases k = 6 and 16.

As another approach to Proposition 3.1, we explicitly found an extremal
Type II Z4-code C32,i with C

(1)
32,i

∼= B32,i for i = 7, 8, . . . , 15, using the method
given in Section 2.4. Any Z4-code with residue code of dimension k is equiv-
alent to a code with generator matrix of the form:

(8)

(
Ik A
O 2B

)
,

where A is a matrix over Z4 and B is a (1, 0)-matrix. For these codes C32,i,
we give generator matrices of the form (8), by only listing in Figure 1 the
i × (32 − i) matrices A in (8) to save space. Note that the lower part in

(8) can be obtained from the matrices
(

Ik A
)
, since C(2) = C(1)⊥ and(

Ik A mod 2
)

is a generator matrix of C(1), where A mod 2 denotes the
binary matrix whose (i, j)-entry is aij mod 2 for A = (aij).
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Table 1: Supports supp(vi) and weight distributions of B32,i

i supp(vi) A4 A8 A12 A16

7 {1, 2, 3, 4} 1 0 7 110
8 {1, 2, 5, 6} 3 0 21 206
9 {1, 2, 7, 8} 6 4 42 406
10 {1, 2, 9, 10} 10 12 102 774
11 {1, 2, 11, 12} 16 36 208 1526
12 {1, 2, 13, 14} 28 84 420 3030
13 {1, 2, 17, 18} 36 196 924 5878
14 {1, 2, 19, 20} 48 428 1936 11558
15 {1, 2, 21, 22} 72 892 3960 22918

3.3 Residue codes of dimension 16

As described above, there are 85 inequivalent binary doubly even self-dual
codes of length 32. These codes are denoted by C1, C2, . . . , C85 in [6, Table
A], where C81, . . . , C85 are extremal. For each B of the 5 extremal ones,
there is an extremal Type II Z4-code C with C(1) ∼= B [9].

Using the method given in Section 2.4, we explicitly found an extremal
Type II Z4-code D32,i with D

(1)
32,i

∼= Ci for i = 1, 2, . . . , 80. Generator matrices

for D32,i can be written in the form
(

I16 Mi

)
(i = 1, 2, . . . , 80), where Mi

can be obtained electronically from

http://sci.kj.yamagata-u.ac.jp/~mharada/Paper/z4-32.txt

Hence, we have the following:

Proposition 3.3. Every binary doubly even self-dual code of length 32 can
be realized as the residue code of some extremal Type II Z4-code.

Among known 57 inequivalent extremal Type II Z4-codes of length 32,
the residue codes of 54 codes are extremal doubly even self-dual codes and
the residue codes of the other three codes C5,1 in [2] and C̃31,2, C̃31,3 in [17]

have dimensions 6, 11 and 11, respectively. In particular, C̃
(1)
31,2 and C̃

(1)
31,3 have

the following identical weight enumerators:

1 + 496y12 + 1054y16 + 496y20 + y32.
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0000000000000000020033322
1100111100110001121111012
1010101010101011011010111
0110011001100110110101111
0011110000111100001122203
0011111111000001130022200
1111111111111110000000000





000000000000000003332220
000000000000000001321202
101010101010101101011111
101010010101011100331331
111100110000110110200300
110011110011000110202230
001111111100000112202223
111111111111111000000000




00000020000002003300032
00000000000000001322021
10101011010101101011111
10101011010103100313131
11110021111002112220300
11001121100110112232002
00111120011112110203220
00000001111111002002202
11111110000000000022220





0000002000000333222002
0000002000000132120000
0000002000000132012022
0000002000000132201220
0011110001111332002320
1100112110011332022032
1010101101010101111111
0101103010110033111333
0000000111111200202201
1111111000000200000200




000000200000131202000
000000200200130102202
000000000200330032002
000000000200130021200
000000200200132000100
110011211011330200023
101010110110101111111
011001301101031131113
001111000211000000012
001111211100000222220
111111100200200022000





00000020033202002230
00000000033002022223
00000020013220202122
00000020013022001022
00000020033020030020
00000020033000320222
10101011010111111111
10101011003113331133
11110021120021220200
11001101100012022200
00111101100100000220
11111110000002222220


Figure 1: Matrices A in generator matrices of C32,i

Hence, by Table 1, none of C̃31,2 and C̃31,3 is equivalent to C32,11. The code

C
(1)
32,i has dimension i for i = 7, 8, . . . , 15, and D

(1)
32,i is a non-extremal dou-

bly even self-dual code for i = 1, 2, . . . , 80. Since equivalent Z4-codes have
equivalent residue codes, we have the following:

Corollary 3.4. There are at least 146 inequivalent extremal Type II Z4-codes
of length 32.

Remark 3.5. The torsion codes of all of the 9 codes C32,i (i = 7, 8, . . . , 15)
have minimum weight 4, since their residue codes have minimum weight 4
and the torsion code of an extremal Type II Z4-code contains no codeword
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0000001130220022222
0000003101200202022
0000003302302200022
0000001322012000022
0000003320023002000
0000003322002322000
0000001322020212202
0000001102200023022
0011113300202222102
1100111320200022232
1010101033111113333
0101100131131133313
1111112222220022221





000001130200222002
000001123002202200
002001320100220200
000003100212020022
000001302201202020
000001322020102200
000003120002210000
000003122220021022
002003320200200320
110111320202220023
101103011313311331
011010311131133313
000112022200220032
113002200200000202





00110222022200023
00130002202020012
00332202222000302
00312202222001020
00110023000222020
00110202302202022
00330222232202000
00310000221020202
00112200000300200
00310202000012000
10301331131111331
10013333311311133
11000032020000002
11002320220222202
11023022222020022


Figure 1: Matrices A in generator matrices of C32,i (continued)

of weight 2. The torsion codes of all of the 80 codes D32,i (i = 1, 2, . . . , 80)
have minimum weight 4. By Theorem 1 in [18], all of the 89 codes C32,i and
D32,i have minimum Hamming weight 4. In addition, all of the codes have
minimum Lee weight 8, since the minimum Lee weight of an extremal Type II
Z4-code with minimum Hamming weight 4 is 8 (see [2] for the definitions).

3.4 Residue codes of dimension 6

At length 24, the smallest dimension among codes satisfying conditions (1)–
(3) is 6. There is a unique binary [24, 6] code satisfying (1)–(3), and there is
a unique extremal Type II Z4-code with residue code of dimension 6 up to
equivalence [13]. In this subsection, we show that a similar situation holds
for length 32.

Lemma 3.6. Up to equivalence, RM(1, 5) is the unique binary [32, 6] code
satisfying conditions (1)–(3).

Proof. Let B32 be a binary [32, 6] code satisfying (1)–(3). From (1) and (2),
the weight enumerator of B32 is written as:

1 + ay4 + by8 + cy12 + (62 − 2a − 2b − 2c)y16 + cy20 + by24 + ay28 + y32,

where a, b and c are nonnegative integers. By the MacWilliams identity, the
weight enumerator of B⊥

32 is given by:

1 + (9a + 4b + c)y2 + (294a + 24b − 10c + 1240)y4 + · · · .
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From (3), 9a + 4b + c = 0. This gives a = b = c = 0, since all a, b and c are
nonnegative. Hence, the weight enumerator of B32 is uniquely determined as
(7).

Let G be a generator matrix of B32 and let ri be the ith row of G (i =
1, 2, . . . , 6). From the weight enumerator (7), we may assume without loss of
generality that the first three rows of G are as follows:

r1 = (11111111 11111111 11111111 11111111),
r2 = (11111111 11111111 00000000 00000000),
r3 = (11111111 00000000 11111111 00000000).

Put r4 = (v1, v2, v3, v4), where vi (i = 1, 2, 3, 4) are vectors of length 8 and
let ni denote the number of 1’s in vi. Since the binary code B4 generated by
the four rows r1, r2, r3, r4 has weight enumerator 1+14y16 + y32, we have the
following system of equations:

wt(r4) = n1 + n2 + n3 + n4 = 16,

wt(r2 + r4) = (8 − n1) + (8 − n2) + n3 + n4 = 16,

wt(r3 + r4) = (8 − n1) + n2 + (8 − n3) + n4 = 16,

wt(r2 + r3 + r4) = n1 + (8 − n2) + (8 − n3) + n4 = 16.

This system of the equations has a unique solution n1 = n2 = n3 = n4 = 4.
Hence, we may assume without loss of generality that

r4 = (11110000 11110000 11110000 11110000).

Similarly, put r5 = (v1, v2, . . . , v8), where vi (i = 1, . . . , 8) are vectors of
length 4 and let ni denote the number of 1’s in vi. Since the binary code
B5 = 〈B4, r5〉 has weight enumerator 1 + 30y16 + y32, we have the following
system of the equations:∑

a∈Γt

na +
∑

b∈{1,...,8}\Γt

(4 − nb) = 16 (t = 1, . . . , 8),

where Γt (t = 1, . . . , 8) are {1, . . . , 8}, {5, 6, 7, 8}, {3, 4, 7, 8}, {2, 4, 6, 8},
{1, 2, 7, 8}, {1, 3, 6, 8}, {1, 4, 5, 8} and {2, 3, 5, 8}. This system of the equa-
tions has a unique solution ni = 2 (i = 1, . . . , 8). Hence, we may assume
without loss of generality that

r5 = (11001100 11001100 11001100 11001100).
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Finally, put r6 = (v1, v2, . . . , v16), where vi (i = 1, . . . , 16) are vectors of
length 2 and let ni denote the number of 1’s in vi. Similarly, since the binary
code 〈B5, r6〉 has weight enumerator (7), we have ni = 1 (i = 1, . . . , 16).
Hence, we may assume without loss of generality that

r6 = (10101010 10101010 10101010 10101010).

Therefore, a generator matrix G is uniquely determined up to permutation
of columns.

Using a classification method similar to that described in [13, Section
4.3], we verified that all Type II Z4-codes with residue codes RM(1, 5) are
equivalent. Therefore, we have the following:

Proposition 3.7. Up to equivalence, there is a unique extremal Type II Z4-
code of length 32 with residue code of dimension 6.

By Proposition 3.3 and Lemma 3.6, all binary [32, k] codes satisfying (1)–
(3) can be realized as the residue codes of some extremal Type II Z4-codes for
k = 6 and 16. The binary [32, 7] code N32 = 〈RM(1, 5), v〉 satisfies (1)–(3),
where RM(1, 5) is defined by (6) and

supp(v) = {1, 2, 3, 4, 5, 9, 17, 29}.

However, we verified that none of the Type II Z4-codes C with C(1) = N32

is extremal, using the method in Section 2.4. Therefore, there is a binary
code satisfying (1)–(3) which cannot be realized as the residue code of an
extremal Type II Z4-code of length 32.

4 Extremal Type II Z4-codes of length 40

4.1 Determination of dimensions of residue codes

Currently, 23 inequivalent extremal Type II Z4-codes of length 40 are known [5,
9, 10, 17]. Among these 23 known codes, the 22 codes have residue codes
which are doubly even self-dual codes and the other code is given in [17].
Using an approach similar to that used in the previous section, we determine
the dimensions of the residue codes of extremal Type II Z4-codes of length
40.
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By Lemma 2.2, if C is an extremal Type II Z4-code of length 40, then
7 ≤ dim(C(1)) ≤ 20. Using the method given in Section 2.4, we explicitly
found an extremal Type II Z4-code from some binary doubly even [40, 7, 16]
code. This binary code was found as a subcode of some binary doubly even
self-dual code. We denote the extremal Type II Z4-code by C40,7. The weight

enumerators of C
(1)
40,7 and C

(1)
40,7

⊥
are given by:

1 + 15y16 + 96y20 + 15y24 + y40,

1 + 1510y4 + 59520y6 + 1203885y8 + 13235584y10 + 87323080y12

+ 362540160y14 + 982189650y16 + 1771386240y18 + 2154055332y20

+ · · · + y40,

respectively. For the code C40,7, we give a generator matrix of the form (5),
by only listing the 7 × 40 matrix G40 which has form ( A Ĩ7 + 2B ) in (5):

G40 =



111111111111111111111111111111111 1111111
101101001011110000011001100000101 0100000
100000101011011000100010001111011 2210000
100110011011001101111111101000100 0203000
011110110111111001011010010001010 0002300
110100101111000011100110000010100 0202010
010111101001111110010110110100010 0002003


.

Note that the lower part in (5) can be obtained from G40.

Using the generator matrix G40 mod 2 of the binary code C
(1)
40,7, we es-

tablish the existence of some extremal Type II Z4-codes, by Lemma 2.3, as
follows. For i = 8, 9 . . . , 19, we define B40,i to be the binary code 〈B40,i−1, wi〉,
where B40,7 = C

(1)
40,7 and supp(wi) is listed in Table 2. The weight distribu-

tions of B40,i (i = 8, 9, . . . , 19) are also listed in the table, where Aj denotes
the number of codewords of weight j (j = 4, 8, 12, 16, 20). From the weight
distributions, one can easily verify that wi 6∈ B40,i−1 and B40,i is doubly even
for i = 8, 9, . . . , 19. There are extremal Type II Z4-codes with residue codes
of dimension 20. By Lemma 2.3, we have the following:

Proposition 4.1. There is an extremal Type II Z4-code of length 40 whose
residue code has dimension k if and only if k ∈ {7, 8, . . . , 20}.

As another approach to Proposition 4.1, we explicitly found an extremal
Type II Z4-code C40,i with C

(1)
40,i

∼= B40,i for i = 8, 9, . . . , 19. To save space,
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Table 2: Supports supp(wi) and weight distributions of B40,i

i supp(wi) A4 A8 A12 A16 A20

8 {1, 2, 4, 29} 1 0 1 35 180
9 {1, 2, 5, 33} 3 0 3 75 348
10 {1, 2, 7, 31} 6 1 10 150 688
11 {1, 2, 9, 10} 10 6 22 313 1344
12 {1, 2, 11, 17} 15 21 48 634 2658
13 {1, 2, 12, 39} 22 56 102 1271 5288
14 {1, 2, 13, 27} 29 99 280 2620 10326
15 {1, 2, 14, 37} 37 175 688 5296 20374
16 {1, 2, 15, 35} 47 313 1548 10694 40330
17 {1, 2, 20, 36} 57 509 3436 21698 79670
18 {1, 2, 21, 28} 68 845 7344 43826 157976
19 {1, 2, 24, 32} 84 1533 15184 87938 314808

we only list in Figure 2 the i × (40 − i) matrices A in generator matrices of
the form (8).

Remark 4.2. Similar to Remark 3.5, all of the codes C40,i (i = 7, 8, . . . , 19)
have minimum Hamming weight 4 and minimum Lee weight 8.

4.2 Residue codes of dimension 7

At lengths 24 and 32, the smallest dimensions among binary codes satisfying
(1)–(3) are both 6, and there is a unique extremal Type II Z4-code with
residue code of dimension 6, up to equivalence, for both lengths (see [13] and
Proposition 3.7).

At length 40, we found an extremal Type II Z4-code C ′
40,7 with residue

code C
′(1)
40,7 = 〈C(1)

40,7 ∩ 〈v〉⊥, v〉, where

supp(v) = {1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 18, 20}.

The weight enumerators of C
′(1)
40,7 and C

′(1)
40,7

⊥
are given by:

1 + y12 + 11y16 + 102y20 + 11y24 + y28 + y40,

1 + 1542y4 + 59264y6 + 1204653y8 + 13234816y10 + 87321928y12

+ 362544000y14 + 982186834y16 + 1771383424y18 + 2154061668y20

+ · · · + y40,
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respectively. In order to give a generator matrix of C ′
40,7 of the form (8), we

only list the 7 × 33 matrix A in (8):

A =



100000000000001011111111111030232
011011011101000001011000101230302
011100001110011110001110100311332
100000111111113101101010010201033
010110010110101100111101000312111
010001111010000010000001011311013
111111111111111000000000000020200


.

Hence, at length 40, there are at least two inequivalent extremal Type II Z4-
codes whose residue codes have the smallest dimension among binary codes
satisfying (1)–(3).

Among these 23 known codes, the 22 codes have residue codes which are
doubly even self-dual codes and the residue code of the other code given
in [17] has dimension 13 and the following weight enumerator:

1 + 156y12 + 1911y16 + 4056y20 + 1911y24 + 156y28 + y40.

It turns out that the code in [17] and C40,13 are inequivalent. Hence, none of
the codes C40,i (i = 7, 8, . . . , 19) and C ′

40,7 is equivalent to any of the known
codes. Thus, we have the following:

Corollary 4.3. There are at least 37 inequivalent extremal Type II Z4-codes
of length 40.

The binary [40, 8] code N40 = 〈C(1)
40,7, w〉 satisfies (1)–(3), where

supp(w) = {4, 8, 13, 22, 23, 34, 36, 39}.

However, we verified that none of the Type II Z4-codes C with C(1) = N40

is extremal, using the method in Section 2.4. Therefore, there is a binary
code satisfying (1)–(3) which cannot be realized as the residue code of an
extremal Type II Z4-code of length 40. It is not known whether there is a
binary [40, 7] code B satisfying (1)–(3) such that none of the Type II Z4-codes
C with C(1) = B is extremal.

Acknowledgment. The author would like to thank Akihiro Munemasa for
his help in the classification given in Proposition 3.7. Thanks are due also
the anonymous referee for useful comments.
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Figure 2: Matrices A in generator matrices of C40,i
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Figure 2: Matrices A in generator matrices of C40,i (continued)
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