The Association Scheme of Injections
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Let m < n be positive integers. Let H be the diagonal subgroup of S,, x S,,
regarded as a subgroup of S, x S,. Then H x S,,_,, can naturally be regarded as
a subgroup of S, x S,. The permutation character of S,, x S,, on the cosets of the
subgroup H x S,,_,, decomposes as follows.
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This permutation representation is multiplicity-free. Indeed, by [2, Theorem 2.8.2],

we have
Sy X Sn
1Hx>én,m = @ @ Xa ® X
a v

where the first sum is over all partitions a of m, and the second sum is over all
partitions v of n satisfying the condition

M= 2y > > (1)
Taking the conjugate partitions, this condition is equivalent to
vi=al or o) +1,

or equivalently, v — « is a vertical strip. As we shall see later, the set of pairs of such
partitions can be shown to be in one-to-one correspondence with the isomorphism
type of the graphs arising from orbitals. In fact, one can associate with such a pair
(7', &), the disjoint union of graphs with /4« edges which is either a cycle or a path,
depending on 7 = «; or o + 1. All of these observations reduce to the well-known
theory of characters of symmetric groups when m = n.

Now let |[M| = m, |N| = n, and let X be the set of all injections from M to N.
Then S, x 5, acts on X by

(o, 7)Y == Tepo !, o€ Sn, TES, ¥veX.
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Elements of X can be regarded as maximal matchings of the complete bipartite graph
K, . For ¢, ¢ € X, we denote by I'y, 4, the edge-colored bipartite graph on M U N
defined as follows: (z,y) € M x N is an edge with color 1 (resp. 2) iff ¢)(z) = y (resp.
¢(z) = y). Forgetting colors in I'y 4 yields a graph A, 4. The graph Ay, may have
multiple edges. Every vertex in M has degree 2 in Ay 4, while vertices in N have
degree 0,1 or 2 in Ay 4.

Theorem 1. Let ¢, ¢,¢ € X. Then there exists (o,7) € S,, X S, such that
(o, 1) =" and (0, 7)p = ¢ if and only if Ay s = Ay .

Proof. 1t is clear that if (o, 7)Y = ¢’ and (0,7)¢p = ¢, then o X 7: M X N — M x N
is an isomorphism from A, 4, to Ay 4. To prove the converse, first observe that thre
exists an isomorphism Ay 4 = Ay 4, leaving the bipartition invariant. Let o X 7 be
such an isomorphism. Let C' be a connected component of Ay 4. The restriction of
o x 7 to C' may not preserve the edge-coloring, but we claim that ¢ x 7 can be taken
in such a way that it preserves the edge-coloring. If C'is an isolated vertex in N, then
there is nothing to do. If C has an edge, then C' is either a cycle or a path, in which
edges are colored alternately. If C' is a path and o x 7|¢ does not preserve the edge-
coloring, then reflecting the image yields a color-preserving isomorphism. One can
argue in a similar manner for cycles, and one obtains a color-preserving isomorphism.

Then we have (o, 7)1 = ¢’ and (o,7)p = ¢'. O

Notice that the orbits of S, x S, are self-paired, since Ay 4 = Ay . This gives
another proof that the permutation character is multiplicity-free.
Let x;; denote the function on X defined by

ry(9) = {1 1o =

0 otherwise.

Every complex-valued function on X can be expressed in terms of a polynomial in z;;
(i € M, j € N). Indeed, the characteristic function of {9} is given by [],.:; Ziv()-
Every monomial of degree greater than m is zero when regarded as a function on
X. We wish to decompose the space of polynomial functions on X into irreducible
submodules. In particular, we are concerned with the function space spanned by the

polynomials of the form
Z H%,T(i) (2)
T T—T' €T
where T' is a t-element subset of M, T" is a t-element subset of N, the sum is taken
over all bijections 7 : T'— T". A motivation of doing this is an algebraic approach to
the combinatorial object called perpendicular arrays.

Definition 1. Let X be the set of all injections from M to N, where M, N are finite
sets. A perpendicular array of strength ¢ is a subset Y of X satisfying the following
property: there exists a positive integer A such that

{v eY [(T) =T} = A, (3)
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forany T'C M, T" C N with |T| = |T"| = t.

The definition looks very similar to that of orthogonal arrays. Much less is known
in the theory of perpendicular arrays than in the theory of orthogonal arrays (see [1]).
In terms of the polynomial function (2), the condition (3) can be written as

> > IHerow =

YeY mT—T' €T

In the following, we give an irreducible decomposition of the space of polynomial
functions of the form (2) when |T'| = |T"| = 1. It would be nice if we can obtain an
irreducible decomposition for arbitrary values of ¢t = |T'| = |T7].

Let E = (e1,...,em), F' = {(f1,..., fn) be the permutation modules for S,,, S,,
respectively. Let H = (z;;li € M, j € N). Then there is a surjection £ ® F' — H
defined by e; ® f; = x;; which commutes with the action of S,, x S,,. The module
FE ® F decomposes as an .S, x S,-module:

E@F={(D_e)e (> f))

€M JEN
& (Y e)® (fi— fli € N)
ieM
61 - ez ij |Z € M
JEN

©((er—e)@(fi—fy)lie M, jeN).

Note that each of the four submodules are irreducible. Note also that

61-61 Zf] lej_zajij:o

jeN jeN jeN
while
(Z &) ® (fi — fj) — Zl’ﬂ - Z%‘j,
ieM ieM ieM

(e1—e2) ® (f1 — fa) — @11 + T22 — T12 — To1 # 0

since (217 + Tog — 212 — 91)(1) = 2, where 1 denotes the mapping M — N defined by
1(i) = ifori € M. Observe Y .\, &a — >, ij = 0 if and only if m = n. Therefore

= ZZ«TU (11 + @ij — 215 —zali € M, j € N)
€M jEN
if m =n,

= szl] (11 + xij — 215 —wali € M, j € N)

€M jeEN

® (Y (za —zy)lj € N)

€M



if m < n. In particular,

1 1?2 ifm=
dim H — +(m—1) ?fm n,
mn—m+1 if m<n.

For 4, ¢ € X, define (¢, ¢) by

p(,¢) = {i € M|ip(i) = o)}

Note that if we regard X as a subset of the Cartesian power N™ then p is the
restriction of the Hamming distance in N™ to X. Then (X, p) becomes a spherical
polynomial space in the sense of Conder and Godsil [3].
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