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Abstract

In this paper, we study the residue codes of extremal Type II Z4-codes of length
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1 Introduction

In this paper, we study the residue codes of extremal Type II Z4-codes of length 24 and

their relationship to the famous moonshine vertex operator algebra (VOA). The main
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result is a complete classification of all residue codes of extremal Type II Z4-codes of

length 24. Some corresponding results about the structure codes of the moonshine vertex

operator algebra are also discussed. Since the residue code of an extremal Type II Z4-code

of length 24 is contained in some binary doubly even self-dual codes and binary doubly

even self-dual codes of length 24 are classified in [PS75], we can list all binary doubly

even codes B satisfying the condition that its dual code B⊥ is even and B⊥ has minimum

weight ≥ 4. It turns out that there are 179 such codes up to equivalence (Table 1). Then,

by using the algorithm given in [Ra99], we determine all binary doubly even codes that can

be realized as the residue codes of some extremal Type II Z4-codes. There are 149 codes

that are realizable (Table 1). We also prove that if B′ ⊃ B is a weight 4 augmentation

of B (see Definition 3.1) and B is realized as the residue code of an extremal Type II Z4-

code, then B′ is also realized (Lemma 3.3). Not only does this result reduce the amount of

computation, but it also helps us to express the main result in a nicer form (Theorem 3.8).

Our main motivation, on the other hand, is to determine the possible 1
16

-codes of the

moonshine vertex operator algebra. We call a triply even code of length 48 a moonshine

code if it is a 1
16

-code of the moonshine vertex operator algebra. Given an extremal Type II

Z4-code C of length 24, one can obtain the Leech lattice by Construction A (Lemma 2.1),

A4(C) =
1

2
{(x1, . . . , xn) ∈ Zn | (x1 mod 4, . . . , xn mod 4) ∈ C} .

The code C determines a 4-frame of the Leech lattice, which will define a Virasoro frame

of the Leech lattice VOA [DGH98]. Since the Moonshine VOA V \ is constructed as a

Z2-orbifold from the Leech lattice VOA, the 4-frame of the Leech lattice also defines a

Virasoro frame of V \ and the corresponding moonshine code is the extended doubling

(see Definition 4.4) of the residue code of C (see [DGH98] and Proposition 4.6). We show

that the converse also holds and the extended doubling of a doubly even code B of length

24 is a moonshine code if and only if B is the residue code of some extremal Type II

Z4-code (Theorem 4.8). Together with our main result, this means that we know all the

moonshine codes which are extended doublings.

The organization of the paper is as follows. In Section 2, definitions and some basic

results of codes, which are used in this paper, are given. In Section 3, we classify residue

codes of extremal Type II Z4-codes of length 24. We also show that a binary doubly even

code is the residue code of an extremal Type II Z4-code of length 24 if and only if it can

be obtained by successive application of weight 4 augmentation to one of the codes listed

in Table 2. In Section 4, we study the structure codes of the moonshine vertex operator

algebra, which we call moonshine codes. In particular, we show that a binary triply even

code is a moonshine code if and only if it can be obtained by successive application of
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weight 8 augmentation to a moonshine code of minimum weight 16. As a consequence, we

also show that the direct sum of the extended doublings of its components are moonshine

codes.

2 Binary codes and Z4-codes

In this paper, we deal with binary codes and Z4-codes, and all binary codes and Z4-codes

are linear. In addition, codes mean binary codes unless otherwise specified. Let C be

a code of length n. The weight wt(x) of a codeword x ∈ C is the number of non-zero

coordinates. A code C is called even, doubly even and triply even if the weights of all

codewords of C are divisible by 2, 4 and 8, respectively. The dual code C⊥ of C is

defined as {x ∈ Zn
2 | 〈x, y〉 = 0 for all y ∈ C}, where 〈x, y〉 denotes the standard inner

product. A code C is self-orthogonal if C ⊂ C⊥, and C is self-dual if C = C⊥. Two codes

are equivalent if one can be obtained from the other by a permutation of coordinates.

Throughout this paper, we denote the all-one vector by 1 and the zero vector by 0. For

a code C of length n and a vector δ ∈ Zn
2 , we denote by 〈C, δ〉Z2 the code generated by

the codewords of C and δ.

For a Z4-code C of length n, define two codes:

C0 = {α mod 2 | α ∈ Zn
4 , 2α ∈ C} and C1 = {α mod 2 | α ∈ C}.

These codes C0 and C1 are called torsion and residue codes, respectively. It holds that

C1 ⊂ C0. For a Z4-code C, the dual code C⊥ is defined similarly to binary codes. Then

self-orthogonal codes and self-dual codes are also defined similarly. If C is self-dual, then

C1 is doubly even and C0 = C⊥
1 . The Euclidean weight of a codeword x = (x1, . . . , xn) of C

is n1(x) + 4n2(x) + n3(x), where nα(x) denotes the number of components i with xi = α

(α = 1, 2, 3). A Z4-code C is called a Type II Z4-code if C is self-dual and the Euclidean

weights of all codewords of C are divisible by 8. The minimum Euclidean weight dE of C
is the smallest Euclidean weight among all nonzero codewords of C. A Type II Z4-code

of length n and dE = 8bn/24c + 8 is called extremal. Two Z4-codes are equivalent if one

can be obtained from the other by permuting the coordinates and (if necessary) changing

the signs of certain coordinates.

Let C be a self-orthogonal Z4-code of length n. Define

A4(C) =
1

2
{(x1, . . . , xn) ∈ Zn | (x1 mod 4, . . . , xn mod 4) ∈ C} .

It is well-known that A4(C) is even unimodular if and only if C is Type II. The following

result is also well-known (cf. [BSBM97]).
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Lemma 2.1. Let C be a Type II Z4-code of length n. Then, C has minimum Euclidean

weight at least 16 if and only if A4(C) has minimum norm 4. In particular, for n = 24, C
is extremal if and only if A4(C) is isomorphic to the Leech lattice Λ.

Lemma 2.2. Let C be the residue code of an extremal Type II Z4-code of length 24. Then

C satisfies the following conditions:

C is doubly even; (1)

C 3 1; (2)

C⊥ has minimum weight at least 4. (3)

In particular, dim C ≥ 6.

Proof. For the proofs of the assertions (1), (2) and (3), see [CS93], [HSG99] and [Ha10],

respectively. It is known that a [24, k, 4] code exists only if k ≤ 18 [Br98]. This gives the

last assertion.

3 Classification of residue codes of extremal Type II

Z4-codes

In this section, we classify all residue codes of extremal Type II Z4-codes of length 24.

3.1 Weight 4 augmentation

Definition 3.1. Let C be a subcode of a doubly even code C ′ and let k be a positive

integer divisible by 4. We call C ′ a weight k augmentation of C if C ′ 6= C, and C ′ is

generated by C and a vector of weight k.

Recall that two lattices L and L′ are neighbors if both lattices contain a sublattice of

index 2 in common.

Lemma 3.2. Let Λ be an even unimodular lattice with minimum norm 4, and suppose

that α ∈ Λ satisfies ‖α‖2 = 4, where ‖α‖2 = 〈α, α〉. Define

Λα = {γ ∈ Λ | 〈α, γ〉 ≡ 0 (mod 2)}. (4)

If β ∈ Λ \ Λα, then

Λ′
α,β = Λα ∪ (

1

2
α + β + Λα) (5)

is an even unimodular lattice with minimum norm 4, which is a neighbor of Λ sharing

Λα.
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Proof. Since Λ is even, 1
2
α /∈ Λ = Λ∗. This implies that Λα is a sublattice of index 2 in Λ.

Clearly, 1
2
α ∈ Λ∗

α, and β ∈ Λ = Λ∗ ⊂ Λ∗
α, hence 1

2
α + β ∈ Λ∗

α. Since 2(1
2
α + β) ∈ Λα, we

conclude that Λ′
α,β is a unimodular lattice. Moreover, since 〈α, β〉 ≡ 1 (mod 2), we have

‖1
2
α + β‖2 ≡ 0 (mod 2). Thus Λ′

α,β is even.

It remains to show that Λ′
α,β has minimum norm 4. Since α ∈ Λα ⊂ Λ, it suffices to

show that

‖1

2
α + β + γ‖2 ≥ 4

for all γ ∈ Λα. This follows from the inequality

‖1

2
α + β + γ‖2 =

1

2
‖α + β + γ‖2 +

1

2
‖β + γ‖2 − 1 ≥ 3,

noting that Λ′
α,β is even.

The following lemma is very useful for our classification.

Lemma 3.3. Let C be a Type II Z4-code of length n with minimum Euclidean weight 16.

Let a ∈ Zn
2 \ C1. Suppose a + C1 has a vector of weight 4 and the code 〈C1, a〉Z2 is doubly

even. Then there exists a Type II Z4-code C ′ such that the minimum Euclidean weight is

16, C ′
1 = 〈C1, a〉Z2 and A4(C ′) is a neighbor of A4(C).

Proof. By the assumption, Λ = A4(C) is an even unimodular lattice with minimum norm

4. Without loss of generality, we may also assume a has weight 4. Let e1, . . . , en be the

standard orthonormal basis of Rn, and let

α =
∑

i∈supp(a)

ei,

where supp(a) denotes the support of a. Since 〈C1, a〉Z2 is self-orthogonal, we have a ∈
C⊥

1 = C0. Thus, α ∈ Λ and ‖α‖2 = 4. Define Λα by (4). Since a /∈ C1 = C⊥
0 , there exists

b ∈ C0 such that 〈a, b〉 = 1. Let β ∈ Zn be a vector satisfying β mod 2 = b. Then, b ∈ C0

implies β ∈ Λ. Moreover, 〈a, b〉 = 1 implies 〈α, β〉 ≡ 1 (mod 2). Thus Lemma 3.2 implies

that the lattice Λ′
α,β defined by (5) is an even unimodular lattice with minimum norm 4,

which is a neighbor of Λ. Since the standard 4-frame {2ei}n
i=1 is contained in Λα ⊂ Λ′

α,β,

there exists a Type II Z4-code C ′ such that A4(C ′) = Λ′
α,β.

Since

C1 = {γ mod 2 | 1

2
γ ∈ Λ}

= {γ mod 2 | 1

2
γ ∈ Λα} ∪ {γ mod 2 | 1

2
γ ∈ β + Λα}
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= {γ mod 2 | γ ∈ 2Λα}, (6)

we have

C ′
1 = {γ mod 2 | 1

2
γ ∈ Λ′

α,β}

= {γ mod 2 | 1

2
γ ∈ Λα} ∪ {γ mod 2 | 1

2
γ ∈ 1

2
α + β + Λα} (by (5))

= {γ mod 2 | γ ∈ 2Λα} ∪ {γ mod 2 | γ ∈ α + 2Λα}
= C1 ∪ (a + C1) (by (6))

= 〈C1, a〉Z2 .

Since A4(C ′) has minimum norm 4, C ′ has minimum Euclidean weight at least 16 by

Lemma 2.1. Since C ′
0 ⊃ C ′

1 3 a and wt(a) = 4, there is a codeword of Euclidean weight

16 in C ′. Hence, the minimum Euclidean weight of C ′ is exactly 16.

A partial converse of the above lemma also holds.

Lemma 3.4. Let C be a Type II Z4-code of length n with minimum Euclidean weight 16.

Suppose a ∈ C1 and wt(a) = 4. Then there exists a Type II Z4-code C ′ of length n such

that the minimum Euclidean weight is 16, C ′
1 $ 〈C ′

1, a〉 = C1 and A4(C ′) is a neighbor of

A4(C).

Proof. By the assumption, Λ = A4(C) is an even unimodular lattice with minimum norm

4. We may assume without loss of generality a1 = 1 in a = (a1, . . . , an). Since a ∈ C1,

there exists α′ = (α′
1, . . . , α

′
n) ∈ Zn such that α′ mod 2 = a and

1

2
α′ ∈ Λ. (7)

We may assume without loss of generality

α′
i = ±1 (i ∈ supp(a)).

Define α = (α1, . . . , αn) ∈ Zn by

αi =


−α′

1 if i = 1,

α′
i if i ∈ supp(a) \ {1},

0 otherwise,
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and set c = 1
2
(α − α′) mod 2 ∈ Zn

2 . Then α ∈ Λ, ‖α‖2 = 4, and

α mod 2 = α′ mod 2 = a, (8)

〈α, α′〉 = 2, (9)

〈a, c〉 = 1. (10)

Define Λα by (4), and set

β = −1

2
α′ ∈ Λ.

Then by (9), we have β ∈ Λ \ Λα. Thus Lemma 3.2 implies that the lattice Λ′
α,β defined

by (5) is an even unimodular lattice with minimum norm 4, which is a neighbor of Λ.

Since α ∈ Zn, the standard 4-frame of Λ is contained in Λα. This implies that there exists

a Type II Z4-code C ′ of length n such that Λ′
α,β = A4(C ′).

Since

Λα = {1

2
γ ∈ Λ | 〈α,

1

2
γ〉 ≡ 0 (mod 2)} (by (4))

= {1

2
γ ∈ Λ | 〈α − α′,

1

2
γ〉 ≡ 0 (mod 2)} (by (7))

= {1

2
γ ∈ Λ | 〈c, γ mod 2〉 = 0}, (11)

we have

C ′
1 = {γ mod 2 | 1

2
γ ∈ Λ′

α,β}

= {γ mod 2 | 1

2
γ ∈ Λα} ∪ {γ mod 2 | 1

2
γ ∈ 1

2
α + β + Λα} (by (5))

= {γ mod 2 | 1

2
γ ∈ Λα} ∪ {γ mod 2 | γ ∈ α − α′ + 2Λα}

= {γ mod 2 | 1

2
γ ∈ Λα} (by (8))

= {γ mod 2 | 1

2
γ ∈ Λ, 〈c, γ mod 2〉 = 0} (by (11))

= {b ∈ C1 | 〈b, c〉 = 0}.

It follows from (10) that a 6∈ C ′
1, and hence C ′

1 $ 〈C ′
1, a〉 = C1.

Since A4(C ′) has minimum norm 4, C ′ has minimum Euclidean weight at least 16 by

Lemma 2.1. Since a ∈ C1 ⊂ C0 ⊂ C ′
0 and wt(a) = 4, there is a codeword of Euclidean

weight 16 in C ′. Hence, the minimum Euclidean weight of C ′ is exactly 16.

In Section 4, we shall give analogues of Lemmas 3.3 and 3.4 for moonshine codes.
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Definition 3.5. We say that a code C of length 24 satisfying (1)–(3) is realizable if C

can be realized as the residue code of some extremal Type II Z4-code.

By Lemmas 3.3 and 3.4, we have the following corollary.

Corollary 3.6. A doubly even code B of length 24 is realizable if and only if B can be

obtained by successive weight 4 augmentations from a realizable code with minimum weight

8.

3.2 Complete classification

There exist nine inequivalent doubly even self-dual codes of length 24 [PS75]. The ex-

tended Golay code g24 is the unique doubly even self-dual [24, 12, 8] code, and the other

codes have minimum weight 4 and these codes are described by specifying the subcodes

spanned by the codewords of weight 4, namely, d2
12, d10e

2
7, d

3
8, d

4
6, d24, d

6
4, e

3
8, d16e8. Since

any code C of length 24 satisfying (1)–(3) is contained in a doubly even self-dual code of

length 24, the classification of codes C satisfying (1)–(3) can be done by taking succes-

sively subcodes of codimension 1 starting from doubly even self-dual codes. This method

allows us to classify all codes satisfying (1)–(3). We list in the second column of Ta-

ble 1 the numbers of inequivalent [24, k] codes satisfying (1)–(3). We remark that this

classification is of independent interest, as it forms a basis for a possible classification of

extremal Type II Z4-codes of length 24.

Table 1: Numbers of inequivalent codes of length 24 satisfying (1)–(3)

Dimensions k Total Rk,8 Rk,4 Nk,8 Nk,4

12 9 1 8 0 0

11 21 1 20 0 0

10 49 3 44 0 2

9 60 6 40 4 10

8 32 4 16 8 4

7 7 3 2 2 0

6 1 1 0 0 0

Rk,d = the number of inequivalent realizable [24, k, d] codes.

Nk,d = the number of inequivalent non-realizable [24, k, d] codes.

We use the algorithm of Rains [Ra99] to determine if a given [24, k] code C satisfying

(1)–(3) is realizable or not. The algorithm is described in the form of the proof of [Ra99,
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Theorem 3] for classifying self-dual Z4-codes, and its modification to Type II Z4-codes is

straightforward. Here, we describe the algorithm briefly. We first construct the action of

the automorphism group Aut(C) of C on the quotient Q(C) of the 1+ k(k−1)
2

dimensional

space of all Type II Z4-codes C with C1 = C, by column negations. This defines a

homomorphism from Aut(C) to AGL(m, 2), where m = dim Q(C), and the orbits are in

one-to-one correspondence with equivalence classes of Type II Z4-codes C with C1 = C.

By enumerating orbit representatives, we obtain all Type II Z4-codes C with C1 = C up

to equivalence. If none of the codes C with C1 = C is extremal, we conclude that C is non-

realizable. This algorithm can be executed when dim C ≤ 10, since the maximum value

of m turns out to be 26. Note that Rains [Ra99, p. 220] in 1999 commented that direct

orbit finding of a 26-dimensional matrix group is somewhat tricky. However, with 10GB

of memory, such a computation can be done without problem nowadays. In particular,

we obtain the following result.

Proposition 3.7. Up to equivalence, there is a unique extremal Type II Z4-code of length

24 whose residue code has dimension 6.

We denote this code by C\ and its generator matrix is given in Figure 1.



1111 1111 1111 1111 0000 0000
0200 0000 1111 3111 0002 0000
1111 1111 0000 0000 1111 1111
0100 1011 1013 0102 1011 0100
1110 0001 1130 0201 0001 1110
0111 1000 3020 0111 0111 1000
0000 0000 2022 0200 0000 0000
0000 0000 2220 0002 0000 0000
0000 0000 2000 0222 0000 0000
0200 2022 0000 0000 0000 0000
2220 0002 0000 0000 0000 0000
0222 2000 0000 0000 0000 0000
0200 0002 2020 0000 0000 0000
0200 2000 2000 0200 0000 0000
0220 0000 2000 0002 0000 0000
0200 0002 0000 0000 0002 0200
0200 2000 0000 0000 0022 0000
0220 0000 0000 0000 0002 2000



Figure 1: A generator matrix of the extremal Type II Z4-code C\
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When dim C = 11 or 12, the value of m ranges from 33 to 46, and a direct method will

fail. However, we randomly found an extremal Type II Z4-code C with C1 = C without

finding all inequivalent Type II Z4-codes. The two doubly even self-dual codes with labels

g24 and d24 can be realized as the residue codes of some extremal Type II Z4-codes of

length 24 [CS97]. Moreover, Young and Sloane claim to have found an extremal Type II

Z4-code C with C = C1 for each C of the remaining seven codes (cf. [CS97, Postscript]),

although no explicit information about such codes has been published since then. In

Appendix A.1, we give such an extremal Type II Z4-code for each of the seven doubly

even self-dual codes. In particular, our result for the case dim C = 12 confirms the claim

in [CS97, Postscript].

In Table 1, we list the number Rk,d of inequivalent realizable [24, k, d] codes. All

such codes with d = 8 are listed in Table 2, where C6 = C\
1 and C7,1, C7,2 are defined

in Appendix A.2, and the codes other than C6, C7,1, C7,2 are generated by the code C

and the vectors v listed in Table 3. Note that C6, C7,1, C7,2 are minimal subject to (1)–

(3), with respect to the subspace relation. Also, in Table 1, we list the number Nk,d of

inequivalent non-realizable [24, k, d] codes. Maximal codes (with respect to the subspace

relation) among these codes are listed in Table 4, where the codes are generated by C6

and the vectors v listed in Table 5. All other non-realizable codes can be obtained from a

maximal one; see Theorem 3.8 (iii) below. Also, in Table 4, we give the dimension m of

the quotient space Q(C) and the number N of the equivalence classes of Type II Z4-codes

C with C1 = C for the maximal non-realizable codes C. Generator matrices of all codes

in Table 1 can be obtained electronically from

http://www.math.is.tohoku.ac.jp/∼munemasa/de24extremalresidue.htm

The following is the main theorem of the paper.

Theorem 3.8. Let C be a doubly even code of length 24 containing 1 such that C⊥ has

minimum weight at least 4. Then the following are equivalent.

(i) the code C is the residue code of some extremal Type II Z4-code;

(ii) successive applications of weight 4 augmentation to one of the codes in Table 2 gives

a code equivalent to C;

(iii) none of the codes in Table 4 can be obtained by successive applications of weight 4

augmentation to a code equivalent to C.

Proof. That (i) is equivalent to (ii) follows from Corollary 3.6. The implication (i) =⇒ (iii)

follows from Lemma 3.3. The implication (iii) =⇒ (ii) can be verified by classifying all the
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pairs (S,C) such that C is a weight 4 augmentation of a subcode S of C of codimension

1.

Table 2: Realizable codes with minimum weight 8

Codes C v

C6

C7,1

C7,2

C7,3 C6 v7

C8,1 C7,3 v81

C8,2 C7,3 v82

C8,3 C7,3 v83

C8,4 C6 v841, v842

C9,1 C8,3 v91

C9,2 C8,4 v92

Codes C v

C9,3 C7,3 v931, v932

C9,4 C8,3 v94

C9,5 C8,1 v95

C9,6 C8,3 v96

C10,1 C9,4 v101

C10,2 C9,4 v102

C10,3 C9,4 v103

C11 C10,1 v11

C12 C11 v12

4 Moonshine vertex operator algebra and its struc-

ture codes

In this section, we study the relationship between the moonshine vertex operator algebra

and extremal Type II Z4-codes. Our notations for vertex operator algebras (VOA) and

framed VOAs are standard. We shall refer to [FLM88, DGH98, LY08] for details.

4.1 Moonshine codes and extremal Type II Z4-codes

Recall that the moonshine VOA V \ is constructed by [FLM88] as a Z2-orbifold of the

Leech lattice VOA VΛ. Namely,

V \ = ṼΛ = (VΛ)θ ⊕ (V T
Λ )θ, (12)

where θ is an automorphism of VΛ lifted by the (−1)-isometry of the Leech lattice Λ,

V T
Λ = V T

Λ (θ) is the unique irreducible θ-twisted module for VΛ and (V T
Λ )θ is the submodule

fixed by θ (see [FLM88]). It was shown in [DMZ94] that V \ is a framed VOA, i.e., V \

contains a subVOA T , called a frame, which is isomorphic to the tensor product of 48

copies of the simple Virasoro VOA L(1
2
, 0).
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Table 3: Vectors for realizable codes

Vectors

v7 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0)
v81 (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1)
v82 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1)
v83 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
v841 (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0)
v842 (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)
v91 (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0)
v92 (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1)
v931 (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1)
v932 (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1)
v94 (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0)
v95 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1)
v96 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1)
v101 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1)
v102 (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1)
v103 (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1)
v11 (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1)
v12 (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1)

Table 4: Maximal non-realizable codes

Codes C v m N

N9,1 C6 w7, w81, w91 14 159
N9,2 C6 w7, w81, w92 14 372
N9,3 C6 w7, w81, w93 14 170
N9,4 C6 w7, w82, w94 14 388
N9,5 C6 w7, w82, w95 14 228

Codes C v m N

N9,6 C6 w7, w82, w96 14 254
N9,7 C6 w7, w82, w97 14 287
N9,8 C6 w7, w82, w98 14 488
N10,1 C6 w7, w81, w9, w101 23 299
N10,2 C6 w7, w81, w9, w102 23 378
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Table 5: Vectors for non-realizable codes

Vectors

w7 (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1)
w81 (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1)
w82 (0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1)
w91 (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0)
w92 (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1)
w93 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
w94 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1)
w95 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0)
w96 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0)
w97 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1)
w98 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0)
w9 (0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0)

w101 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1)
w102 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

Given a holomorphic framed VOA V and a frame T , one can associate a triply even

code D, called the structure code or the 1
16

-code of V (cf. [DGH98, LY08]). Let C = D⊥.

Then V can be decomposed as V = ⊕β∈DV β such that V β, β ∈ D, are irreducible V 0-

modules and V 0 is isomorphic to the code VOA MC as constructed in [Mi98]. However,

the structure code D depends on the choice of T and there are many possible choices for

the frame T in general. The main purpose of this section is to study the structure codes

of the moonshine VOA V \.

Definition 4.1. We call a triply even code of length 48 a moonshine code if it can be

realized as a 1
16

-code of V \ with respect to some Virasoro frame.

Remark 4.2. A holomorphic framed VOA V of central charge 24 is said to be extremal if

V1 = 0. In [LY07] (see also [LY08]), it was shown that any extremal holomorphic framed

VOA V of central charge 24 is isomorphic to the moonshine VOA. Therefore, the notion

of moonshine codes can be regarded as a VOA-analogue of the residue codes of extremal

Type II Z4-codes.

Lemma 4.3 ([DGH98, Mi04]). Let D be a moonshine code. Then D satisfies the following

13



conditions:

D is triply even, (13)

D 3 1, (14)

D⊥ has minimum weight at least 4. (15)

Moreover, dim D ≥ 7.

Now, let us define two linear maps d, ` : Zn
2 → Z2n

2 such that

d(a1, a2, . . . , an) = (a1, a1, a2, a2, . . . , an, an),

`(a1, a2, . . . , an) = (a1, 0, a2, 0, . . . , an, 0),

for any (a1, a2, . . . , an) ∈ Zn
2 .

Definition 4.4. Let C be a code of length n. We define

D(C) = 〈d(C), `(1)〉Z2

to be the code generated by d(C) = {d(x) | x ∈ C} and `(1). We call the code D(C) the

extended doubling of C.

Lemma 4.5. If C is a doubly even [8n, k] code, then the extended doubling D(C) is a

triply even [16n, k + 1] code. Moreover, if C⊥ is even and has minimum weight ≥ 4, then

D(C)⊥ is even and has minimum weight ≥ 4.

Proof. Straightforward.

The following result is essentially proved in [DGH98] (see also [LY08]).

Proposition 4.6. Let C be an extremal Type II Z4-code of length 24. Then the extended

doubling D(C1) can be realized as a 1
16

-code of the moonshine VOA V \.

The converse also holds. First let us recall a Z2-orbifold construction for holomorphic

framed VOAs (see Theorem 8 of [LY08]).

Lemma 4.7 ([LY08]). Let V =
⊕

β∈D V β be a framed VOA and C = D⊥. Let δ ∈ Zn
2 \C

be a vector of even weight and denote D0 = {β ∈ D | 〈β, δ〉 = 0}. Then

Ṽ (δ) =
⊕
β∈D0

(
V β ⊕ (Mδ+C ×MC

V β)
)

is also a holomorphic framed VOA and D0 is the 1
16

-code, where ×MC
denotes the fusion

product with respect to the VOA MC.
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The following is the main theorem of this section.

Theorem 4.8. Let B be a doubly even code of length 24. Then, the extended doubling

D(B) is a moonshine code if and only if there exists an extremal Type II Z4-code C of

length 24 with B = C1.

Proof. The “if” part follows from Proposition 4.6. To prove the converse, suppose that

D = D(B) is a moonshine code.

Let δ = (1, 1, 0, 0, . . . , 0) ∈ Z48
2 and C = D⊥. Since the minimum weight of C is at

least 4 by Lemma 4.3, we have δ /∈ C. By Lemma 4.7, the 1
16

-code of the Z2-orbifold VOA

Ṽ \(δ) is D0 = {β ∈ D(B) | 〈β, δ〉 = 0} = d(B). Since D⊥ = 〈`(B⊥), d(〈1〉⊥Z2
)〉Z2 , we have

(D0)⊥ ⊃ 〈d(〈1〉⊥Z2
), δ〉Z2 = d(Z24

2 ).

Thus, Ṽ \(δ) contains a subalgebra Md(Z24
2 ), which is isomorphic to the lattice VOA

V ⊗24√
2A1

(cf. [LY08]). Hence, Ṽ \(δ) must be isomorphic to a lattice VOA VL for some even

unimodular lattice L (cf. [Do93]), and L/(
√

2A⊕24
1 ) defines a Type II Z4-code C with

C1 = B. By [LY07, Proposition 4.2] (see also [DM04]), Ṽ \(δ) is isomorphic to the Leech

lattice VOA VΛ. Therefore, L is isomorphic to Λ and C is an extremal Type II Z4-code

by Lemma 2.1.

Together with Theorem 3.8, we can determine all the moonshine codes which are

extended doublings.

4.2 Weight 8 augmentation and other moonshine codes

In this subsection, we shall give analogues of Lemmas 3.3 and 3.4 for moonshine codes.

Recall that the full automorphism group Aut(V \) of V \ is the Monster simple group

M and it has two conjugacy classes of involutions denoted by 2A and 2B in [ATLAS].

Their Z2-twisted modules V T (2A) and V T (2B) were constructed in [La00] and [Hu96],

respectively. Their minimal weights are also determined.

Lemma 4.9. (i) The minimal weight of the 2A-twisted module V T (2A) is 1
2
, and

dim(V T (2A))1/2 = 1.

(ii) The minimal weight of the 2B-twisted module V T (2B) is 1, and dim(V T (2B))1 = 24.

The structure of the corresponding Z2-orbifold VOA is also determined.

Lemma 4.10 ([Hu96, La00, LY08, Ya05]). Let g be an involution of Aut(V \) = M. Then

the Z2-orbifold VOA Ṽ \(g) is isomorphic to V \ if g belongs to 2A, VΛ if g belongs to 2B.
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The next theorem is an analogue of Lemma 3.3 for moonshine codes.

Theorem 4.11. Suppose that D is a moonshine code. Let ξ ∈ Z48
2 \ D be such that

D′ = 〈D, ξ〉Z2 is triply even. If ξ +D has minimum weight 8, then D′ is also a moonshine

code.

Proof. Let D be the 1
16

-code of V \ with respect to a Virasoro frame T and C = D⊥. Let

V \ =
⊕

β∈D V β and C0 = {α ∈ C | 〈α, ξ〉 = 0}. Suppose that ξ + D has minimum weight

8. Without loss of generality, we may assume that ξ = (ξ1, . . . , ξ48) has weight 8.

Set

hξ
i =

0 if ξi = 0,

1
16

if ξi = 1,

and let U be an irreducible MC0-module which contains
⊗48

i=1 L(1
2
, hξ

i ) as a T -submodule.

Then the minimal weight of U is 1
16

wt(ξ) = 1
2
. By [LY08, Theorem 1], there exists an

automorphism g ∈ Aut(V ) of order 2 such that g(V β) = V β for all β ∈ D. Let V β,± be

the ±1-eigenspaces of g on V β. Then V β ×MC0 U = (V β,+ ×MC0 U)⊕ (V β,− ×MC0 U) is a

sum of two irreducible MC0-modules. One has weights in Z and the other has weights in
1
2

+ Z (cf. [La00, LY08]). Moreover, the MC0-module

V T (g) =
⊕
β∈D

V β ×MC0 U (16)

forms an irreducible g-twisted module of V . For each β ∈ D, let Uβ = V β,+ and let U ξ+β

be the integral part of V β ×MC0 U . Then by Theorem 8 of [LY08],

Ṽ \(g) =
⊕
β∈D

(
Uβ ⊕ U ξ+β

)
is a holomorphic framed VOA whose 1

16
-code is D′ = 〈D, ξ〉Z2 .

Since U is isomorphic to MC0 ×MC0 U ⊂ V 0×MC0 U , the minimal weight of (V \)T (g) is

≤ 1
2
. Thus, the minimal weight of (V \)T (g) is 1

2
and (V \)T (g) is a 2A-twisted module by

Lemma 4.9. Therefore, the Z2-orbifold VOA Ṽ \(g) is isomorphic to V \ by Lemma 4.10

and we have the desired conclusion.

By Lemma 4.5, the extended doublings D(e8), D(d+
16) and D(e8 ⊕ e8) are triply even,

where e8 denotes the extended Hamming code of length 8 and d+
16 denotes the unique

indecomposable doubly even self-dual code of length 16. Thus, D(e8) ⊕ D(e8) ⊕ D(e8),

D(e8 ⊕ e8) ⊕ D(e8) and D(d+
16) ⊕ D(e8) are also triply even codes of length 48. By

Theorem 4.11, we also have the following result.
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Proposition 4.12. The triply even codes D(e8)⊕D(e8)⊕D(e8), D(e8 ⊕ e8)⊕D(e8) and

D(d+
16) ⊕ D(e8) are moonshine codes.

Proof. We note that

D(e8 ⊕ e8) ⊕ D(e8) = 〈D(e8 ⊕ e8 ⊕ e8), ((0, 0)16, (1, 0)8)〉Z2 ,

D(e8) ⊕ D(e8) ⊕ D(e8) = 〈D(e8 ⊕ e8) ⊕ D(e8), ((1, 0)8, (0, 0)16)〉Z2 ,

D(d+
16) ⊕ D(e8) = 〈D(d+

16 ⊕ e8), ((0, 0)16, (1, 0)8)〉Z2 .

The extended doublings D(e8 ⊕ e8 ⊕ e8) and D(d+
16 ⊕ e8) of the two decomposable doubly

even self-dual codes of length 24 are moonshine codes (see Table 1). Hence, we have the

desired result by Theorem 4.11.

Remark 4.13. The three codes above have dimensions greater than 13, while the extended

doubling of any doubly even self-dual code has dimension 13 by Lemma 4.5. Hence, none

of the three codes is equivalent to any extended doubling of a doubly even self-dual code.

The next theorem is a partial converse of Theorem 4.11, which can also be viewed as

an analogue of Lemma 3.4 for moonshine codes.

Theorem 4.14. Let D be a moonshine code. Suppose η ∈ D and wt(η) = 8. Then there

exists a moonshine code D′ such that D′ $ 〈D′, η〉 = D.

Proof. Let D be the 1
16

-code of V \ with respect to a frame T and C = D⊥. Then

V \ =
⊕

β∈D V β and V β, β ∈ D, are irreducible modules for the corresponding code VOA

V 0 = MC .

Set

hη
i =

0 if ηi = 0,

1
16

if ηi = 1.

Let U be an irreducible MC-module which contains
⊗48

i=1 L(1
2
, hξ

i ) as a T -submodule

such that the fusion product V η ×MC
U has integral weights. Note that V η ×MC

U is

isomorphic to Mα+C for some α ∈ Z48
2 . Since the minimal weight of U is 1

16
wt(η) = 1

2
, we

have 〈α, η〉 6= 0 and hence α /∈ C. In this case, we have a Z2-twisted module

(V \)T =
⊕
β∈D

V β ×MC
U =

⊕
β∈D

V β ×MC
Mα+C .

By Lemma 4.9, (V \)T is a 2A-twisted module of V \.
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Now set D′ = {β ∈ C | 〈α, β〉 = 0}. Then D′ $ 〈D′, η〉 = D. By Lemmas 4.7 and

4.10, the Z2-orbifold VOA

Ṽ (α) =
⊕
β∈D′

(
V β + V β ×MC

Mα+C

)
is isomorphic to the moonshine VOA V \. Therefore, D′ is a moonshine code.

Corollary 4.15. A triply even code D of length 48 is a moonshine code if and only

if D can be obtained by successive weight 8 augmentations from a moonshine code with

minimum weight 16.

Remark 4.16. After this work has been completed, triply even codes of length 48 were

classified by Betsumiya and Munemasa [BM10]. Their work is, in some sense, comple-

mentary to ours. In particular, the classification of moonshine codes can be reduced to

checking the realizability of few triply even codes with minimum weight 16 which are not

extended doublings based on their work and Theorems 4.11 and 4.14 in this work.

A Appendix

A.1 Extremal Type II Z4-codes of length 24 whose residue codes

are doubly even self-dual codes

Here, we give explicitly extremal Type II Z4-codes C of length 24 with C = C1 for each

C of the seven doubly even self-dual codes with labels d2
12, d10e

2
7, d3

8, d4
6, d6

4, e3
8 and d16e8.

This is done by listing their generator matrices
[
I12 M

]
where M are as follows:

311222000022
112302000002
310010020022
130221220020
330202300020
121311130200
323111323220
103111322100
101133102210
101331322003
132202213331
213131331333



,



333220002022
132120002220
132012002022
332023220200
002220333202
213113033002
213113101200
233113312000
220002220131
121311022231
321111002301
123133202312



,



131000222202
132122020002
110232020022
220001310020
202001321022
013310313220
231133213000
121331120100
101131102032
301111300221
130221300133
231330002113



,



311222200002
130102222200
020213122002
220013010200
033301131202
213321132320
312230333300
121311003120
121130132010
303110112021
112203132233
031131002233



,
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311002220220
200333022220
220022311222
011031123102
121330332122
332121211120
301123121212
031110033232
312231130030
101231031201
310310303221
033123130021



,



213120000200
103102202202
132100002020
131022002202
222001310220
002012130200
220011032000
022211320222
202002022131
000020203233
222200023303
022202201310



and



211302200000
103102022022
332320022222
333020220220
022001331331
200230113111
220013033113
220231321111
002231110131
022013313031
220231133321
002233113310



,

respectively.

A.2 Two [24, 7] codes C7,1 and C7,2

Up to equivalence, there exist two [24, 7] codes which are minimal subject to (1)–(3) (see

Subsection 3.2). Here, we give generator matrices of the two [24, 7] codes. Since these

two codes along with C6 are used to define other codes in Tables 2 and 4, we define the

two codes by fixing the coordinates.

The first one C7,1 has generator matrixM6 M6 M6 M6

1 1 0 0

1 0 1 0

 ,

where M6 denotes a generator matrix of the parity check [6, 5, 2] code E6. In order to

construct the second one, we first construct a 6 × 12 bordered double circulant matrix

M12 =

[
1 0 0 1

0T I5 1T C5

]
=



100000011111

010000101001

001000110100

000100101010

000010100101

000001110010


,

where C5 denotes the adjacency matrix of a 5-cycle. The second one C7,2 has generator

matrix [
1 0

M12 M12

]
.
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