Note on the residue codes of self-dual \mathbb{Z}_4 -codes having large minimum Lee weights

Masaaki Harada*

March 26, 2014

Abstract

It is shown that the residue code of a self-dual \mathbb{Z}_4 -code of length 24k (resp. 24k + 8) and minimum Lee weight 8k + 4 or 8k + 2 (resp. 8k + 8 or 8k + 6) is a binary extremal doubly even self-dual code for every positive integer k. A number of new self-dual \mathbb{Z}_4 -codes of length 24 and minimum Lee weight 10 are constructed using the above characterization.

1 Introduction

Self-dual codes are an important class of (linear) codes¹ for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes of modest length and determine the largest minimum weight among selfdual codes of that length. Among self-dual \mathbb{Z}_k -codes, self-dual \mathbb{Z}_4 -codes have been widely studied because such codes have nice applications to unimodular lattices and (non-linear) binary codes, where \mathbb{Z}_k denotes the ring of integers modulo k and k is a positive integer with $k \geq 2$. It is well known that the Nordstorm–Robinson, Kerdock and Preparata codes, which are some best known non-linear binary codes, can be constructed as the Gray images of some \mathbb{Z}_4 -codes [8]. We emphasize that the Nordstorm–Robinson code can be

^{*}Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan. email: mharada@m.tohoku.ac.jp. This work was partially carried out at Yamagata University.

¹All codes in this note are linear unless otherwise noted.

constructed as the Gray image of the unique self-dual \mathbb{Z}_4 -code of length 8 and minimum Lee weight 6. In this note, we pay attention to the minimum Lee weight from the viewpoint of a connection with the minimum distance of binary (non-linear) codes obtained as the Gray images. Rains [18] gave upper bounds on the minimum Lee weights $d_L(\mathcal{C})$ of self-dual \mathbb{Z}_4 -codes \mathcal{C} of length n. For even lengths $n = 24k + \ell$, the upper bounds are given as $d_L(\mathcal{C}) \leq 8k + g(\ell)$, where $g(\ell)$ is given by the following table:

In this note, we study residue codes of self-dual \mathbb{Z}_4 -codes having large minimum Lee weights. According to the above upper bounds, the minimum Lee weights of self-dual \mathbb{Z}_4 -codes of lengths 24k and 24k + 8 are at most 8k + 4 and 8k + 8, respectively. It is shown that the residue code of a self-dual \mathbb{Z}_4 -code of length 24k and minimum Lee weight 8k + 4 or 8k + 42 is a binary extremal doubly even self-dual code of length 24k for every positive integer k. It is also shown that the residue code of a self-dual \mathbb{Z}_4 code of length 24k + 8 and minimum Lee weight 8k + 8 or 8k + 6 is a binary extremal doubly even self-dual code of length 24k + 8. As a consequence, we show that the minimum Lee weight of a self-dual \mathbb{Z}_4 -code of length 24k(resp. 24k + 8) is at most 8k (resp. 8k + 4) for every integer $k \ge 154$ (resp. $k \geq 159$). A number of new self-dual \mathbb{Z}_4 -codes of length 24 and minimum Lee weight 10 are constructed using the above characterization. Some selfdual \mathbb{Z}_4 -codes of length n and minimum Lee weight d_L are also constructed for the cases $(n, d_L) = (32, 14), (48, 18), (56, 18)$. Finally, we give a certain characterization of binary self-dual codes containing the residue codes of selfdual \mathbb{Z}_4 -codes for some other lengths.

All computer calculations in this note were done by MAGMA [4].

2 Preliminaries

2.1 Self-dual \mathbb{Z}_4 -codes

Let \mathbb{Z}_4 (= {0,1,2,3}) denote the ring of integers modulo 4. A \mathbb{Z}_4 -code \mathcal{C} of length n is a \mathbb{Z}_4 -submodule of \mathbb{Z}_4^n . Two \mathbb{Z}_4 -codes are *equivalent* if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. The *dual code* \mathcal{C}^{\perp} of \mathcal{C} is defined as $\mathcal{C}^{\perp} = \{x \in \mathbb{Z}_{4}^{n} \mid x \cdot y = 0 \text{ for all } y \in \mathcal{C}\}$, where $x \cdot y$ is the standard inner product. A \mathbb{Z}_{4} -code \mathcal{C} is *self-dual* if $\mathcal{C} = \mathcal{C}^{\perp}$. The *Hamming weight* wt_H(x), *Lee weight* wt_L(x) and *Euclidean weight* wt_E(x) of a codeword x of \mathcal{C} are defined as $n_{1}(x) + n_{2}(x) + n_{3}(x)$, $n_{1}(x) + 2n_{2}(x) + n_{3}(x)$ and $n_{1}(x) + 4n_{2}(x) + n_{3}(x)$, respectively, where $n_{i}(x)$ is the number of components of x which are equal to *i*. The *minimum Lee weight* $d_{L}(\mathcal{C})$ (resp. *minimum Euclidean weight* $d_{E}(\mathcal{C})$) of \mathcal{C} is the smallest Lee (resp. Euclidean) weight among all non-zero codewords of \mathcal{C} . The *residue code* $\mathcal{C}^{(1)}$ of \mathcal{C} is the binary code defined as $\mathcal{C}^{(1)} = \{c$ (mod 2) $\mid c \in \mathcal{C}\}$. If \mathcal{C} is a self-dual \mathbb{Z}_{4} -code, then $\mathcal{C}^{(1)}$ is doubly even [6].

The following characterization of the minimum Lee weights is useful.

Lemma 2.1 (Rains [17]). Let C be a self-dual \mathbb{Z}_4 -code. Then $d(\mathcal{C}^{(1)}) \leq d_L(\mathcal{C}) \leq 2d(\mathcal{C}^{(1)^{\perp}}).$

The Gray map ϕ is defined as a map from \mathbb{Z}_4^n to \mathbb{Z}_2^{2n} mapping (x_1, \ldots, x_n) to $(\varphi(x_1), \ldots, \varphi(x_n))$, where $\varphi(0) = (0, 0)$, $\varphi(1) = (0, 1)$, $\varphi(2) = (1, 1)$ and $\varphi(3) = (1, 0)$. The Gray image $\phi(\mathcal{C})$ of a \mathbb{Z}_4 -code \mathcal{C} needs not be linear. Let \mathcal{C} be a self-dual \mathbb{Z}_4 -code of length n and minimum Lee weight $d_L(\mathcal{C})$. Then the Gray image $\phi(\mathcal{C})$ has parameters $(2n, 2^n, d_L(\mathcal{C}))$ (as a non-linear code).

A self-dual \mathbb{Z}_4 -code which has the property that all Euclidean weights are divisible by eight, is called *Type II*. A self-dual \mathbb{Z}_4 -code which is not Type II, is called *Type I*. A Type II \mathbb{Z}_4 -code of length n exists if and only if $n \equiv 0$ (mod 8), while a Type I \mathbb{Z}_4 -code exists for every length. It was shown in [3] that the minimum Euclidean weight $d_E(\mathcal{C})$ of a Type II \mathbb{Z}_4 -code \mathcal{C} of length n is bounded by $d_E(\mathcal{C}) \leq 8\lfloor \frac{n}{24} \rfloor + 8$. A Type II \mathbb{Z}_4 -code meeting this bound is called *extremal*. It was also shown in [19] that the minimum Euclidean weight $d_E(\mathcal{C})$ of a Type I \mathbb{Z}_4 -code \mathcal{C} of length n is bounded by $d_E(\mathcal{C}) \leq 8\lfloor \frac{n}{24} \rfloor + 8$ if $n \not\equiv 23 \pmod{24}$, and $d_E(\mathcal{C}) \leq 8\lfloor \frac{n}{24} \rfloor + 12$ if $n \equiv 23 \pmod{24}$.

2.2 Binary self-dual codes, covering radii and shadows

A binary code C is called *self-dual* if $C = C^{\perp}$, where C^{\perp} is the dual code of C under the standard inner product. Two binary self-dual codes C and C' are *equivalent*, denoted $C \cong C'$, if one can be obtained from the other by permuting the coordinates. A binary self-dual code C is *doubly even* if all codewords of C have weight divisible by four, and *singly even* if there is at least one codeword of weight congruent to 2 modulo 4. It is known that a binary self-dual code of length n exists if and only if n is even, and a binary doubly even self-dual code of length n exists if and only if $n \equiv 0 \pmod{8}$. The minimum weight d(C) of a binary self-dual code C of length n is bounded by $d(C) \leq 4\lfloor \frac{n}{24} \rfloor + 6$ if $n \equiv 22 \pmod{24}$, $d \leq 4\lfloor \frac{n}{24} \rfloor + 4$ otherwise [14] and [16]. A binary self-dual code meeting the bound is called *extremal*.

The covering radius R(C) of a binary code C is the smallest integer R such that spheres of radius R around codewords of C cover the space \mathbb{Z}_2^n . The covering radius is a basic and important geometric parameter of a code. A vector a of a coset U is called a coset leader of U if the weight of a is minimal in U and the weight of a coset U is defined as the weight of a coset leader. The covering radius is the same as the largest weight of all the coset leaders of the code (see [1]). The following bound is known as the Delsarte bound (see [1, Theorem 1]).

Lemma 2.2. Let C be a binary code. Then $R(C) \leq \#\{i > 0 \mid B_i \neq 0\}$, where B_i is the number of vectors of weight i in C^{\perp} .

Let C be a binary singly even self-dual code and let C_0 denote the subcode of codewords having weight congruent to 0 modulo 4. Then C_0 is a subcode of codimension 1. The *shadow* S of C is defined to be $C_0^{\perp} \setminus C$. Shadows were introduced by Conway and Sloane [5], in order to provide restrictions on the weight enumerators of singly even self-dual codes. A binary self-dual code meeting the following bound is called *s-extremal*.

Lemma 2.3 (Bachoc and Gaborit [2]). Let C be a binary self-dual code of length n and let S be the shadow of C. Let d(C) and d(S) denote the minimum weights of C and S, respectively. Then $d(S) \leq \frac{n}{2} + 4 - 2d(C)$, except in the case that $n \equiv 22 \pmod{24}$ and $d(C) = 4\lfloor \frac{n}{24} \rfloor + 6$, where $d(S) = \frac{n}{2} + 8 - 2d(C)$.

We end this section by proposing the following lemma, which is obtained from [13, Theorems 2.1 and 2.2].

Lemma 2.4. Let C be a binary self-orthogonal code of length n.

- (i) If n is even, then there is a binary self-dual code containing C.
- (ii) If $n \equiv 0 \pmod{8}$ and C is doubly even which is not self-dual, then there is a binary doubly even self-dual code containing C, and there is a binary singly even self-dual code containing C.

3 Characterization of the residue codes for lengths 24k and 24k + 8

3.1 Length 24k

As described in Section 1, the minimum Lee weight of a self-dual \mathbb{Z}_4 -code of length 24k is at most 8k + 4. In this subsection, we consider self-dual \mathbb{Z}_4 -codes of length 24k and minimum Lee weight 8k + 4 or 8k + 2.

Theorem 3.1. Let C be a self-dual \mathbb{Z}_4 -code of length 24k. Suppose that the minimum Lee weight of C is 8k + 4 or 8k + 2. Then $C^{(1)}$ is a binary extremal doubly even self-dual code of length 24k.

Proof. Since $C^{(1)}$ is doubly even, by Lemma 2.4, there is a binary doubly even self-dual code C satisfying that $C^{(1)} \subseteq C \subseteq C^{(1)^{\perp}}$. Since C has minimum Lee weight 8k + 4 (resp. 8k + 2), by Lemma 2.1, $C^{(1)^{\perp}}$ has minimum weight at least 4k + 2 (resp. 4k + 1). Hence, C is extremal.

Now consider the covering radius R(C) of C. By Lemma 2.2, $R(C) \leq 4k$. Hence, if $C \subsetneq C^{(1)^{\perp}}$, then the minimum weight of $C^{(1)^{\perp}}$ is at most 4k, which is a contradiction. Therefore, $C = C^{(1)}$.

Remark 3.2. Recently, the nonexistence of a self-dual \mathbb{Z}_4 -code of length 36 and minimum Lee weight 16 has been shown in [10]. This result can be directly obtained by the bound in [18], which is given in Section 1, however, the approach in [10] can be generalized to the following alternative proof of the above theorem. Suppose that $\mathcal{C}^{(1)}$ is not self-dual. Since $\mathcal{C}^{(1)}$ is doubly even, by Lemma 2.4, there is a binary singly even self-dual code C satisfying that

$$\mathcal{C}^{(1)} \subseteq C_0 \subsetneq C \subsetneq C_0^{\perp} \subseteq \mathcal{C}^{(1)^{\perp}},$$

where C_0 denotes the doubly even subcode of C. By Lemma 2.1, $\mathcal{C}^{(1)^{\perp}}$ has minimum weight at least 4k + 1. By [16, Theorem 5], C has minimum weight 4k + 2. By Lemma 2.3, the minimum weight of the shadow of a binary singly even self-dual [24k, 12k, 4k + 2] code is at most 4k, which is a contradiction. Hence, $\mathcal{C}^{(1)}$ is self-dual, that is, $\mathcal{C}^{(1)}$ is extremal. This completes the alternative proof.

Remark 3.3. For lengths up to 24, optimal self-dual \mathbb{Z}_4 -codes with respect to the minimum Hamming and Lee weights were widely studied in [17]. At length 24, the above theorem follows from [17, Theorem 2 and Corollary 5].

For length 24k, the only known binary extremal doubly even self-dual codes are the extended Golay code G_{24} and the extended quadratic residue code QR_{48} of length 48. The existence of a binary extremal doubly even self-dual code of length 72 is a long-standing open question. In addition, there is no binary extremal doubly even self-dual code of length 24k for $k \geq 154$ [21]. Hence, we immediately have the following:

Corollary 3.4. The minimum Lee weight of a self-dual \mathbb{Z}_4 -code of length 24k is at most 8k for every integer $k \geq 154$.

3.2 Length 24k + 8

As described in Section 1, the minimum Lee weight of a self-dual \mathbb{Z}_4 -code of length 24k + 8 is at most 8k + 8. In this subsection, we consider self-dual \mathbb{Z}_4 -codes of length 24k + 8 and minimum Lee weight 8k + 8 or 8k + 6.

Theorem 3.5. Let C be a self-dual \mathbb{Z}_4 -code of length 24k + 8. Suppose that the minimum Lee weight of C is 8k + 8 or 8k + 6. Then $C^{(1)}$ is a binary extremal doubly even self-dual code of length 24k + 8.

Proof. Suppose that $\mathcal{C}^{(1)}$ is not self-dual. Since $\mathcal{C}^{(1)}$ is doubly even, by Lemma 2.4, there is a binary singly even self-dual code C satisfying that

$$\mathcal{C}^{(1)} \subseteq C_0 \subsetneq C \subsetneq C_0^{\perp} \subseteq \mathcal{C}^{(1)^{\perp}},$$

where C_0 denotes the doubly even subcode of C. By Lemma 2.1, $\mathcal{C}^{(1)^{\perp}}$ has minimum weight at least 4k + 3. Hence, C has minimum weight 4k + 4. By Lemma 2.3, the minimum weight of the shadow of a binary singly even self-dual [24k+8, 12k+4, 4k+4] code is at most 4k, which is a contradiction. Hence, $\mathcal{C}^{(1)}$ is self-dual, that is, $\mathcal{C}^{(1)}$ is extremal.

- Remark 3.6. (i) The case that the minimum Lee weight $d_L(\mathcal{C})$ is 8k + 8 follows immediately from [18, Theorem 1].
- (ii) The above theorem can be proved by a similar argument to the proof of Theorem 3.1.

Remark 3.7. Rains [18, p. 148] pointed out that by the linear programing $d_L(\mathcal{C}) \leq 8k + 6$ for $k \leq 4$.

It is known that there is a binary extremal doubly even self-dual code of length 24k + 8 for $k \leq 4$. In addition, since there is no binary extremal doubly even self-dual code of length 24k + 8 for $k \geq 159$ [21], we immediately have the following:

Corollary 3.8. The minimum Lee weight of a self-dual \mathbb{Z}_4 -code of length 24k + 8 is at most 8k + 4 for every integer $k \ge 159$.

4 Self-dual \mathbb{Z}_4 -codes having large minimum Lee weights

By using the characterizations of the residue codes, which are given in the previous section, a number of self-dual \mathbb{Z}_4 -codes having large minimum Lee weights are constructed in this section.

4.1 Double circulant and four-negacirculant codes

Throughout this note, let A^T denote the transpose of a matrix A and let I_k denote the identity matrix of order k. An $n \times n$ matrix is *circulant* and *negacirculant* if it has the following form:

$$\begin{pmatrix} r_0 & r_1 & \cdots & r_{n-2} & r_{n-1} \\ cr_{n-1} & r_0 & \cdots & r_{n-3} & r_{n-2} \\ cr_{n-2} & cr_{n-1} & \ddots & r_{n-4} & r_{n-3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ cr_1 & cr_2 & \cdots & cr_{n-1} & r_0 \end{pmatrix},$$

where c = 1 and -1, respectively. A \mathbb{Z}_4 -code with generator matrix of the form:

(1)
$$\begin{pmatrix} & \alpha & \beta & \cdots & \beta \\ & & \gamma & & & \\ & & I_n & \vdots & R & \\ & & & \gamma & & & \end{pmatrix}$$

is called a *bordered double circulant* \mathbb{Z}_4 -code of length 2n, where R is an $(n-1) \times (n-1)$ circulant matrix and $\alpha, \beta, \gamma \in \mathbb{Z}_4$. A \mathbb{Z}_4 -code with generator

matrix of the form:

(2)
$$\begin{pmatrix} & A & B \\ & I_{2n} & -B^T & A^T \end{pmatrix}$$

is called a *four-negacirculant* \mathbb{Z}_4 -code of length 4n, where A and B are $n \times n$ negacirculant matrices.

Length	Code	First row of R	(α, β, γ)	Type	d_L
24	$\mathcal{D}_{24,1}$	(13103303222)	(0, 1, 1)	Ι	10
	$\mathcal{D}_{24,2}$	(01130332322)	(0, 1, 1)	Ι	10
	$\mathcal{D}_{24,3}$	(31030001332)	(0,1,1)	Ι	10
32	\mathcal{D}_{32}	(002210100233312)	(0, 1, 1)	II	14
48	\mathcal{D}_{48}	(11303312013230033212110)	(0, 1, 1)	II	18
56	$\mathcal{D}_{56,1}$	(022000202022112232101111011)	(2, 1, 1)	II	18
	$\mathcal{D}_{56,2}$	(002202002002312010101111011)	(0, 1, 1)	Ι	18

Table 1: Bordered double circulant self-dual \mathbb{Z}_4 -codes

By considering bordered double circulant codes and four-negacirculant codes, we found self-dual \mathbb{Z}_4 -codes of length 24k and minimum Lee weight 8k+2 (k = 1, 2) and self-dual \mathbb{Z}_4 -codes of length 32 and minimum Lee weight 14. These codes were found under the condition that the residue codes are binary extremal doubly even self-dual codes, by Theorems 3.1 and 3.5. Self-dual \mathbb{Z}_4 -codes of length 56 and minimum Lee weight 18 were also found.

For bordered double circulant codes, the first rows of R and (α, β, γ) in (1) are listed in Table 1. For four-negacirculant codes, the first rows of A and B in (2) are listed in Table 2. The minimum Lee weights d_L determined by MAGMA are also listed. The 5th column in both tables indicates the Type of the code.

Table 2: Four-negacirculant self-dual \mathbb{Z}_4 -codes

Length	Code	First row of A	First row of B	Type	d_L
32	\mathcal{C}_{32}	(22312012)	(03113022)	II	14
56	\mathcal{C}_{56}	(11130213112212	(30101110001000)	II	18

4.2 Length 24

For length 24, there are 13 self-dual \mathbb{Z}_4 -codes having minimum Lee weight 12, up to equivalence [17, Theorem 11]. Note that these self-dual \mathbb{Z}_4 -codes are extremal Type II \mathbb{Z}_4 -codes [17, Theorem 9].

In this subsection, we consider self-dual \mathbb{Z}_4 -codes having minimum Lee weight 10.

Lemma 4.1. Let C be a self-dual \mathbb{Z}_4 -code of length 24 and minimum Lee weight 10. Then C is a Type I \mathbb{Z}_4 -code having minimum Euclidean weight 12.

Proof. Let x be a codeword x of C with $wt_L(x) = 10$. Then

$$(n_1(x) + n_3(x), n_2(x)) = (10, 0), (8, 1), (6, 2), (4, 3), (2, 4), (0, 5).$$

By Theorem 3.1, $C^{(1)} \cong G_{24}$. Thus, $n_1(x) + n_3(x) = 8$ or $n_1(x) + n_3(x) = 0$. In addition, if $n_1(x) + n_3(x) = 0$, then $n_2(x) \equiv 0 \pmod{4}$ with $n_2(x) \ge 8$. This gives

$$(n_1(x) + n_3(x), n_2(x)) = (8, 1).$$

Hence, wt_E(x) = 12. Therefore, C is a Type I \mathbb{Z}_4 -code having minimum Euclidean weight 12.

We use the following method in order to verify that given two \mathbb{Z}_4 -codes are inequivalent (see [7]). Let C be a self-dual \mathbb{Z}_4 -code of length n. Let $M_t = (m_{ij})$ be the $A_t \times n$ matrix with rows composed of the codewords xwith wt_H(x) = t in C, where A_t denotes the number of such codewords. For an integer k ($1 \le k \le n$), let $n_t(j_1, \ldots, j_k)$ be the number of r ($1 \le r \le A_t$) such that all $m_{rj_1}, \ldots, m_{rj_k}$ are nonzero for $1 \le j_1 < \ldots < j_k \le n$. We consider the set

 $S_{t,k} = \{n_t(j_1, \dots, j_k) \mid \text{ for any distinct } k \text{ columns } j_1, \dots, j_k \}.$

In [7], the authors claimed that there are two inequivalent bordered double circulant Type I \mathbb{Z}_4 -codes of length 24 and minimum Lee weight 10. Unfortunately, this is not true. In fact, the number of such codes should be three not two. The codes $\mathcal{D}_{24,i}$ (i = 1, 2, 3) given in Table 1 are bordered double circulant Type I \mathbb{Z}_4 -codes of length 24 and minimum Lee weight 10. In Table 3, we list $\mathcal{S}_k = (\max(S_{9,k}), \min(S_{9,k}), \#S_{9,k})$ (k = 1, 2, 3, 4) for the codes. This table shows that the three codes $\mathcal{D}_{24,1}, \mathcal{D}_{24,2}, \mathcal{D}_{24,3}$ are inequivalent.

Table 3: \mathcal{S}_1 , \mathcal{S}_2 , \mathcal{S}_3 , \mathcal{S}_4 for $\mathcal{D}_{24,1}$, $\mathcal{D}_{24,2}$, $\mathcal{D}_{24,3}$

Code	\mathcal{S}_1	\mathcal{S}_2	\mathcal{S}_3	\mathcal{S}_4
$\mathcal{D}_{24,1}$	(352, 256, 2)	(128, 0, 5)	(48, 0, 11)	(20, 0, 11)
$\mathcal{D}_{24,2}$	(352, 256, 2)	(128, 0, 5)	(48, 0, 11)	(18, 0, 10)
$\mathcal{D}_{24,3}$	(352, 256, 2)	(128, 0, 5)	(48, 0, 11)	(16, 0, 9)

Proposition 4.2. There are three inequivalent bordered double circulant Type I \mathbb{Z}_4 -codes of length 24 and minimum Lee weight 10.

For a given binary doubly even code C of dimension k, there are $2^{\frac{k(k+1)}{2}}$ self-dual \mathbb{Z}_4 -codes \mathcal{C} with $\mathcal{C}^{(1)} = C$, and an explicit method for construction of these $2^{\frac{k(k+1)}{2}}$ self-dual \mathbb{Z}_4 -codes \mathcal{C} with $\mathcal{C}^{(1)} = C$ was given in [15, Section 3]. In our case, there are 2^{78} self-dual \mathbb{Z}_4 -codes \mathcal{C} with $\mathcal{C}^{(1)} = G_{24}$, and it seems infeasible to find all such codes. Using the above method, we tried to construct many self-dual \mathbb{Z}_4 -codes. Then we stopped our search after we found 57 self-dual \mathbb{Z}_4 -codes having minimum Lee weight 10 satisfying that the 57 codes and the three codes in Table 3 have distinct $S_{9,k}$ (k = 1, 2, 3, 4). Hence, we have the following proposition.

Proposition 4.3. There are at least 60 inequivalent self-dual \mathbb{Z}_4 -codes of length 24 and minimum Lee weight 10.

We denote the new codes by $C_{24,i}$ (i = 1, 2, ..., 57). In Figure 1, we list generator matrices for $C_{24,i}$, where we consider generator matrices in standard form (I_{12}, M_i) and only 12 rows in M_i are listed, to save space.

4.3 Lengths 32, 48, 56 and 80

The extended lifted quadratic residue \mathbb{Z}_4 -code \mathcal{QR}_{32} and the Reed-Muller \mathbb{Z}_4 -code $\mathcal{QRM}(2,5)$, which are given in [3, Table I], are self-dual \mathbb{Z}_4 -codes of length 32 and minimum Lee weight 14. Both codes are extremal Type II \mathbb{Z}_4 -codes [3]. It is known that $\mathcal{QR}_{32}^{(1)}$ (resp. $\mathcal{QRM}(2,5)^{(1)}$) is the extended quadratic residue code QR_{32} (resp. a second-order the Reed-Muller code RM(2,5)) of length 32, which is a binary extremal doubly even self-dual code. The largest minimum Lee weight among bordered double circulant self-dual \mathbb{Z}_4 -codes is listed in the table in [11] for length 8n (n = 1, 2, ..., 8).

According to the table, the largest minimum Lee weight for length 32 is 14. The code \mathcal{D}_{32} in Table 2 is a Type II \mathbb{Z}_4 -code of length 32 and minimum Lee weight 14, which gives an explicit example of such codes. In addition, the code \mathcal{C}_{32} in Table 2 is a Type II \mathbb{Z}_4 -code of length 32 and minimum Lee weight 14. We verified by MAGMA that $\mathcal{C}_{32}^{(1)} \cong \mathcal{D}_{32}^{(1)} \cong QR_{32}$. It is unknown whether the three codes are equivalent or not. There are five inequivalent binary extremal doubly even self-dual codes of length 32, two of which are QR_{32} and RM(2,5) (see [20, Table IV]). It is worthwhile to determine whether there is a self-dual \mathbb{Z}_4 -code \mathcal{C} having minimum Lee weight 14 with $\mathcal{C}^{(1)} \cong C$ for each C of the remaining three codes.

The extended lifted quadratic residue \mathbb{Z}_4 -code \mathcal{QR}_{48} of length 48 is a selfdual \mathbb{Z}_4 -code having minimum Lee weight 18, which is an extremal Type II \mathbb{Z}_4 -code. This is the only known self-dual \mathbb{Z}_4 -code of length 48 and minimum Lee weight at least 18. Of course, $\mathcal{QR}_{48}^{(1)}$ is QR_{48} . According to the table in [11], the largest minimum Lee weight among bordered double circulant self-dual \mathbb{Z}_4 -codes of length 48 is 18. The code \mathcal{D}_{48} in Table 1 gives an explicit example of such codes. It is unknown whether \mathcal{D}_{48} is equivalent to \mathcal{QR}_{48} or not.

At length 56, under the condition that the residue code is a binary extremal doubly even self-dual code, we tried to construct a self-dual \mathbb{Z}_4 -code having minimum Lee weight 20 or 22, but our search failed to do this. In this process, however, we found extremal Type II \mathbb{Z}_4 -codes. The code C_{56} in Table 2 is a Type II \mathbb{Z}_4 -code of length 56 and minimum Lee weight 18. Hence, C_{56} is extremal. According to the table in [11], the largest minimum Lee weight among bordered double circulant self-dual \mathbb{Z}_4 -codes of length 56 is 18. The codes $\mathcal{D}_{56,1}$ and $\mathcal{D}_{56,2}$ in Table 1 give explicit examples of such codes. We verified by MAGMA that $\mathcal{D}_{56,2}$ has minimum Euclidean weight 20. Since $\mathcal{D}_{56,1}$ is Type II, $\mathcal{D}_{56,1}$ is extremal. We verified by MAGMA that $\mathcal{C}_{56}^{(1)}$ and $\mathcal{D}_{56,1}^{(1)}$ have automorphism groups of orders 28 and 54, respectively. This shows that \mathcal{C}_{56} and $\mathcal{D}_{56,1}$ are inequivalent. An extremal Type II \mathbb{Z}_4 -code of length 56 given in [9] has the residue code of dimension 14. Hence, we have the following:

Proposition 4.4. There are at least three inequivalent extremal Type II \mathbb{Z}_4 codes of length 56.

It is unknown whether there is a self-dual \mathbb{Z}_4 -code having minimum Lee weight 20, 22 or not.

At length 80, the minimum Lee weight of the extended lifted quadratic residue \mathbb{Z}_4 -code was determined in [12] as 26. It is unknown whether there is a self-dual \mathbb{Z}_4 -code having minimum Lee weight 28, 30 or not.

5 Characterization of the residue codes for other lengths

Finally, in this section, we give a certain characterization of binary selfdual codes containing the residue codes $C^{(1)}$ of self-dual \mathbb{Z}_4 -codes C of length $24k + \alpha$ for $\alpha = 2, 4, 6, 10, 14, 16, 18, 20, 22$.

Proposition 5.1. Let C be a self-dual \mathbb{Z}_4 -code of length $24k + \alpha$ and minimum Lee weight $8k + \beta$, where $(\alpha, \beta) = (2, 2), (4, 4), (6, 4), (10, 4)$. Then any binary self-dual code C containing $C^{(1)}$ is an s-extremal self-dual code having minimum weight 4k + 2.

Proof. Since all cases are similar, we only give the details for the case $(\alpha, \beta) = (6, 4)$. By Lemma 2.4, there is a binary self-dual code C satisfying that

$$\mathcal{C}^{(1)} \subseteq C_0 \subsetneq C \subsetneq C_0^{\perp} \subseteq \mathcal{C}^{(1)^{\perp}},$$

where C_0 denotes the doubly even subcode of C. By Lemma 2.1, $\mathcal{C}^{(1)^{\perp}}$ has minimum weight at least 4k + 2. Hence, C has minimum weight 4k + 2 or 4k + 4.

Suppose that C has minimum weight 4k+4. By Lemma 2.3, the minimum weight of the shadow $C_0^{\perp} \setminus C$ of C is at most 4k - 1, which contradicts the minimum weight of $\mathcal{C}^{(1)^{\perp}}$. Now, suppose that C has minimum weight 4k+2. The weight of every vector of the shadow $C_0^{\perp} \setminus C$ is congruent to 3 modulo 4 [5]. Since C_0^{\perp} has minimum weight at least 4k+2, the shadow has minimum weight at least 4k+3. By Lemma 2.3, the minimum weight of the shadow $C_0^{\perp} \setminus C$ of C is at most 4k+3. Hence, C is *s*-extremal.

The situations in the following proposition are slightly different to that in the above proposition. However, a similar argument to the proof of the above proposition establishes the following proposition, and their proofs are omitted.

Proposition 5.2. Let C be a self-dual \mathbb{Z}_4 -code of length $24k+\alpha$ and minimum Lee weight $8k + \beta$. Let C be a binary self-dual code containing $C^{(1)}$.

- (i) Suppose that (α, β) = (14, 6), (18, 8), (20, 8). Then C is an s-extremal self-dual code having minimum weight 4k + 4.
- (ii) Suppose that $(\alpha, \beta) = (16, 8)$. If C is singly even, then C is an sextremal self-dual code having minimum weight 4k + 4. If C is doubly even, then C is extremal.
- (iii) Suppose that $(\alpha, \beta) = (22, 8)$. Then C is an s-extremal self-dual code having minimum weight 4k + 4 or 4k + 6.

Acknowledgment. This work is supported by JSPS KAKENHI Grant Number 23340021.

References

- E.F. Assmus, Jr. and V. Pless, On the covering radius of extremal selfdual codes, *IEEE Trans. Inform. Theory* 29 (1983), 359–363.
- [2] C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows, J. Combin. Theory Ser. A 105 (2004), 15–34.
- [3] A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over Z₄, IEEE Trans. Inform. Theory 43 (1997), 969–976.
- [4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
- [5] J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes, *IEEE Trans. Inform. Theory* **36** (1990), 1319– 1333.
- [6] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A 62 (1993), 30–45.
- [7] T.A. Gulliver and M. Harada, Certain self-dual codes over \mathbb{Z}_4 and the odd Leech lattice, Lecture Notes in Comput. Sci. **1255** (1997), 130–137.
- [8] A.R. Hammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, The Z₄-linearity of Kerdock, Preparata, Goethals and related codes, *IEEE Trans. Inform. Theory* 40 (1994), 301–319.

- [9] M. Harada, Extremal type II \mathbb{Z}_4 -codes of lengths 56 and 64, J. Combin. Theory Ser. A **117** (2010), 1285–1288.
- [10] M. Kiermaier, There is no self-dual \mathbb{Z}_4 -linear code whose Gray image has the parameters (72, 2³⁶, 16), *IEEE Trans. Inform. Theory* **59** (2013), 3384–3386.
- [11] M. Kiermaier and A. Wassermann, Double and bordered α-circulant selfdual codes over finite commutative chain rings, Proceedings of Eleventh Intern. Workshop on Alg. and Combin. Coding Theory, June, 2008, Pamporovo, Bulgaria, pp. 144–150.
- [12] M. Kiermaier and A. Wassermann, Minimum weights and weight enumerators of Z₄-linear quadratic residue codes, *IEEE Trans. Inform. The*ory 58 (2012), 4870–4883.
- [13] F.J. MacWilliams, N.J.A. Sloane and J.G. Thompson, Good self dual codes exist, Discrete Math. 3 (1972), 153–162.
- [14] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188–200.
- [15] V. Pless, J. Leon and J. Fields, All Z₄ codes of Type II and length 16 are known, J. Combin. Theory Ser. A 78 (1997), 32–50.
- [16] E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1998), 134–139.
- [17] E. Rains, Optimal self-dual codes over \mathbb{Z}_4 , Discrete Math. 203 (1999), 215–228.
- [18] E. Rains, Bounds for self-dual codes over Z₄, Finite Fields Appl. 6 (2000), 146–163.
- [19] E. Rains and N.J.A. Sloane, The shadow theory of modular and unimodular lattices, J. Number Theory 73 (1998), 359–389.
- [20] E. Rains and N.J.A. Sloane, Self-dual codes, Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam, 1998, pp. 177–294.

[21] S. Zhang, On the nonexistence of extremal self-dual codes, Discrete Appl. Math. 91 (1999), 277–286.

M_1 :	301203221111	131321121202	031330112300	023333033010	020111103321	301010131221
	313322212031	330331002332	213211120231	320120311112	230012013313	132223130321,
M_2 :	123021003313	313321321222	231310132322	001313013232	002331103321	321012113201
	133322232033	330113222132	211011322231	102122333130	010212011313	110223112301,
M_3 :	123023021313	331121101022	011132310120	221313213030	220111121323	323232313203
	113302210033	330331220112	011011302231	120100113310	012012231311	130223110303,
M_4 :	323023003133	131321121222	213310130302	003333033212	002331303303	303230313023
	311320032013	110333200132	213033122231	100302111312	212012213311	112203310303,
M_5 :	103203003333	333321101000	031130132300	203333211212	220111303323	303230333001
	111320012031	330113002130	013033320033	122122133332	032232013311	132023112101,
M_6 :	101201201331	333321101000	031130132300	203333211210	222113101321	301232131003
	113322210033	330113002132	011031122031	122122133332	030230211313	130021310101,
M_7 :	103223003113	131121301220	013132130320	021311031012	200311123323	301032111001
	331102210233	332333002130	233213320211	322100131110	032210233333	310021332123,
M_8 :	321223001111	131101103222	013112332322	023311231032	222113123121	301032111001
	113320012211	130311022110	011211302231	320122111312	210210233133	132203310301,
M_9 :	123223001111	113121103220	211332312302	023111213212	002331301321	323030313223
	131120032011	310311002110	033013120231	122100331330	012212011133	330003332103,
M_{10} :	321023201133	111103103202	231112312120	223133031212	002133323323	303012311223
	311122230011	132131202112	213013300031	302300133330	210010231311	332221330121,
M_{11} :	121021023131	313321321022	213332132100	003311211210	200331101121	121030311021
	311102030211	330331220330	031213302031	122100113130	030230033331	112201110323,
M_{12} :	123223203113	111121121022	033112132322	203133213012	020313321103	321012111223
	133120032231	332113000130	213033120031	302100313132	232032231333	132021312303,
M_{13} :	103203203333	331321103222	011332312300	003311213232	020313101121	303232111003
	311120232033	330311220130	031031122033	120100313110	212010013113	312223312321,
M_{14} :	121201001313	111301123020	233130330302	023131031230	222131123101	101210311003
	133320010231	330113022132	231231302231	102300313312	212032231331	130021312303,
M_{15} :	323023203111	313103321200	031112110302	003133013210	202111103103	323212133201
1.6	331322230233	310331002312	033231100213	320322131310	010212013113	312201110123,
M_{16} :	103021201131	113323103002	031332110300	201113231210	200311321323	101232333201
1.6	333300012233	112311002312	211013322233	122102311312	212030233311	130201312101,
M_{17} :	121223023111	333301101022	211310330302	203113031032	022113301303	303030311201
1.6	311102010013	132333222332	231033122213	122120133332	232012213111	130201112321,
M_{18} :	301221023133	333101321222	211332130320	223133231010	222333121301	103232333023
1.6	131322032031	112131022312	011211302231	102120313112	012012031113	330223312101,
M_{19} :	101203003133	311103121200	231132112102	223333033010	202131323103	323032313023
1.6	333320010211	330131200312	231033322011	300322333132	030232011331	110023330301,
M_{20} :	323021021133	313301321020	033330112102	023331231012	222111301321	101210311003
	311102230033	330133222332	213213122211	302120113110	212012011313	132203132103.

Figure 1: New self-dual \mathbb{Z}_4 -codes of length 24 and $d_L = 10$

M_{21} :	323203201311	133303121000	011112330120	003113213230	222111301321	123212313023
	113320232231	330331020110	211211102011	122100111332	030210033311	312201110301,
M_{22} :	103023023311	131323103200	213132112102	201133011210	000111301321	301212113021
	113122010213	112113220130	031211300233	320120113112	032232013333	310203332101,
$M_{23}:$	323221023131	111121303202	213132110120	221131233032	220111321321	123012113221
	311302212211	112131002130	031233120031	302102131110	230230213131	130201330103,
$M_{24}:$	301001221131	133123321000	231110112300	023131213230	000313321321	103030311203
	331322032011	312331020312	011033120211	120100311312	230030031131	130201332321,
$M_{25}:$	103223023131	331301123000	233312332322	021331013230	200331323101	101232331003
	111300012031	312331222310	213211302211	302300133112	010230231111	130201330321,
M_{26} :	103221223133	313123321020	033132132120	021133013032	000331323303	321230131003
	331300210213	312113022112	211033102011	300300131312	030010211333	112023312101,
$M_{27}:$	101003201311	313301321000	233132312102	203111013212	022133103123	121010311003
	111102012033	112331202110	011213120031	122320113330	012010211111	110021132321,
M_{28} :	123023003333	331101101222	233130112320	201313233212	222111321301	323030331203
	333102232011	310113202110	213231120033	102102331332	010212033313	310021112123,
$M_{29}:$	323203223111	131321303000	033312332322	023331031212	020111321321	121012331001
	311102010013	330113020312	031013122033	120100313110	230010031111	112001132103,
M_{30} :	123201023133	113323301220	013130312322	201313233212	020333303301	301012133003
	311122012031	312331222132	031013320031	100300331312	032010233333	130223130321,
M_{31} :	121223223331	131321323022	213332112322	221113213012	220133303323	303032333221
	133302012031	330333020132	011213320033	322302313330	210232233311	110021130103,
M_{32} :	321201221113	333323321222	031312130320	003131033212	200113323321	101010333223
	113102012213	312331000130	031031322213	322100331132	012212031333	310223110121,
M_{33} :	323201201133	313323101022	033330130302	203131013032	002133121323	123210311021
	313122232231	332111000110	033013322011	320320131310	030012031313	132201332321,
$M_{34}:$	321023023131	111303303022	211112332120	021333231212	000311323123	103212333021
	131302010211	312333022332	011213322033	320122311110	210032213313	110221312301,
M_{35} :	101023021333	133123301200	213332330322	201133231230	202333101301	323210311003
	131100032033	310131200112	011233320013	120300333110	230210231313	312001110321,
$M_{36}:$	103023201133	113323321020	211312312120	221113231212	022111101121	303230133223
	133300012031	130313022310	213013120233	322320313112	210210213113	332001130103,
$M_{37}:$	123003001313	331121303200	031312310322	203311033012	020131321323	323210111221
	333302210011	132131222112	213033120013	322102333112	210012231131	330023310101,
M_{38} :	301201001311	131103323000	031332332322	201333233032	020113301323	123232133001
	331300230233	112333200130	011213102213	102320331312	032232031113	330221330323,
M_{39} :	103023203311	311103121022	011312112322	001313013230	202131303123	123232331001
	111322030011	110313200110	033211120233	320322311130	230032231113	332223112301,
M_{40} :	303223021311	331321103202	213332332302	021131233032	202333123303	301030331021
	113300010211	130333202332	211031120231	122120333312	210230233311	130221110321,

Figure 1: New self-dual \mathbb{Z}_4 -codes of length 24 and $d_L = 10$ (continued)

M_{41} :	101001021133	333323301222	031110132120	201333213012	020331121323	103012113201
	133120010033	330311020312	211213100213	122322113332	210230031313	332001132301,
M_{42} :	323223023111	313121121202	011110130302	203111033232	020133123321	123012313203
	311102212231	130333202332	213011320033	322102113110	232030011133	332021330101,
M_{43} :	321021201333	111321301020	011130330322	223113013230	202113323321	123012311221
	131320232013	310131020330	233231122231	302322133110	232010011333	112223312101,
$M_{44}:$	121201221133	331103321002	211110312322	223131033010	002333303123	303210133221
	133120212233	310113022110	031011102013	122122111110	032032211133	132021130121,
$M_{45}:$	323201023311	333101301002	213330332300	003311013230	222133303323	303210311203
	311102010013	130311222112	231031100233	120120331112	210210231333	312221112301,
M_{46} :	321221201333	333303123000	011130332322	201333233032	000111103321	123230113203
	113302030031	312313020130	011213122031	102300313130	210012031333	110203332301,
M_{47} :	321001023313	111123103222	011312312100	201133011010	202313301321	101030113201
	313100232013	312311220112	211231322011	102100111112	210010211133	132201110321,
M_{48} :	103023223311	333103101002	233112332122	003311011212	200131301101	323012133201
	113322032031	112333202132	213213302213	300122133310	012230211333	132023132103,
M_{49} :	323021223333	111123103222	031110310120	223131231030	222333323301	321232331021
	113322230213	112313022330	031033120013	120102311130	032232031333	310203332323,
M_{50} :	121223003313	131301303020	213332132102	023131231232	022111123123	123012113001
	331120012233	310331220132	211013320011	100120313110	230212011113	310023130123
M_{51} :	103023223113	113123303222	233130310102	023131231230	000131303321	103212313003
	131300012011	312111000132	231033102213	320120111132	012030013313	310221312303
M_{52} :	103221003331	113323103220	213112132102	223311011210	002111101121	321210131001
	111320010013	330133222112	013013302231	122122113130	012010031311	310201110321,
M_{53} :	303221221313	313303303022	033330130302	023311233212	002311123323	121012133001
	333122230033	110131202130	211211122033	300322333312	030032031113	312001332321,
$M_{54}:$	103023221133	313103301202	011312330302	023331013210	220331103123	121210111201
	313122030031	132111220312	013213320231	120100313110	010032011113	310001332321,
M_{55} :	303023003313	111301123002	233110310320	201111233010	202133121303	323010131003
	311300210033	110111200330	211033102211	120302333112	212232213331	110201310123,
$M_{56}:$	103023203113	133123123222	031310330122	001133231030	002111303323	123012333221
	333100232233	110113202132	233011320013	320102113332	010210231333	330003312101,
$M_{57}:$	321003003131	311323123002	211310112320	223333233210	222133123321	103230113203
	313300210031	132333222112	031033122031	122120313332	030212233333	112203132303

Figure 1: New self-dual \mathbb{Z}_4 -codes of length 24 and $d_L = 10$ (continued)