Self-Orthogonal Designs

東北大学大学院情報科学研究科
宗政 昭弘 (Akihiro Munemasa)

Graduate School of Information Sciences,
Tohoku University

October 4, 2005

1 Introduction

It is well-known that for any positive integer t, a nontrivial t-$(v,k,$ $\lambda)$ design exists for some $v,k,$ λ. However, it seems that there are very few self-orthogonal t-designs known for large t. Recall that a t-$(v,k,$ $\lambda)$ design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is said to be self-orthogonal if the parity of the size of intersection of any two blocks is the same as the parity of k.

The purpose of this talk is to formulate a conjecture on the nonexistence of self-orthogonal designs for large t with $t \geq \lceil \frac{k}{2} \rceil + 1$, where k is even. We show that the conjecture is true for $(t,k) = (6,20)$, for example. The method employed is the same as the one developed in [1], where a self-orthogonal 5-(72,36,78) design is investigated.

2 Saturated designs

Definition 1. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a self-orthogonal t-$(v,k,$ $\lambda)$ design. Assume that k is even, so that the binary code C generated by the rows of the block-point incidence matrix of \mathcal{D} is self-orthogonal. We call the design \mathcal{D} saturated, if C is self-dual, C has minimum weight k, and every minimum weight codeword of C is the support of a block of \mathcal{D}.
Let \(k = (k_1, \ldots, k_t) \) be a nonzero left null vector of the \(t \times (t-1) \) matrix
\[
A_t = \begin{pmatrix}
2 & 4 & \cdots & 2(t-1) \\
\binom{2}{0} & \binom{2}{2} & \cdots & \binom{2(t-1)}{2} \\
\vdots & \vdots & \ddots & \vdots \\
\binom{2}{t} & \binom{1}{t} & \cdots & \binom{2(t-1)}{t}
\end{pmatrix}
\] (1)

Since the matrix \(A_t \) has rank \(t-1 \), the vector \(k \) is unique up to a scalar multiple.

Lemma 1.
\[
\sum_{i=1}^{t} i(-2)^{i-1} \binom{2t-i-1}{t-1} \binom{2j}{i} = (-1)^{t-1} 2^{t-1} t \binom{j}{t-j}.
\]

Proof. Induction on \(j \).

Proposition 2. Let \(\mathcal{D} = (\mathcal{P}, \mathcal{B}) \) be a self-orthogonal \(t-(v, k, \lambda) \) design. Assume that \(k \) is even, so that the binary code \(C \) generated by the rows of the block-point incidence matrix of \(\mathcal{D} \) is self-orthogonal. If \(C \) has minimum weight \(k \) and
\[
t \geq t_0 := \left\lfloor \frac{k}{4} \right\rfloor + 1,
\] (2)
then
\[
\lambda_s = \frac{(-1)^{t_0-1} 2^{t_0-1} t_0 \binom{k/2}{k/2-t_0}}{\sum_{i=1}^{t_0} i(-2)^{i-1} \binom{2t_0-i-1}{t_0} \binom{k}{i} \prod_{j=i}^{t_0-1} \binom{v-j}{k-j}}
\] (3)
is an integer for \(s = 0, 1, \ldots, t_0 \).

Proof. Fix a block \(B_0 \) of \(\mathcal{D} \). Since \(X \) is a \(t_0 \)-design, we have
\[
\sum_{B \in \mathcal{B}} \binom{|B \cap B_0|}{i} = \lambda_i \binom{k}{i} \quad (i = 1, 2, \ldots, t_0),
\] (4)

where
\[
\lambda_i = \lambda_0 \prod_{j=i}^{t_0-1} \frac{v-j}{k-j}.
\] (5)

Put
\[
n_j = |\{B \in \mathcal{B} \mid 2j = |B \cap B_0|\}| \quad (j = 0, 1, 2, \ldots).
\]
Since C has minimum weight k, $|B \cap B_0| \leq k/2$ unless $B = B_0$. Thus
\[n_j = 0 \quad \text{for } j > \left\lceil \frac{k}{4} \right\rceil, \quad j \neq \frac{k}{2}, \]
and obviously $n_{k/2} = 1$. Now (4) can be written as
\[\sum_{j=0}^{t_0-1} \binom{2j}{i} n_j = (\lambda_i - 1) \binom{k}{i} \quad (i = 1, 2, \ldots, t_0). \quad (6) \]
Let $k = (k_1, \ldots, k_{t_0})$ be the vector defined by
\[k_i = i(-2)^{i-1} \binom{2t_0 - i - 1}{i-1}. \quad (7) \]
Then k is a left null vector of A_{t_0} by Lemma 1, and hence we have
\[\sum_{i=1}^{t_0} k_i \lambda_i \binom{k}{i} = \sum_{i=1}^{t_0} k_i \binom{k}{i}. \quad (8) \]
By (6) we have
\[\lambda_0 \sum_{i=1}^{t_0} k_i \binom{k}{i} \prod_{j=i}^{t_0-1} \frac{v - j}{k - j} = \sum_{i=1}^{t_0} k_i \binom{k}{i}. \]
Applying (5) again, we obtain
\[\lambda_s = \frac{\sum_{i=1}^{t_0} k_i \binom{k}{i} \prod_{j=i}^{t_0-1} \frac{v - j}{k - j}}{\sum_{i=1}^{t_0} k_i \binom{k}{i} \prod_{j=i}^{t_0-1} \frac{v - j}{k - j}} \prod_{j=s}^{t_0-1} \frac{v - j}{k - j}. \]
The result then follows from (7) and Lemma 1. \qed

As a special case of (3), we have
\[\lambda_{t_0} = \frac{(-1)^{t_0-1} 2t_0-1 t_0 \binom{k/2}{t_0}}{\sum_{i=1}^{t_0} i(-2)^{i-1} \binom{2t_0 - i - 1}{i-1} \binom{k}{i} \prod_{j=i}^{t_0-1} \frac{v - j}{k - j}}. \quad (9) \]
Observe that the denominator is a polynomial in v of degree $t_0 - 1$ with positive leading coefficient. Thus, for a given t_0, there are only finitely many v for which λ_{t_0} is an integer.
Proposition 3. Let \(D = (\mathcal{P}, \mathcal{B}) \) be a self-orthogonal \(t-(v,k,\lambda) \) design, where \(k < v \). Assume that \(k \) is even, so that the binary code \(C \) generated by the rows of the block-point incidence matrix of \(D \) is self-orthogonal. If \(C \) has minimum weight \(k \) and

\[
t \geq t_0 := \left\lceil \frac{k}{4} \right\rceil + 1 \quad \text{and} \quad k \leq 24,
\]

then

\((t_0, v; k, \lambda) = (1, v, 2, 1),
(2, 7, 4, 2), (2, 8, 4, 3), (2, 9, 4, 6),
(2, 16, 6, 2), (2, 21, 6, 4), (2, 22, 6, 5), (2, 24, 6, 10), (2, 25, 6, 20),
(3, 16, 8, 3), (3, 22, 8, 12), (3, 23, 8, 16), (3, 24, 8, 21),
(3, 26, 8, 28), (3, 29, 8, 16), (3, 30, 8, 12), (3, 32, 8, 7),
(3, 26, 10, 3), (3, 42, 10, 9), (3, 46, 10, 8), (3, 50, 10, 6),
(4, 47, 12, 15), (4, 48, 12, 36), (4, 51, 12, 640),
(5, 56, 16, 42), (5, 64, 16, 91), (5, 72, 16, 78),
(7, 120, 24, 231).

Proof. If \(k = 2 \), then clearly \(\lambda = 1 \).
If \(k = 4 \), then

\[
\lambda = \frac{6}{10 - v},
\]

hence \(v = 7, 8 \) or 9.
If \(k = 6 \), then

\[
\lambda = \frac{20}{26 - v},
\]

hence \(v = 16, 21, 22, 24, 25 \).
If \(k = 8 \), then

\[
0 \geq 336 \left(\frac{1}{\lambda} - 1 \right)
= (v - 8)(v - 44),
\]

hence \(8 < v \leq 44 \). Since \(\lambda_{35}, \ldots, \lambda_0 \) are also integers, we have \(v = 16, 22, 23, 24, 26, 29, 30 \) or 32.
If $k = 10$, then

$$0 \geq 1152 \left(\frac{1}{\lambda} - 1 \right)$$

$$= (v - 10)(v - 74),$$

hence $10 < v \leq 74$. Since $\lambda_3, \ldots, \lambda_0$ are also positive integers, we have $v = 10, 26, 42, 46$ or 50.

If $k = 12$, then

$$\lambda = \frac{31680}{v^3 - 127v^2 + 5456v - 80592},$$

hence

$$0 \geq v^3 - 127v^2 + 5456v - 80592$$

$$= v^2(v - 127) + 5456(v - 15) + 1248.$$

This implies $v < 127$. Since $\lambda_3, \ldots, \lambda_0$ are also positive integers, we have $v = 12, 36, 47, 48, 51, 52$ or 57.

If $k = 14$, then

$$\lambda = \frac{549120}{5v^3 - 875v^2 + 52952v - 1132668},$$

hence

$$0 \geq 5v^3 - 875v^2 + 52952v - 1132668$$

$$= 5v^2(v - 175) + 52950(v - 22) + 32232.$$

This implies $v \leq 174$. Since $\lambda_3, \ldots, \lambda_0$ are also positive integers, we have $v = 14$.

If $k = 16$, then

$$\lambda = \frac{4193280}{v^4 - 235v^3 + 20960v^2 - 848000v + 13292544},$$

hence,

$$0 \geq 4193280 \left(\frac{1}{\lambda} - 1 \right)$$

$$= (v - 16)(v^2(v - 219) + 17456(v - 33) + 7344).$$
Thus $v < 219$. Since $\lambda_5, \ldots, \lambda_0$ are also positive integers, we have $v = 16, 56, 64$ or 72.

If $k = 18$, then

$$0 \geq 102359040\left(\frac{1}{\lambda(18)} - 1\right)$$

$$= 7v^3(v - 299) + 240404v(v - 53) + 37200v + 162256464.$$

Thus $16 \leq v < 299$. Since $\lambda_5, \ldots, \lambda_0$ are also positive integers, we have $v = 18$.

If $k = 20$, then

$$0 > -\frac{5000970240}{\lambda}$$

$$= 7v^4(v - 376) + 399861v^2(v - 78) + 1215608048(v - 17)$$

$$+ 350602v^2 + 887460016,$$

hence $v < 376$. Since $\lambda_6, \ldots, \lambda_0$ are also positive integers, we have $v = 20$.

If $k = 22$, then

$$0 > -\frac{2500485120}{\lambda}$$

$$= v^4(v - 456) + 84659v^2(v - 96) + 394932588(v - 21)$$

$$+ 79328v^2 + 20001388,$$

hence $v < 456$. Since $\lambda_6, \ldots, \lambda_0$ are also positive integers, we have $v = 22$.

If $k = 24$, then

$$0 \geq 148852408320\left(\frac{1}{\lambda} - 1\right)$$

$$= (v - 24)((v - 526)(v^4 + 114511v^2 + 47117192v + 25600739920)$$

$$+ 13441571438560),$$

hence $v < 526$. Since $\lambda_7, \ldots, \lambda_0$ are also positive integers, we have $v = 24$ or 120. \qed

3 Unsaturated designs

In this section we let $D = (P, B)$ be a self-orthogonal t-(v, k, λ) design with k even, so that the binary code C generated by the rows of the block-point
incidence matrix of \mathcal{D} is self-orthogonal. We assume that the design \mathcal{D} is unsaturated, i.e., either C is not self-dual, or C has a codeword of weight at most k different from the support of a block of \mathcal{D}. This implies that there exists a coset $x + C$, possibly equal to C, such that it contains a nonzero vector with minimal weight other than the support of any block of \mathcal{D}. Let S be the support of such a vector, put $m = |S|$. Then

$$|B \cap S| \leq \frac{k}{2}$$

for any block B. Since

$$\sum_{B \in \mathcal{B}} \binom{|B \cap S|}{i} = \lambda_i \binom{m}{i} \quad (i = 1, 2, \ldots, t),$$

putting

$$n_j = |\{B \in \mathcal{B} \mid 2j = |B \cap B_0|\}| \quad (j = 0, 1, 2, \ldots),$$

we have

$$\sum_{j=0}^{\lfloor k/4 \rfloor} \binom{2j}{i} n_j = \lambda_i \binom{m}{i}.$$

Assume

$$t \geq t_0 := \left\lfloor \frac{k}{4} \right\rfloor + 1.$$

Then, as in the previous section, we have

$$\sum_{i=1}^{t_0} i(-2)^{i-1} \binom{2t_0 - i - 1}{t_0 - 1} \lambda_i \binom{m}{i} = 0$$

By (5), we have

$$\sum_{i=1}^{t_0} i(-2)^{i-1} \binom{2t_0 - i - 1}{t_0 - 1} \binom{m}{i} \prod_{j=i}^{t_0-1} \frac{v-j}{k-j} = 0 \quad (11)$$

If k is given, then this is a Diophantine equation in m, v. The only integer solutions of equation (11) in the range $0 < m < v \leq 1000$, $k = 8, 10, \ldots, 20$
are
\[
k = 8, \ (v, m) = (16, 4), (16, 6), (22, 6), (22, 7), (23, 7),
\]
\[
k = 10, \ (v, m) = (20, 4), (22, 6), (26, 6),
\]
\[
k = 12, \ (v, m) = (24, 8), (36, 8), (47, 11), (68, 16), (156, 36), (311, 71),
\]
\[
k = 14, \ (v, m) = (80, 16), (159, 31),
\]
\[
k = 16, \ (v, m) = (32, 8), (43, 8), (43, 11), (48, 12), (56, 12), (58, 13),
\]
\[
k = 18, \ (v, m) = (36, 8).
\]

Therefore, we obtain the following result.

Proposition 4. Let \(D = (P, B)\) be a self-orthogonal \(t\)-(v, k; \(\lambda\)) design. Assume that \(k\) is even, and \(t \geq \left\lceil \frac{k}{4} \right\rceil + 1\), and \(8 \leq k \leq 20, 2k \leq v \leq 1000\). The binary code \(C\) generated by the rows of the block-point incidence matrix \(M\) of \(D\) is self-dual and the codewords of \(C\) of weight \(k\) are precisely the rows of \(M\), unless \((k, v)\) is one of the pairs listed above, in which case, either \(C^\perp/C\) contains a coset of weight \(m\) whose values are listed above.

References