The locating-chromatic number of trees with maximum degree 3 or 4

Hilda Assiyatun ${ }^{1}$
${ }^{1}$ Combinatorial Mathematics Research Group ITB, email :hilda@math.itb.ac.id

Abstract

A k-coloring of G is a function $c: V(G) \rightarrow\{1,2, \ldots, k\}$ where $c(u) \neq c(v)$ for two adjacent vertices u and v in G and k is a positive integer. The partition $\pi=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ is induced by the k-coloring c of the vertices of G. The color code of vertex v is $c_{\pi}(v)=$ $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$ where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}$ for $1 \leq i \leq k$. If all distinct vertices of G have distinct color codes, then c is called a locating k-coloring of G. The locating chromatic number of G, denoted by $\chi_{L}(G)$ is the least integer k such that G has a locating k-coloring. In this talk we will discuss the locating-chromatic number of trees embedded in 2dimensional grid and binary trees. This is an attempt to answer an open problem of determining the locating-chromatic number of trees with maximum degree 3 or 4

