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Let m ≤ n be positive integers. Let H be the diagonal subgroup of Sm × Sm

regarded as a subgroup of Sm × Sn. Then H × Sn−m can naturally be regarded as
a subgroup of Sm × Sn. The permutation character of Sm × Sn on the cosets of the
subgroup H × Sn−m decomposes as follows.

1Sm×Sn
H×Sn−m

= (1
Sm×Sm×Sn−m

H×Sn−m
)Sm×Sn

=
⊕

χ∈Irr(Sm)

((χ ⊗ χ) ⊗ 1Sn−m)Sm×Sn

=
⊕

χ∈Irr(Sm)

χ ⊗ (χ ⊗ 1Sn−m)Sn .

This permutation representation is multiplicity-free. Indeed, by [2, Theorem 2.8.2],
we have

1Sm×Sn
H×Sn−m

=
⊕

α

⊕
γ

χα ⊗ χγ,

where the first sum is over all partitions α of m, and the second sum is over all
partitions γ of n satisfying the condition

γ1 ≥ α1 ≥ γ2 ≥ α2 ≥ · · · . (1)

Taking the conjugate partitions, this condition is equivalent to

γ′
i = α′

i or α′
i + 1,

or equivalently, γ −α is a vertical strip. As we shall see later, the set of pairs of such
partitions can be shown to be in one-to-one correspondence with the isomorphism
type of the graphs arising from orbitals. In fact, one can associate with such a pair
(γ′, α′), the disjoint union of graphs with γ′

i+α′
i edges which is either a cycle or a path,

depending on γ′
i = α′

i or α′
i + 1. All of these observations reduce to the well-known

theory of characters of symmetric groups when m = n.
Now let |M | = m, |N | = n, and let X be the set of all injections from M to N .

Then Sm × Sn acts on X by

(σ, τ)ψ := τψσ−1, σ ∈ Sm, τ ∈ Sn, ψ ∈ X.
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Elements of X can be regarded as maximal matchings of the complete bipartite graph
Km,n. For ψ, φ ∈ X, we denote by Γψ,φ the edge-colored bipartite graph on M ∪ N
defined as follows: (x, y) ∈ M ×N is an edge with color 1 (resp. 2) iff ψ(x) = y (resp.
φ(x) = y). Forgetting colors in Γψ,φ yields a graph ∆ψ,φ. The graph ∆ψ,φ may have
multiple edges. Every vertex in M has degree 2 in ∆ψ,φ, while vertices in N have
degree 0, 1 or 2 in ∆ψ,φ.

Theorem 1. Let ψ, ψ′, φ, φ′ ∈ X. Then there exists (σ, τ) ∈ Sm × Sn such that
(σ, τ)ψ = ψ′ and (σ, τ)φ = φ′ if and only if ∆ψ,φ

∼= ∆ψ′,φ′.

Proof. It is clear that if (σ, τ)ψ = ψ′ and (σ, τ)φ = φ′, then σ× τ : M ×N → M ×N
is an isomorphism from ∆ψ,φ to ∆ψ′,φ′ . To prove the converse, first observe that thre
exists an isomorphism ∆ψ,φ

∼= ∆ψ′,φ′ , leaving the bipartition invariant. Let σ × τ be
such an isomorphism. Let C be a connected component of ∆ψ,φ. The restriction of
σ × τ to C may not preserve the edge-coloring, but we claim that σ × τ can be taken
in such a way that it preserves the edge-coloring. If C is an isolated vertex in N , then
there is nothing to do. If C has an edge, then C is either a cycle or a path, in which
edges are colored alternately. If C is a path and σ × τ |C does not preserve the edge-
coloring, then reflecting the image yields a color-preserving isomorphism. One can
argue in a similar manner for cycles, and one obtains a color-preserving isomorphism.
Then we have (σ, τ)ψ = ψ′ and (σ, τ)φ = φ′.

Notice that the orbits of Sm × Sn are self-paired, since ∆ψ,φ
∼= ∆φ,ψ. This gives

another proof that the permutation character is multiplicity-free.
Let xij denote the function on X defined by

xij(ψ) =

{
1 if ψ(i) = j,

0 otherwise.

Every complex-valued function on X can be expressed in terms of a polynomial in xij

(i ∈ M, j ∈ N). Indeed, the characteristic function of {ψ} is given by
∏

i∈M xi,ψ(i).
Every monomial of degree greater than m is zero when regarded as a function on
X. We wish to decompose the space of polynomial functions on X into irreducible
submodules. In particular, we are concerned with the function space spanned by the
polynomials of the form ∑

τ :T→T ′

∏
i∈T

xi,τ(i) (2)

where T is a t-element subset of M , T ′ is a t-element subset of N , the sum is taken
over all bijections τ : T → T ′. A motivation of doing this is an algebraic approach to
the combinatorial object called perpendicular arrays.

Definition 1. Let X be the set of all injections from M to N , where M,N are finite
sets. A perpendicular array of strength t is a subset Y of X satisfying the following
property: there exists a positive integer λ such that

|{ψ ∈ Y | ψ(T ) = T ′}| = λ, (3)
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for any T ⊂ M , T ′ ⊂ N with |T | = |T ′| = t.

The definition looks very similar to that of orthogonal arrays. Much less is known
in the theory of perpendicular arrays than in the theory of orthogonal arrays (see [1]).

In terms of the polynomial function (2), the condition (3) can be written as∑
ψ∈Y

∑
τ :T→T ′

∏
i∈T

xi,τ(i)(ψ) = λ.

In the following, we give an irreducible decomposition of the space of polynomial
functions of the form (2) when |T | = |T ′| = 1. It would be nice if we can obtain an
irreducible decomposition for arbitrary values of t = |T | = |T ′|.

Let E = 〈e1, . . . , em〉, F = 〈f1, . . . , fn〉 be the permutation modules for Sm, Sn,
respectively. Let H = 〈xij|i ∈ M, j ∈ N〉. Then there is a surjection E ⊗ F → H
defined by ei ⊗ fj 7→ xij which commutes with the action of Sm × Sn. The module
E ⊗ F decomposes as an Sm × Sn-module:

E ⊗ F = 〈(
∑
i∈M

ei) ⊗ (
∑
j∈N

fj)〉

⊕ 〈(
∑
i∈M

ei) ⊗ (f1 − fj|j ∈ N〉

⊕ 〈(e1 − ei) ⊗ (
∑
j∈N

fj)|i ∈ M〉

⊕ 〈(e1 − ei) ⊗ (f1 − fj)|i ∈ M, j ∈ N〉.

Note that each of the four submodules are irreducible. Note also that

(e1 − ei) ⊗ (
∑
j∈N

fj) 7→
∑
j∈N

x1j −
∑
j∈N

xij = 0

while

(
∑
i∈M

ei) ⊗ (f1 − fj) 7→
∑
i∈M

xi1 −
∑
i∈M

xij,

(e1 − e2) ⊗ (f1 − f2) 7→ x11 + x22 − x12 − x21 ̸= 0

since (x11 +x22 −x12−x21)(1) = 2, where 1 denotes the mapping M → N defined by
1(i) = i for i ∈ M . Observe

∑
i∈M xi1−

∑
i∈M xij = 0 if and only if m = n. Therefore

H = 〈
∑
i∈M

∑
j∈N

xij〉 ⊕ 〈x11 + xij − x1j − xi1|i ∈ M, j ∈ N〉

if m = n,

H = 〈
∑
i∈M

∑
j∈N

xij〉 ⊕ 〈x11 + xij − x1j − xi1|i ∈ M, j ∈ N〉

⊕ 〈
∑
i∈M

(xi1 − xij)|j ∈ N〉
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if m < n. In particular,

dim H =

{
1 + (m − 1)2 if m = n,

mn − m + 1 if m < n.

For ψ, φ ∈ X, define ρ(ψ, φ) by

ρ(ψ, φ) = |{i ∈ M |ψ(i) = φ(i)}|.

Note that if we regard X as a subset of the Cartesian power NM , then ρ is the
restriction of the Hamming distance in NM to X. Then (X, ρ) becomes a spherical
polynomial space in the sense of Conder and Godsil [3].
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