Resolvable Steiner designs and maximal arcs in projective planes

Vladimir D. Tonchev, Michigan Technological University

Let $D=\{X, \mathcal{B}\}$ be a Steiner $2-(v, k, 1)$ design with point set X, collection of blocks \mathcal{B}, and let v be a multiple of $k, v=n k$. A parallel class is a set of $v / k=n$ pairwise disjoint blocks that partition X, and a resolution is a partition R of \mathcal{B} into $r=(v-1) /(k-1)$ disjoint parallel classes. A design is resolvable if it admits a resolution. Two resolutions R_{1}, R_{2},

$$
R_{1}=P_{1}^{(1)} \cup P_{2}^{(1)} \cup \cdots P_{r}^{(1)}, \quad R_{2}=P_{1}^{(2)} \cup P_{2}^{(2)} \cup \cdots P_{r}^{(2)}
$$

are called compatible [1] if they share one parallel class, $P_{i}^{(1)}=P_{j}^{(2)}$, and $\left|P_{i^{\prime}}^{(1)} \cap P_{j^{\prime}}^{(2)}\right| \leq 1$ for $\left(i^{\prime}, j^{\prime}\right) \neq(i, j)$.

A maximal $(q(k-1)+k, k)$-arc in a finite projective plane of order $q=s k$ is a set A of $q(k-1)+k$ points such that every line is either disjoint form A, or meets A in exactly k points.

An upper bound on the maximum number of mutually compatible resolutions of a resolvable $2-(n k, k, 1)$ design D was proved in [1]. The bound is attainable if and only if D is embeddable as a maximal $(k q-q+k, k)$-arc in a projective plane of order $q=(v-k) /(k-1)$.

The maximal sets of mutually compatible resolutions of 2-(52, 4,1$)$ designs associated with known and newly found maximal (52,4)-arcs in projective planes of order 16 were computed recently in [2]. It was shown that some 2$(52,4,1)$ designs can be embedded as maximal arcs in nonisomorphic planes. This phenomenon establishes new links between the known planes of order 16 , and motivates the problem of completing the classification of maximal $(52,4)$-arcs, initiated in [3].

References

[1] Vladimir D. Tonchev, On resolvable Steiner 2-designs and maximal arcs in projective planes, Designs, Codes and Cryptography 84, No. 1-2 (2017), 165 - 172.
[2] M. Gezek, T. Wagner and V. D. Tonchev, Maximal arcs in projective planes of order 16 and related designs, Advances in Geometry, to appear.
[3] N. Hamilton, S. Stoichev, and V. D. Tonchev, Maximal arcs and disjoint maximal arcs in projective planes of order 16, J. Geometry 67 (2000), 117-126.

