Extremal Type II \mathbb{Z}_4 -Codes of Lengths 56 and 64

Masaaki Harada*

July 12, 2009

Abstract

Type II \mathbb{Z}_4 -codes are a remarkable class of self-dual \mathbb{Z}_4 -codes. A Type II \mathbb{Z}_4 -code of length n exists if and only if n is divisible by eight. For lengths up to 48, extremal Type II \mathbb{Z}_4 -codes are known. In this note, extremal Type II \mathbb{Z}_4 -codes of lengths 56 and 64 are constructed for the first time.

1 Introduction

Let \mathbb{Z}_4 (= {0,1,2,3}) denote the ring of integers modulo 4. A \mathbb{Z}_4 -code C of length n is a \mathbb{Z}_4 -submodule of \mathbb{Z}_4^n . Two codes are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. The dual code C^{\perp} of C is defined as $C^{\perp} = \{x \in \mathbb{Z}_4^n \mid x \cdot y = 0 \text{ for all } y \in C\}$ where $x \cdot y = x_1y_1 + \cdots + x_ny_n$ for $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$. A code C is self-dual if $C = C^{\perp}$. The Euclidean weight of a codeword x is $\sum_{i=1}^n \min\{x_i^2, (4-x_i)^2\}$. The minimum Euclidean weight $d_E(C)$ of C is the smallest Euclidean weight among all nonzero codewords of C.

The notion of Type II \mathbb{Z}_4 -codes was first defined in [1] as self-dual codes containing a (± 1) -vector and with the property that all Euclidean weights are divisible by eight. Then it was shown in [5] that, more generally, the

^{*}Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan and PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332– 0012, Japan. email: mharada@sci.kj.yamagata-u.ac.jp

condition of containing a (± 1) -vector is redundant. Therefore *Type II codes* are self-dual codes which have the property that all Euclidean weights are divisible by eight. This is a remarkable class of self-dual \mathbb{Z}_4 -codes, one reason being that any Type II code gives an even unimodular lattice. A Type II \mathbb{Z}_4 -code of length n exists if and only if $n \equiv 0 \pmod{8}$ [1].

The concept of extremality for the Euclidean weights was introduced in [1]. It was shown in [1] that the minimum Euclidean weight $d_E(C)$ of a Type II code C of length n is bounded by

$$d_E(C) \le 8 \left\lfloor \frac{n}{24} \right\rfloor + 8.$$

A Type II code meeting this bound with equality is called *extremal*. At lengths 8 and 16, all Type II codes are extremal. At lengths 24, 32 and 40, a large number of extremal Type II codes are known (cf. [7]). At length 48, only two inequivalent extremal Type II codes are known [6]. For lengths $n \geq 56$, no extremal Type II code is known.

The aim of this note is to establish the following theorem.

Theorem 1. There is an extremal Type II \mathbb{Z}_4 -code for lengths 56 and 64.

Thus the existence of extremal Type II \mathbb{Z}_4 -codes is known for lengths up to 64. It is a question to determine whether an extremal Type II \mathbb{Z}_4 -code exists for length 72. We remark that the existence of a binary extremal Type II (doubly even self-dual) code of length 72 and a 72-dimensional extremal Type II (even unimodular) lattice is a long-standing open question.

2 Construction

Every \mathbb{Z}_4 -code C of length n has two binary codes $C^{(1)}$ and $C^{(2)}$ associated with C:

$$C^{(1)} = \{ c \pmod{2} \mid c \in C \} \text{ and } C^{(2)} = \{ c \in \mathbb{F}_2^n \mid 2c \in C \}.$$

The binary codes $C^{(1)}$ and $C^{(2)}$ are called the residue and torsion codes of C, respectively. If C is a self-dual \mathbb{Z}_4 -code then $C^{(1)}$ is a binary doubly even code with $C^{(2)} = C^{(1)^{\perp}}$ [4]. Moreover, if C is Type II then $C^{(1)}$ contains the all-ones vector, or equivalently, $C^{(2)}$ is even.

In this note, we employ the following method of construction of Type II \mathbb{Z}_4 -codes, which was given in [8]. Suppose that n is divisible by eight. Let

 C_1 be a binary doubly even [n, k] code containing the all-ones vector. Without loss of generality, we may assume that C_1 has generator matrix of the following form:

(1)
$$G_1 = \left(\begin{array}{cc} A & \tilde{I}_k \end{array}\right),$$

where A is a $k \times (n-k)$ matrix which has the property that the first row is the

all-ones vector, $\tilde{I}_k = \begin{pmatrix} 1 & \cdots & 1 \\ 0 & & \\ \vdots & I_{k-1} & \\ 0 & & \end{pmatrix}$, and I_{k-1} denotes the identity matrix

of order (k-1). This means that the first row of G_1 is the all-ones vector. Since C_1 is self-orthogonal, the matrix G_1 can be extended to a generator matrix of C_1^{\perp} as follows:

$$\left(\begin{array}{c}G_1\\D\end{array}\right).$$

Then there are $2^{1+k(k-1)/2} k \times k$ (1,0)-matrices B such that the following matrices

(2)
$$\begin{pmatrix} A & \tilde{I}_k + 2B \\ 2D \end{pmatrix}$$

are generator matrices of Type II \mathbb{Z}_4 -codes C, where we regard the matrices as matrices over \mathbb{Z}_4 [8]. In this case, of course, C_1 is the residue code of C. For each Type II code C, there is a Type II code containing the all-ones vector, which is equivalent to C. Hence, without loss of generality, we may assume that the first row of B is the zero vector.

We investigate the residue and torsion codes of extremal Type II \mathbb{Z}_4 -codes.

Lemma 2. Let C be an extremal Type II \mathbb{Z}_4 -code of length n. Then the torsion code $C^{(2)}$ has minimum weight $d \ge 2[n/24] + 2$.

Proof. Any codeword x of $C^{(2)}$ corresponds to a codeword 2x of C. Hence the torsion code $C^{(2)}$ has minimum weight $d \ge d_E(C)/4$.

Lemma 3. Let C be an extremal Type II \mathbb{Z}_4 -code of length 56 (resp. 64). Then the dimension of the residue code $C^{(1)}$ is at least 12 (resp. 13). Proof. By the above lemma, the torsion codes of extremal Type II \mathbb{Z}_4 -codes of lengths 56 and 64 have minimum weight $d \geq 6$. If a binary [56, k, 6] code exists then $k \leq 44$ and if a binary [64, k, 6] code exists then $k \leq 51$ (cf. [3]). Hence the dimensions of the torsion codes $C^{(2)} (= C^{(1)^{\perp}})$ of extremal Type II \mathbb{Z}_4 -codes of lengths 56 and 64 must be at most 44 and 51, respectively. \Box

We describe how extremal Type II \mathbb{Z}_4 -codes of lengths n = 56 and 64 were constructed. We first constructed a binary doubly even [n, n/4, 20] code B_n which has the property that B_n contains the all-ones vector and B_n^{\perp} has minimum weight at least 6. The latter condition is necessary by Lemma 2. These codes B_{56} and B_{64} were constructed by considering quasi-cyclic codes. The codes B_n (n = 56, 64) have generator matrices of the following form:

(3)
$$\begin{pmatrix} 1 & \cdots & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 \\ R_1 & & R_2 & & R_3 & & \tilde{I_{n/4}} \end{pmatrix}$$

where R_i are $(\frac{n}{4} - 1) \times \frac{n}{4}$ circulant matrices (i = 1, 2, 3). For the codes B_{56} and B_{64} , the first rows r_i of R_i (i = 1, 2, 3) in (3) are as follows:

respectively. These codes B_{56} and B_{64} have weight enumerators

$$1 + 756y^{20} + 4095y^{24} + 6680y^{28} + \dots + y^{56}$$
and
$$1 + 240y^{20} + 3600y^{24} + 16144y^{28} + 25566y^{32} + \dots + y^{64},$$

respectively.

As described above, starting from generator matrices (3) of the binary doubly even codes B_{56} and B_{64} , there are $2^{1+k(k-1)/2}$ (k = 14 and 16) Type II \mathbb{Z}_4 -codes with generator matrices of the form (2), respectively. These codes can be constructed by choosing suitable matrices B in (2). By a random search, we have found matrices B such that the matrices (2) generate extremal Type II \mathbb{Z}_4 -codes C_{56} and C_{64} of lengths 56 and 64. A generator matrix of C_{56} (resp. C_{64}) is listed in Figure 1 (resp. Figure 2) where we only list the 14×56 (resp. 16×64) matrix (A $\tilde{I}_k + 2B$) in (2) since the lower part in (2) can be obtained from the matrix.

(111111111111111111111111111111111111111	11111111111111111	١
	00100110001100100100100011001010111001111	03022022020220	
	000100110001100100100100011001010111001111	20322200000200	
	000010011000110010010010001110101011100111	00232020002020	
	100001001100011001001001000111010101110011	02023202200022	
	110000100110001100100100100011101010111001	22222320200202	
	011000010011000110010010010011110101011100	00222232000000	
	001100001001100011001001001001111010101110	00222223000000	
	0001100001001100011001001001001111010101	20220220300000	
	1000110000100110001100100100100111101010	20022202030000	
	1100011000010001000110010010110011110101	02222220203000	
	0110001100001000100011001001111001111010	20020022020300	
	0011000110000110010001100100011100111	22200022202030	
	100110001100000100100011001010111001111010	22020002220203	,

Figure 1: An extremal Type II \mathbb{Z}_4 -code of length 56

Let C be a Type II \mathbb{Z}_4 -code and let $A_4(C)$ be the lattice obtained from C by Construction A (cf. [1]). Then $A_4(C)$ is an even unimodular lattice. Moreover, C is an extremal Type II \mathbb{Z}_4 -code of length 56 (resp. 64) if and only if $A_4(C)$ has minimum norm 4 and kissing number 112 (resp. 128). By checking this using MAGMA [2], the extremality of the new codes C_{56} and C_{64} was verified. We verified by MAGMA that both codes C_{56} and C_{64} have minimum Lee weight 12 (see [1] for the definition of the minimum Lee weight).

Acknowledgment. The author would like to thank Akihiro Munemasa for helpful discussions.

References

- A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over Z₄, *IEEE Trans. Inform. Theory* 43 (1997), 969–976.
- [2] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu.au/magma/.

(111111111111111111111111111111111111111	11 1	111111111111111111	1
	1011110000101011001101001011000101010101	10 2	2320002002202020	
	110111100001010110011010010110000010101101111	11 (0030200202222002	
	1110111100001010010011010010110010010101	11 2	2023020200020000	
	011101111000010100100110100101101101101	11 2	2022302022220200	
	1011101111000010000100110100101111100101	11 (0202230202200020	
	01011101111000011000100110100101111100101	11 (0220223000202222	
	101011101111000011000100110100101111100101	11 2	2220022300000000	
	0101011101111000011000100110100111111100101)1 (0220000230000000	
	001010111011110010110001001101001111111	10 2	2202200023000000	
	000101011101111001011000100110100111111	11 2	2022020002300000	
	0000101011101111001011000100110110111111)1 (0202020200230000	
	1000010101110111100101100010011011011111	10 0	0202020020023000	
	1100001010111011010010110001001101101111)1 (0202000202002300	
	111000010101110110100101100010011011011	10 2	2220202220200230	
	111100001010111011010010110001000101101)1 (0022020022020023	Ι
•				

Figure 2: An extremal Type II \mathbb{Z}_4 -code of length 64

- [3] A.E. Brouwer, "Bounds on the size of linear codes," in Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 295–461.
- [4] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A 62 (1993), 30–45.
- [5] M. Harada, P. Solé and P. Gaborit, Self-dual codes over Z₄ and unimodular lattices: a survey, Algebras and combinatorics (Hong Kong, 1997), 255–275, Springer, Singapore, 1999.
- [6] M. Harada, M. Kitazume, A. Munemasa and B. Venkov, On some selfdual codes and unimodular lattices in dimension 48, European J. Combin. 26 (2005), 543–557.
- [7] W.C. Huffman, On the classification and enumeration of self-dual codes, *Finite Fields Appl.* **11** (2005), 451–490.
- [8] V. Pless, J. Leon and J. Fields, All Z₄ codes of Type II and length 16 are known, J. Combin. Theory Ser. A 78 (1997), 32–50.