Counting Steiner triple systems of given 2-rank and 3-rank

Vladimir D. Tonchev, Michigan Technological University

This lecture is based on joint work with Dieter Jungnickel [3], [4].
By a famous result of Doyen, Hubaut and Vandensavel [2], the 2-rank of the incidence matrix of a Steiner triple system on $2^{n}-1$ points is at least $2^{n}-1-n$, and equality holds only for the classical design of points and lines in the binary projective geometry $P G(n-1,2)$. It follows from results of Assmus [1] that, given any integer t with $1 \leq t \leq n-1$, there is a binary linear code $C_{n, t}$ of length $2^{n}-1$ and dimension $2^{n}-1-n+t$ that contains representatives of all isomorphism classes of $\operatorname{STS}\left(2^{n}-1\right)$ of 2-rank at most $2^{n}-1-n+t$. Using a mixture of coding theoretic, geometric, design theoretic and combinatorial arguments, we prove a general formula for the number of distinct $S T S\left(2^{n}-1\right)$ having 2 -rank at most $2^{n}-1-n+t$ contained in this code. This generalizes previously known results, which only cover the cases $t \leq 3$ (Tonchev [5], V. Zinoviev and D. Zinoviev [7], D. Zinoviev [6]). Finally, using our recent systematic study of the ternary linear codes of Steiner triple systems [4], we obtain analogous results for the ternary case, and a formula for the number of $S T S\left(3^{n}\right)$ having 3 -rank at most $3^{n}-1-n+t$.

References

[1] E. F. Assmus, Jr., On 2-ranks of Steiner triple systems, Electronic J. Combinatorics 2 (1995), paper \#R9.
[2] J. Doyen, X. Hubaut, M. Vandensavel, Ranks of incidence matrices of Steiner triple systems, Math. Z. 163 (1978), 251 - 259.
[3] D. Jungnickel and V. D. Tonchev, Counting Steiner triple systems with classical parameters and prescribed rank, arXiv: 1709.06044, 18 September 18, 2017.
[4] D. Jungnickel and V. D. Tonchev, On Bonisoli's theorem and the block codes of Steiner triple systems, Des. Codes Cryptogr., DOI 10.1007/s10623-017-0406-9.
[5] V. D. Tonchev, A mass formula for Steiner triple systems $\operatorname{STS}\left(2^{n}-1\right)$ of 2-rank $2^{n}-n$, J. Combin. Th. Ser. A 95 (2001), 197 - 208.
[6] D. V. Zinoviev, The number of Steiner triple systems $S\left(2^{m}-1,3,2\right)$ of rank $2^{m}-m+2$ over F_{2}, Discr. Math. 339 (2016), 2727-2736.
[7] V. A. Zinoviev, D. V. Zinoviev, Steiner triple systems $S\left(2^{m}-1,3,2\right)$ of rank $2^{m}-m+1$ over F_{2}, Problems of Information Transmission 48 (2012), 102-126.

