Orthogonality of subalgebras and Latin squares

Akihiro Munemasa
Department of Mathematics
Kyushu University

September, 1991

By a $*$-subalgebra of the matrix algebra $M_{n}(\mathbf{C})$ we mean a subalgebra containing the identity closed under $*$ (conjugate transpose). A maximal abelian $*$-subalgebra of $M_{n}(\mathbf{C})$ is unitarily conjugate to the subalgebra of diagonal matrices. Two maximal abelian *-subalgebras A, B of $M_{n}(\mathbf{C})$ are said to be orthogonal (or an orthogonal pair) if the following condition is satisfied.

$$
\operatorname{tr}(x) \operatorname{tr}(y)=n \operatorname{tr}(x y) \quad \text { for all } x \in A, y \in B
$$

Geometric meaning of the above condition is that $A \cap 1^{\perp}$ and $B \cap 1^{\perp}$ are orthogonal with respect to the inner product $\langle x \mid y\rangle=\operatorname{tr}\left(x y^{*}\right)$. For example, the subalgebra A of diagonal matrices is orthogonal to the subalgebra B generated by the matrix

$$
\left(\begin{array}{llll}
1 & & & 1 \\
& \ddots & & \\
& & 1 &
\end{array}\right)
$$

A pair of orthogonal maximal abelian *-subalgebras will be called standard if it is unitarily conjugate to the above pair (A, B). In 1983 Popa conjectured that if n is a prime, then any pair of orthogonal maximal abelian *-subalgebras of $M_{n}(\mathbf{C})$ is standard. The conjecture have been disproved, however.

Theorem 1 (de la Harpe-Jones [1], Munemasa-Watatani [4]) Ifn is a prime and $n \geq 7$ then there exists a non-standard orthogonal pair of maximal abelian *subalgebras of $M_{n}(\mathbf{C})$.

The construction of non-standard pair in the above theorem is based on Paley graph on n vertices.

Recently Kawanaka pointed out that our work is closely related to the work by Kostrikin et al [3], which we shall discuss below. An orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$ is a decomposition of $\mathfrak{s l}(n, \mathbf{C})$ into the direct sum of mutually orthogonal Cartan subalgebras. Note that $\mathfrak{s l}(n, \mathbf{C})$ is equipped with the Killing form with respect
to which orthogonality of Cartan subalgebra is defined. An orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$ exists if n is a prime power, but the existence is unknown if otherwise.

Popa [5] proposes an equivalent problem independently, in terms of maximal abelian $*$-subalgebras, i.e., Popa asks the maximum number of mutually orthogonal maximal abelian $*$-subalgebras of $M_{n}(\mathbf{C})$. This problem can be stated in terms of Cartan subalgebras of $\mathfrak{s l}(n, \mathbf{C})$ because of the following proposition.

Proposition 2 If H_{1} and H_{2} are orthogonal Cartan subalgebras of $\mathfrak{s l}(n, \mathbf{C})$, then $\left\langle H_{1}, 1\right\rangle$ and $\left\langle H_{2}, 1\right\rangle$ are orthogonal pair of maximal abelian $*$-subalgebras of $M_{n}(\mathbf{C})$. Conversely, if A, B are mutually orthogonal maximal abelian *-subalgebras of $M_{n}(\mathbf{C})$, then $A \cap \mathfrak{s l}(n, \mathbf{C})$ and $B \cap \mathfrak{s l}(n, \mathbf{C})$ are orthogonal Cartan subalgebras of $\mathfrak{s l}(n, \mathbf{C})$.

Proposition 3 There exists an orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$ if and only if there exist $n+1$ pairwise orthogonal maximal abelian $*$-subalgebras of $M_{n}(\mathbf{C})$.

There is a remarkable similarity between the existence of an orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$ and the existence of a complete set of mutually orthogonal Latin squares. Compare Proposition 2, Proposition 3 with Proposition 4, Proposition 5.

Consider $\mathbf{C}^{n^{2}}$ as a commutative \mathbf{C}-algebra and equip it with the natural hermitian inner product. Two subalgebras A, B are said to be orthogonal if $A \cap 1^{\perp}$ and $B \cap 1^{\perp}$ are orthogonal. With this convention we have the following.

Proposition 4 There exist s mutually orthogonal Latin squares of order n if and only if there exist $s+2$ pairwise orthogonal n-dimensional subalgebras of $\mathbf{C}^{n^{2}}$.

Proposition 5 There exists a complete set of mutually orthogonal Latin squares of order n if and only there exist $n+1$ pairwise orthogonal n-dimensional subalgebras of $\mathrm{C}^{n^{2}}$.

In 1987 D. N. Ivanov showed that an orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$ can be constructed from certain translation planes, and from non desargusian planes one can obtain a "non desarguesian" orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$, i.e., not unitarily conjugate to the one obtained from the desargusian plane.

Open Questions (i) From an affine plane (not necessarily a translation plane) can one construct orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$?
(ii) Does there exist an orthogonal decomposition of $\mathfrak{s l}(n, \mathbf{C})$ if n is not a prime power?

References

[1] P. de la Harpe and V. F. R. Jones, Paires de sous-algèbres semi-simples et graphes fortement réguliers, C. R. Acad. Sci. Paris, 311, Serie I (1990) 147-150.
[2] D. N. Ivanov, Orthogonal decomposition of Lie algebras of type $A_{p^{n}-1}$ and isotropic fiberings, Russian Math. Surveys 42:4 (1987), 141-152.
[3] A. I. Kostrikin, I. A. Kostrikin, and V. A. Ufnarovskii, Orthogonal decomposition of simple Lie algebras (type A_{n}), Trudy Mat. Inst. Steklov. 158 (1981), 105-120, 229.
[4] A. Munemasa and Y. Watatani, Paires orthogonaux de sous-*-algèbres et schèmes d'association, submitted.
[5] S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983) 253-268.

