Definition.

A Bose-Mesner (BM) algebra \mathcal{A} is a commutative subalgebra of $M_{X}(\mathrm{C})$ indexed by a finite set X, satisfying

$$
\mathcal{A} \ni I, J
$$

and closed under

- entrywise product (denoted by o)
- transposition
\mathcal{A} has two bases:
- adjacency matrices $A_{0}, A_{1}, \ldots A_{d}$ satisfying $A_{i} \circ A_{j}=\delta_{i j} A_{i}$.
- primitive idempotents $E_{0}, E_{1}, \ldots, E_{d}$ satisfying $E_{i} E_{j}=\delta_{i j} E_{i}$.

Definition.

A C-linear bijection $\tau: \mathcal{A} \longrightarrow \mathcal{A}$ is an automorphism of \mathcal{A} if

$$
\begin{aligned}
\tau(A B) & =\tau(A) \tau(B) \\
\tau(A \circ B) & =\tau(A) \circ \tau(B) \\
\tau\left(A^{T}\right) & =\tau(A)^{T}
\end{aligned}
$$

for all $A, B \in \mathcal{A}$.
\mathcal{A} is bipartite if

$$
\begin{aligned}
& X=X_{1} \cup X_{2}, \quad\left|X_{1}\right|=\left|X_{2}\right| \\
& \mathcal{A}=\mathcal{A}_{0} \oplus \mathcal{A}_{1}
\end{aligned}
$$

where

$$
\mathcal{A}_{0}=\left\{\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right)\right\} \quad \mathcal{A}_{1}=\left\{\left(\begin{array}{ll}
0 & * \\
* & 0
\end{array}\right)\right\}
$$

Theorem.

$\mathcal{A}=\mathcal{A}_{0} \oplus \mathcal{A}_{1}$: bipartite BM algebra
τ : automorphism of \mathcal{A}

Assume $\tau^{2}=1,\left.\tau\right|_{\mathcal{A}_{0}}=1_{\mathcal{A}_{0}}$.

Define $\sigma: \mathcal{A} \longrightarrow M_{X}(\mathbf{C})$ by

$$
\sigma(A)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
\tau(A)_{21} & A_{22}
\end{array}\right)
$$

Then $\sigma(\mathcal{A})$ is a BM algebra.

Note. $\sigma(A \circ B)=\sigma(A) \circ \sigma(B)$ but in general $\sigma(A B) \neq \sigma(A) \sigma(B)$.

Remark.

$\sigma(\mathcal{A})=\mathcal{A}_{0} \oplus \widehat{\mathcal{A}_{1}}$: bipartite BM algebra
$\sigma \tau \sigma^{-1}$: automorphism of $\sigma(\mathcal{A})$
$\left(\sigma \tau \sigma^{-1}\right)^{2}=1,\left.\sigma \tau \sigma^{-1}\right|_{\mathcal{A}_{0}}=\left.1\right|_{\mathcal{A}_{0}}$.
Thus by Theorem, we can define

$$
\sigma^{\prime}: \sigma(\mathcal{A}) \longrightarrow M_{X}(\mathbf{C})
$$

Then $\sigma^{\prime} \sigma(\mathcal{A})=\mathcal{A}$. In fact,

$$
\sigma^{\prime} \sigma=1_{\mathcal{A}}, \quad \sigma \sigma^{\prime}=1_{\sigma(\mathcal{A})}
$$

Example.

H : Hadamard matrix.

$$
A=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & J+H & J-H \\
0 & 0 & J-H & J+H \\
J-H^{T} & J+H^{T} & 0 & 0 \\
J+H^{T} & J-H^{T} & 0 & 0
\end{array}\right)
$$

$\mathcal{A}=\langle A\rangle$
$\tau=$ transposition

Then $\sigma(\mathcal{A})$ is a BM algebra consisting of symmetric matrices.
$\sigma: \mathcal{A} \longrightarrow \sigma(\mathcal{A})$ preserves entrywise product.
$\left\{\sigma\left(A_{i}\right)\right\}=$ adjacency matrices of $\sigma(\mathcal{A})$.

Define $\rho: \mathcal{A} \longrightarrow \sigma(\mathcal{A})$ by

$$
\rho(A)=\frac{1+\sqrt{-1}}{2} \sigma(A)+\frac{1-\sqrt{-1}}{2} \sigma \tau(A) .
$$

Then ρ preserves ordinary product.
$\left\{\rho\left(E_{i}\right)\right\}=$ primitive idempotents of $\sigma(\mathcal{A})$.

This leads to the determination of the character table of $\sigma(\mathcal{A})$.

Example.

$H=(1):$ Hadamard matrix
$\mathcal{A}=\langle A\rangle \cong \mathrm{C}\left[\mathrm{Z}_{4}\right]$
$\tau=$ transposition $=$ inversion

Then

$$
\begin{aligned}
& \sigma=\text { Gray map } \\
& \sigma(\mathcal{A}) \cong \mathrm{C}\left[\mathrm{Z}_{2} \times \mathrm{Z}_{2}\right] .
\end{aligned}
$$

