Extremal Type II \mathbb{Z}_{4}-Codes of Lengths 56 and 64

Masaaki Harada*

July 12, 2009

Abstract

Type II \mathbb{Z}_{4}-codes are a remarkable class of self-dual \mathbb{Z}_{4}-codes. A Type II \mathbb{Z}_{4}-code of length n exists if and only if n is divisible by eight. For lengths up to 48 , extremal Type II \mathbb{Z}_{4}-codes are known. In this note, extremal Type II \mathbb{Z}_{4}-codes of lengths 56 and 64 are constructed for the first time.

1 Introduction

Let $\mathbb{Z}_{4}(=\{0,1,2,3\})$ denote the ring of integers modulo 4 . A \mathbb{Z}_{4}-code C of length n is a \mathbb{Z}_{4}-submodule of \mathbb{Z}_{4}^{n}. Two codes are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. The dual code C^{\perp} of C is defined as $C^{\perp}=\left\{x \in \mathbb{Z}_{4}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\}$ where $x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$. A code C is self-dual if $C=C^{\perp}$. The Euclidean weight of a codeword x is $\sum_{i=1}^{n} \min \left\{x_{i}^{2},\left(4-x_{i}\right)^{2}\right\}$. The minimum Euclidean weight $d_{E}(C)$ of C is the smallest Euclidean weight among all nonzero codewords of C.

The notion of Type II \mathbb{Z}_{4}-codes was first defined in [1] as self-dual codes containing a (± 1)-vector and with the property that all Euclidean weights are divisible by eight. Then it was shown in [5] that, more generally, the

[^0]condition of containing a (± 1)-vector is redundant. Therefore Type II codes are self-dual codes which have the property that all Euclidean weights are divisible by eight. This is a remarkable class of self-dual \mathbb{Z}_{4}-codes, one reason being that any Type II code gives an even unimodular lattice. A Type II \mathbb{Z}_{4}-code of length n exists if and only if $n \equiv 0(\bmod 8)[1]$.

The concept of extremality for the Euclidean weights was introduced in [1]. It was shown in [1] that the minimum Euclidean weight $d_{E}(C)$ of a Type II code C of length n is bounded by

$$
d_{E}(C) \leq 8\left\lfloor\frac{n}{24}\right\rfloor+8
$$

A Type II code meeting this bound with equality is called extremal. At lengths 8 and 16, all Type II codes are extremal. At lengths 24,32 and 40, a large number of extremal Type II codes are known (cf. [7]). At length 48, only two inequivalent extremal Type II codes are known [6]. For lengths $n \geq 56$, no extremal Type II code is known.

The aim of this note is to establish the following theorem.
Theorem 1. There is an extremal Type II \mathbb{Z}_{4}-code for lengths 56 and 64 .
Thus the existence of extremal Type II \mathbb{Z}_{4}-codes is known for lengths up to 64. It is a question to determine whether an extremal Type II \mathbb{Z}_{4}-code exists for length 72 . We remark that the existence of a binary extremal Type II (doubly even self-dual) code of length 72 and a 72 -dimensional extremal Type II (even unimodular) lattice is a long-standing open question.

2 Construction

Every \mathbb{Z}_{4}-code C of length n has two binary codes $C^{(1)}$ and $C^{(2)}$ associated with C :

$$
C^{(1)}=\{c \quad(\bmod 2) \mid c \in C\} \text { and } C^{(2)}=\left\{c \in \mathbb{F}_{2}^{n} \mid 2 c \in C\right\}
$$

The binary codes $C^{(1)}$ and $C^{(2)}$ are called the residue and torsion codes of C, respectively. If C is a self-dual \mathbb{Z}_{4}-code then $C^{(1)}$ is a binary doubly even code with $C^{(2)}=C^{(1)^{\perp}}[4]$. Moreover, if C is Type II then $C^{(1)}$ contains the all-ones vector, or equivalently, $C^{(2)}$ is even.

In this note, we employ the following method of construction of Type II \mathbb{Z}_{4}-codes, which was given in [8]. Suppose that n is divisible by eight. Let
C_{1} be a binary doubly even $[n, k]$ code containing the all-ones vector. Without loss of generality, we may assume that C_{1} has generator matrix of the following form:

$$
G_{1}=\left(\begin{array}{ll}
A & \tilde{I}_{k} \tag{1}
\end{array}\right),
$$

where A is a $k \times(n-k)$ matrix which has the property that the first row is the all-ones vector, $\tilde{I}_{k}=\left(\begin{array}{ccc}1 & \cdots & 1 \\ 0 & & \\ \vdots & I_{k-1} \\ 0 & & \end{array}\right)$, and I_{k-1} denotes the identity matrix of order $(k-1)$. This means that the first row of G_{1} is the all-ones vector. Since C_{1} is self-orthogonal, the matrix G_{1} can be extended to a generator matrix of C_{1}^{\perp} as follows:

$$
\binom{G_{1}}{D} .
$$

Then there are $2^{1+k(k-1) / 2} k \times k(1,0)$-matrices B such that the following matrices

$$
\left(\begin{array}{lll}
A & & \tilde{I}_{k}+2 B \tag{2}\\
& 2 D &
\end{array}\right)
$$

are generator matrices of Type II \mathbb{Z}_{4}-codes C, where we regard the matrices as matrices over $\mathbb{Z}_{4}[8]$. In this case, of course, C_{1} is the residue code of C. For each Type II code C, there is a Type II code containing the all-ones vector, which is equivalent to C. Hence, without loss of generality, we may assume that the first row of B is the zero vector.

We investigate the residue and torsion codes of extremal Type II \mathbb{Z}_{4}-codes.
Lemma 2. Let C be an extremal Type $I I \mathbb{Z}_{4}$-code of length n. Then the torsion code $C^{(2)}$ has minimum weight $d \geq 2[n / 24]+2$.

Proof. Any codeword x of $C^{(2)}$ corresponds to a codeword $2 x$ of C. Hence the torsion code $C^{(2)}$ has minimum weight $d \geq d_{E}(C) / 4$.

Lemma 3. Let C be an extremal Type II \mathbb{Z}_{4}-code of length 56 (resp. 64). Then the dimension of the residue code $C^{(1)}$ is at least 12 (resp. 13).

Proof. By the above lemma, the torsion codes of extremal Type II \mathbb{Z}_{4}-codes of lengths 56 and 64 have minimum weight $d \geq 6$. If a binary [$56, k, 6]$ code exists then $k \leq 44$ and if a binary $[64, k, 6]$ code exists then $k \leq 51$ (cf. [3]). Hence the dimensions of the torsion codes $C^{(2)}\left(=C^{(1) \perp}\right)$ of extremal Type II \mathbb{Z}_{4}-codes of lengths 56 and 64 must be at most 44 and 51, respectively.

We describe how extremal Type II \mathbb{Z}_{4}-codes of lengths $n=56$ and 64 were constructed. We first constructed a binary doubly even $[n, n / 4,20]$ code B_{n} which has the property that B_{n} contains the all-ones vector and B_{n}^{\perp} has minimum weight at least 6 . The latter condition is necessary by Lemma 2 . These codes B_{56} and B_{64} were constructed by considering quasi-cyclic codes. The codes $B_{n}(n=56,64)$ have generator matrices of the following form:

$$
\left(\begin{array}{cccccccccc}
1 & \cdots & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & \tag{3}\\
& & & & & & & & & \\
& R_{1} & & & R_{2} & & & R_{3} & & \tilde{I_{n / 4}}
\end{array}\right)
$$

where R_{i} are $\left(\frac{n}{4}-1\right) \times \frac{n}{4}$ circulant matrices $(i=1,2,3)$. For the codes B_{56} and B_{64}, the first rows r_{i} of $R_{i}(i=1,2,3)$ in (3) are as follows:
$r_{1}=(00100110001100), r_{2}=(10010010001100), r_{3}=(10101110011110)$, $r_{1}=(1011110000101011), r_{2}=(0011010010110001), r_{3}=(0101011011111110)$,
respectively. These codes B_{56} and B_{64} have weight enumerators

$$
\begin{aligned}
& 1+756 y^{20}+4095 y^{24}+6680 y^{28}+\cdots+y^{56} \text { and } \\
& 1+240 y^{20}+3600 y^{24}+16144 y^{28}+25566 y^{32}+\cdots+y^{64}
\end{aligned}
$$

respectively.
As described above, starting from generator matrices (3) of the binary doubly even codes B_{56} and B_{64}, there are $2^{1+k(k-1) / 2}$ ($k=14$ and 16) Type II \mathbb{Z}_{4}-codes with generator matrices of the form (2), respectively. These codes can be constructed by choosing suitable matrices B in (2). By a random search, we have found matrices B such that the matrices (2) generate extremal Type II \mathbb{Z}_{4}-codes C_{56} and C_{64} of lengths 56 and 64 . A generator matrix of C_{56} (resp. C_{64}) is listed in Figure 1 (resp. Figure 2) where we only list the 14×56 (resp. 16×64) matrix $\left(A \tilde{I}_{k}+2 B\right)$ in (2) since the lower part in (2) can be obtained from the matrix.
$\left(\begin{array}{ll|l}11 & 11111111111111 \\ 001001100011001001001000110010101110011110 & 03022022020220 \\ 000100110001100100100100011001010111001111 & 20322200000200 \\ 000010011000110010010010001110101011100111 & 00232020002020 \\ 100001001100011001001001000111010101110011 & 02023202200022 \\ 110000100110001100100100100011101010111001 & 22222320200202 \\ 011000010011000110010010010011110101011100 & 00222232000000 \\ 001100001001100011001001001001111010101110 & 00222223000000 \\ 000110000100110001100100100100111101010111 & 20220220300000 \\ 100011000010011000110010010010011110101011 & 20022202030000 \\ 110001100001000100011001001011001111010101 & 02222220203000 \\ 011000110000100010001100100111100111101010 & 20020022020300 \\ 001100011000011001000110010001110011110101 & 22200022202030 \\ 100110001100000100100011001010111001111010 & 22020002220203\end{array}\right)$

Figure 1: An extremal Type II \mathbb{Z}_{4}-code of length 56

Let C be a Type II \mathbb{Z}_{4}-code and let $A_{4}(C)$ be the lattice obtained from C by Construction A (cf. [1]). Then $A_{4}(C)$ is an even unimodular lattice. Moreover, C is an extremal Type II \mathbb{Z}_{4}-code of length 56 (resp. 64) if and only if $A_{4}(C)$ has minimum norm 4 and kissing number 112 (resp. 128). By checking this using Magma [2], the extremality of the new codes C_{56} and C_{64} was verified. We verified by Magma that both codes C_{56} and C_{64} have minimum Lee weight 12 (see [1] for the definition of the minimum Lee weight).

Acknowledgment. The author would like to thank Akihiro Munemasa for helpful discussions.

References

[1] A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over \mathbb{Z}_{4}, IEEE Trans. Inform. Theory 43 (1997), 969-976.
[2] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu.au/magma/.
$\left(\begin{array}{ll|l}11 & 1111111111111111 \\ 101111000010101100110100101100010101011011111110 & 2320002002202020 \\ 110111100001010110011010010110000010101101111111 & 0030200202222002 \\ 111011110000101001001101001011001001010110111111 & 2023020200020000 \\ 011101111000010100100110100101101100101011011111 & 2022302022220200 \\ 101110111100001000010011010010111110010101101111 & 0202230202200020 \\ 010111011110000110001001101001011111001010110111 & 0220223000202222 \\ 101011101111000011000100110100101111100101011011 & 2220022300000000 \\ 010101110111100001100010011010011111110010101101 & 0220000230000000 \\ 001010111011110010110001001101001111111001010110 & 2202200023000000 \\ 000101011101111001011000100110100111111100101011 & 2022020002300000 \\ 000010101110111100101100010011011011111110010101 & 0202020200230000 \\ 100001010111011110010110001001101101111111001010 & 0202020020023000 \\ 110000101011101101001011000100110110111111100101 & 0202000202002300 \\ 111000010101110110100101100010011011011111110010 & 2220202220200230 \\ 111100001010111011010010110001000101101111111001 & 0022020022020023\end{array}\right)$

Figure 2: An extremal Type II \mathbb{Z}_{4}-code of length 64
[3] A.E. Brouwer, "Bounds on the size of linear codes," in Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 295-461.
[4] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A 62 (1993), 30-45.
[5] M. Harada, P. Solé and P. Gaborit, Self-dual codes over \mathbb{Z}_{4} and unimodular lattices: a survey, Algebras and combinatorics (Hong Kong, 1997), 255-275, Springer, Singapore, 1999.
[6] M. Harada, M. Kitazume, A. Munemasa and B. Venkov, On some selfdual codes and unimodular lattices in dimension 48, European J. Combin. 26 (2005), 543-557.
[7] W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), 451-490.
[8] V. Pless, J. Leon and J. Fields, All \mathbb{Z}_{4} codes of Type II and length 16 are known, J. Combin. Theory Ser. A 78 (1997), 32-50.

[^0]: *Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan and PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 3320012, Japan. email: mharada@sci.kj.yamagata-u.ac.jp

