Combinatorial Structures Derived from Extremal Even Unimodular Lattices

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University (joint work with Boris Venkov)

Conference in Algebra and Combinatorics, 2006

A Cube Approximates a Sphere

A cube Q consisting of 8 vertices

$$
\left\{\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)\right\}
$$

is contained in the unit sphere S^{2} in \mathbb{R}^{3}.
Observe that Q is a good approximation of S^{2} in the sense that

for any polynomial $f(\mathbf{x})=f(x, y, z)$ of degree at most 3 . Indeed,
the verification of (1) is reduced to the case $f\left(x, x, x_{0}\right)=x^{2}$

A Cube Approximates a Sphere

A cube Q consisting of 8 vertices

$$
\left\{\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)\right\}
$$

is contained in the unit sphere S^{2} in \mathbb{R}^{3}.
Observe that Q is a good approximation of S^{2} in the sense that

$$
\begin{equation*}
\frac{1}{8} \sum_{x \in Q} f(\mathbf{x})=\frac{1}{4 \pi} \int_{S^{2}} f(\mathbf{x}) d \sigma \tag{1}
\end{equation*}
$$

for any polynomial $f(x)=f(x, y, z)$ of degree at most 3 .
Indeed,

A Cube Approximates a Sphere

A cube Q consisting of 8 vertices

$$
\left\{\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)\right\}
$$

is contained in the unit sphere S^{2} in \mathbb{R}^{3}.
Observe that Q is a good approximation of S^{2} in the sense that

$$
\begin{equation*}
\frac{1}{8} \sum_{x \in Q} f(\mathbf{x})=\frac{1}{4 \pi} \int_{S^{2}} f(\mathbf{x}) d \sigma \tag{1}
\end{equation*}
$$

for any polynomial $f(\mathbf{x})=f(x, y, z)$ of degree at most 3 .
Indeed,
the verification of (1) is reduced to the case $f(x, x)=x^{2}$

A Cube Approximates a Sphere

A cube Q consisting of 8 vertices

$$
\left\{\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)\right\}
$$

is contained in the unit sphere S^{2} in \mathbb{R}^{3}.
Observe that Q is a good approximation of S^{2} in the sense that

$$
\begin{equation*}
\frac{1}{8} \sum_{\mathbf{x} \in Q} f(\mathbf{x})=\frac{1}{4 \pi} \int_{S^{2}} f(\mathbf{x}) d \sigma \tag{1}
\end{equation*}
$$

for any polynomial $f(\mathbf{x})=f(x, y, z)$ of degree at most 3 .
Indeed,

$$
f(x, y, z)=a x^{3}+b y^{3}+\cdots+c z+d
$$

the verification of (1) is reduced to the case $f(x, y, z)=x^{2}$.

A Cube Approximates a Sphere

$$
\frac{1}{8} \sum_{\mathbf{x} \in Q} x^{2} \stackrel{?}{=} \frac{1}{4 \pi} \int_{S^{2}} x^{2} d \sigma
$$

But then LHS $=\frac{1}{3}=$ RHS, since

A Cube Approximates a Sphere

$$
\frac{1}{8} \sum_{\mathrm{x} \in Q} x^{2} \stackrel{?}{=} \frac{1}{4 \pi} \int_{S^{2}} x^{2} d \sigma
$$

But then $L H S=\frac{1}{3}=R H S$, since

$$
Q=\left\{\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)\right\}
$$

A Cube Approximates a Sphere

$$
\frac{1}{8} \sum_{\mathbf{x} \in Q} x^{2} \stackrel{?}{=} \frac{1}{4 \pi} \int_{S^{2}} x^{2} d \sigma
$$

But then $L H S=\frac{1}{3}=R H S$, since

$$
\begin{gathered}
Q=\left\{\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)\right\} \\
\int_{S^{2}} x^{2} d \sigma=\frac{1}{3} \int_{S^{2}}\left(x^{2}+y^{2}+z^{2}\right) d \sigma=\frac{1}{3} \int_{S^{2}} 1 d \sigma
\end{gathered}
$$

Definition of a Spherical Design

Definition

A spherical t-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$ of radius $\sqrt{\mu}$ s.t.

$$
\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})=\frac{1}{\text { surface area of } S^{n-1}(\mu)} \int_{S^{n-1}(\mu)} f(\mathbf{x}) d \sigma
$$

holds for any polynomial $f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$ of degree $\leq t$.

Example

An icosahedron is a spherical

Definition of a Spherical Design

Definition

A spherical t-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$ of radius $\sqrt{\mu}$ s.t.

$$
\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})=\frac{1}{\text { surface area of } S^{n-1}(\mu)} \int_{S^{n-1}(\mu)} f(\mathbf{x}) d \sigma
$$

holds for any polynomial $f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$ of degree $\leq t$.

Example

A cube is a spherical 3-design. An icosahedron is a spherical

Definition of a Spherical Design

Definition

A spherical t-design X is a finite subset of the sphere $S^{n-1}(\mu) \subset \mathbb{R}^{n}$ of radius $\sqrt{\mu}$ s.t.

$$
\frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x})=\frac{1}{\text { surface area of } S^{n-1}(\mu)} \int_{S^{n-1}(\mu)} f(\mathbf{x}) d \sigma
$$

holds for any polynomial $f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$ of degree $\leq t$.

Example

A cube is a spherical 3-design. An icosahedron is a spherical 5-design.

Spherical Designs

Definition

The strength of a finite subset $X \subset S^{n-1}(\mu)$ is the largest integer t for which X is a spherical t-design.

The degree s of X is the size of the set

$$
\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \mathbf{x} \neq \mathbf{y}\} .
$$

Example

Spherical Designs

Definition

The strength of a finite subset $X \subset S^{n-1}(\mu)$ is the largest integer t for which X is a spherical t-design.
The degree s of X is the size of the set

$$
\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \mathbf{x} \neq \mathbf{y}\}
$$

Example

cube
icosahedron
root system E_{8}

Spherical Designs

Definition

The strength of a finite subset $X \subset S^{n-1}(\mu)$ is the largest integer t for which X is a spherical t-design.
The degree s of X is the size of the set

$$
\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in X, \mathbf{x} \neq \mathbf{y}\}
$$

Example

cube	$t=3$	$\|X\|=8$	$s=3$
icosahedron	$t=5$	$\|X\|=12$	$s=3$
root system E_{8}	$t=7$	$\|X\|=240$	$s=4$

Even Unimodular Lattices

Definition

A lattice L of dimension n is a \mathbb{Z}-submodule of \mathbb{R}^{n} generated by a basis of \mathbb{R}^{n}.

- L is integral if $(x, y) \in \mathbb{Z} \forall x, y \in L$
- L is unimodular if $\operatorname{det}($ Gram matrix $)=1$ - L is even if $(x, x) \in 2 \mathbb{Z} \forall x \in L$.

An even unimodular lattice of dimension n exists iff $n \equiv 0(\bmod 8)$

Example

\exists Unique even unimodular lattice of dimension 8. This is generated by the root system of type E_{8}

Even Unimodular Lattices

Definition

A lattice L of dimension n is a \mathbb{Z}-submodule of \mathbb{R}^{n} generated by a basis of \mathbb{R}^{n}.

- L is integral if $(x, y) \in \mathbb{Z} \forall x, y \in L$
- L is unimodular if $\operatorname{det}($ Gram matrix $)=1$
- L is even if $(x, x) \in 2 \mathbb{Z} \forall x \in L$.

An even unimodular lattice of dimension n exists iff $n \equiv 0(\bmod 8)$.
Example
\exists Unique even unimodular lattice of dimension 8. This is
generated by the root system of type E_{8}

Even Unimodular Lattices

Definition

A lattice L of dimension n is a \mathbb{Z}-submodule of \mathbb{R}^{n} generated by a basis of \mathbb{R}^{n}.

- L is integral if $(x, y) \in \mathbb{Z} \forall x, y \in L$
- L is unimodular if $\operatorname{det}($ Gram matrix $)=1$
- L is even if $(x, x) \in 2 \mathbb{Z} \forall x \in L$.

An even unimodular lattice of dimension n exists iff $n \equiv 0(\bmod 8)$
Example
\exists Unique even unimodular lattice of dimension 8. This is
generated by the root system of type E_{8}

Even Unimodular Lattices

Definition

A lattice L of dimension n is a \mathbb{Z}-submodule of \mathbb{R}^{n} generated by a basis of \mathbb{R}^{n}.

- L is integral if $(x, y) \in \mathbb{Z} \forall x, y \in L$
- L is unimodular if $\operatorname{det}($ Gram matrix $)=1$
- L is even if $(x, x) \in 2 \mathbb{Z} \forall x \in L$.

An even unimodular lattice of dimension n exists iff $n \equiv 0(\bmod 8)$.
Example
\exists Unique even unimodular lattice of dimension 8. This is
generated by the root system of type E_{8}.

Even Unimodular Lattices

Definition

A lattice L of dimension n is a \mathbb{Z}-submodule of \mathbb{R}^{n} generated by a basis of \mathbb{R}^{n}.

■ L is integral if $(x, y) \in \mathbb{Z} \forall x, y \in L$

- L is unimodular if $\operatorname{det}($ Gram matrix $)=1$
- L is even if $(x, x) \in 2 \mathbb{Z} \forall x \in L$.

An even unimodular lattice of dimension n exists iff $n \equiv 0(\bmod 8)$.

Example

\exists Unique even unimodular lattice of dimension 8. This is generated by the root system of type E_{8}.

The Leech Lattice

\exists unique even unimodular lattice L of dimension 24 containing no element of norm 2, that is, $(x, x) \in\{4,6,8, \ldots\}$ for $\forall x \in L, x \neq 0$. For a given lattice L and a real number μ, denote by L_{μ} the set $\{x \in L \mid(x, x)=\mu\} \subset S^{n-1}(\mu)$.

Example
 For the Leech lattice $L_{2}=\emptyset,\left|L_{4}\right|=196560$, and L_{4} is a spherical 11-design.

The Leech Lattice

\exists unique even unimodular lattice L of dimension 24 containing no element of norm 2, that is, $(x, x) \in\{4,6,8, \ldots\}$ for $\forall x \in L, x \neq 0$. For a given lattice L and a real number μ, denote by L_{μ} the set

$$
\{x \in L \mid(x, x)=\mu\} \subset S^{n-1}(\mu)
$$

Example

For the Leech lattice $L_{2}=\emptyset,\left|L_{4}\right|=196560$, and L_{4} is a spherical 11-design.

The Leech Lattice

\exists unique even unimodular lattice L of dimension 24 containing no element of norm 2, that is, $(x, x) \in\{4,6,8, \ldots\}$ for $\forall x \in L, x \neq 0$. For a given lattice L and a real number μ, denote by L_{μ} the set

$$
\{x \in L \mid(x, x)=\mu\} \subset S^{n-1}(\mu)
$$

Example

For the E_{8}-lattice $L,\left|L_{2}\right|=240$, and L_{2} is a spherical 7-design.

For the Leech lattice $L_{2}=\emptyset,\left|L_{4}\right|=196560$, and L_{4} is a spherical 11-design.

The Leech Lattice

\exists unique even unimodular lattice L of dimension 24 containing no element of norm 2, that is, $(x, x) \in\{4,6,8, \ldots\}$ for $\forall x \in L, x \neq 0$. For a given lattice L and a real number μ, denote by L_{μ} the set

$$
\{x \in L \mid(x, x)=\mu\} \subset S^{n-1}(\mu)
$$

Example

For the E_{8}-lattice $L,\left|L_{2}\right|=240$, and L_{2} is a spherical 7-design.
For the Leech lattice $L_{2}=\emptyset,\left|L_{4}\right|=196560$, and L_{4} is a spherical 11-design.

Subconstituents

Let X be a spherical t-design in the unit sphere in \mathbb{R}^{n}, and pick

 $y \in X$.A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

The two nontrivial subconstituents of a cube are equilateral triangles.

Example

The two nontrivial subconstituents of an icosahedron are pentagons.

Subconstituents

Let X be a spherical t-design in the unit sphere in \mathbb{R}^{n}, and pick $y \in X$.
A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

The two nontrivial subconstituents of a cube are equilateral
triangles.

Example
The two nontrivial subconstituents of an icosahedron are
pentagons.

Subconstituents

Let X be a spherical t-design in the unit sphere in \mathbb{R}^{n}, and pick $y \in X$.
A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

The two nontrivial subconstituents of a cube are equilateral triangles.

Example
The two nontrivial subconstituents of an icosahedron are
pentagons.

Subconstituents

Let X be a spherical t-design in the unit sphere in \mathbb{R}^{n}, and pick $y \in X$.
A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

The two nontrivial subconstituents of a cube are equilateral triangles.

Example
The two nontrivial subconstituents of an icosahedron are pentagons.

Theorem of Delsarte-Goethals-Seidel, 1977

Theorem

Then every subconstituent of X with respect to y is a $\left(t+1-s^{\prime}\right)$-design in \mathbb{R}^{n-1}

Example

An icosahedron is a spherical 5-design, and $s^{\prime}=2$. Its
subconstituents are regular pentagons, and they are
$\left(t+1-s^{\prime}\right)=4$-design.

Theorem of Delsarte-Goethals-Seidel, 1977

Theorem

Let X be a spherical t-design in the unit sphere in \mathbb{R}^{n}, and pick $y \in X$. Let

$$
s^{\prime}=|\{(x, y) \mid x \in X,(x, y) \neq \pm 1\}|
$$

Then every subconstituent of X with respect to y is a $\left(t+1-s^{\prime}\right)$-design in \mathbb{R}^{n-1}

Example
An icosahedron is a spherical 5-design, and $s^{\prime}=2$. Its
subconstituents are regular pentagons, and they are
$\left(t+1-s^{\prime}\right)=4$-design .

Theorem of Delsarte-Goethals-Seidel, 1977

Theorem

Let X be a spherical t-design in the unit sphere in \mathbb{R}^{n}, and pick $y \in X$. Let

$$
s^{\prime}=|\{(x, y) \mid x \in X,(x, y) \neq \pm 1\}| .
$$

Then every subconstituent of X with respect to y is a $\left(t+1-s^{\prime}\right)$-design in \mathbb{R}^{n-1}.

Example
Δ_{n} icosahedron is a spherical 5 -design, and $s^{\prime}=2$. Its
subconstituents are regular pentagons, and they are
$\left(t+1-s^{\prime}\right)=4$-design .

Theorem of Delsarte-Goethals-Seidel, 1977

Theorem

Let X be a spherical t-design in the unit sphere in \mathbb{R}^{n}, and pick $y \in X$. Let

$$
s^{\prime}=|\{(x, y) \mid x \in X,(x, y) \neq \pm 1\}| .
$$

Then every subconstituent of X with respect to y is a $\left(t+1-s^{\prime}\right)$-design in \mathbb{R}^{n-1}.

Example

An icosahedron is a spherical 5-design, and $s^{\prime}=2$. Its subconstituents are regular pentagons, and they are $\left(t+1-s^{\prime}\right)=4$-design.

Subconstituents in the Leech Lattice

Example

Let L be the Leech lattice. The sizes of the subconstituents of L_{4} are:

$$
1+4600+47104+93150+47104+4600+1=196560 .
$$

Each of the nontrivial subconstituents (of sizes 4600, 47104, $93150)$ is a spherical $\left(t+1-s^{\prime}\right)=7$-design.

Subconstituents in the Leech Lattice

Example

Let L be the Leech lattice. The sizes of the subconstituents of L_{4} are:

$$
1+4600+47104+93150+47104+4600+1=196560 .
$$

Each of the nontrivial subconstituents (of sizes 4600, 47104, $93150)$ is a spherical $\left(t+1-s^{\prime}\right)=7$-design.

Subconstituents in the Leech Lattice

Example

Let L be the Leech lattice. The sizes of the subconstituents of L_{4} are:

$$
1+4600+47104+93150+47104+4600+1=196560
$$

Each of the nontrivial subconstituents (of sizes 4600, 47104, 93150) is a spherical $\left(t+1-s^{\prime}\right)=7$-design.

Generalized Subconstituents

Let X be a spherical t-design in $\mathbb{R}^{n}, y \in \mathbb{R}^{n}$ be an arbitrary element, η a real number.
A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

A cube has a square as a subconstituent with respect to a normal vector of a face.

Example

Iet I be the Leech lattice, $y \in L_{6}$. Then the subconstituents of $X=L_{4}$ with respect to y have sizes

Generalized Subconstituents

Let X be a spherical t-design in $\mathbb{R}^{n}, y \in \mathbb{R}^{n}$ be an arbitrary element, η a real number.
A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

A cube has a square as a subconstituent with respect to a normal vector of a face.

Example

I et I be the Leech lattice, $y \in L_{6}$. Then the subconstituents of $X=L_{4}$ with respect to y have sizes
$552+11178+48600+75900+48600+11178+552=196560$

Generalized Subconstituents

Let X be a spherical t-design in $\mathbb{R}^{n}, y \in \mathbb{R}^{n}$ be an arbitrary element, η a real number.
A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

A cube has a square as a subconstituent with respect to a normal vector of a face.
\square
Let L be the Leech lattice, $y \in L_{6}$. Then the subconstituents of $X=L_{4}$ with respect to y have sizes
$552+11178+48600+75900+48600+11178+552=196560$

Generalized Subconstituents

Let X be a spherical t-design in $\mathbb{R}^{n}, y \in \mathbb{R}^{n}$ be an arbitrary element, η a real number.
A subconstituent of X with respect to y and η is

$$
\{x \in X \mid(x, y)=\eta\}
$$

Example

A cube has a square as a subconstituent with respect to a normal vector of a face.

Example

Let L be the Leech lattice, $y \in L_{6}$. Then the subconstituents of $X=L_{4}$ with respect to y have sizes

$$
552+11178+48600+75900+48600+11178+552=196560
$$

Analogue of a Theorem of Delsarte-Goethals-Seidel

Theorem

Let Y be a spherical t-design in the unit sphere in $\mathbb{R}^{n}, y \in \mathbb{R}^{n}$ be an arbitrary element of unit length. Let

$$
s^{\prime}(y)=|\{(x, y) \mid x \in X,(x, y) \neq \pm 1\}|
$$

Then every subconstituent of X with respect to y is a $\left(t+1-s^{\prime}(y)\right)$-design in \mathbb{R}^{n-1}

This implies that each of the "generalized" subconstituents of sizes $552,11178,48600$ and 75900 is a spherical $11+1-7=5-$ design.

Analogue of a Theorem of Delsarte-Goethals-Seidel

Theorem

Let X be a spherical t-design in the unit sphere in $\mathbb{R}^{n}, y \in \mathbb{R}^{n}$ be an arbitrary element of unit length. Let

$$
s^{\prime}(y)=|\{(x, y) \mid x \in X,(x, y) \neq \pm 1\}|
$$

Then every subconstituent of X with respect to y is a $\left(t+1-s^{\prime}(y)\right)$-design in \mathbb{R}^{n-1}.

This implies that each of the "generalized" subconstituents of sizes $552,11178,48600$ and 75900 is a spherical $11+1-7=5$-design.

Analogue of a Theorem of Delsarte-Goethals-Seidel

Theorem

Let X be a spherical t-design in the unit sphere in $\mathbb{R}^{n}, y \in \mathbb{R}^{n}$ be an arbitrary element of unit length. Let

$$
s^{\prime}(y)=|\{(x, y) \mid x \in X,(x, y) \neq \pm 1\}|
$$

Then every subconstituent of X with respect to y is a $\left(t+1-s^{\prime}(y)\right)$-design in \mathbb{R}^{n-1}.

This implies that each of the "generalized" subconstituents of sizes $552,11178,48600$ and 75900 is a spherical $11+1-7=5$-design.

Another Theorem of Delsarte-Goethals-Seidel

Theorem
 If X is a spherical t-design with degree s satisfying $t \geq 2 s-2$, then X carries a (Q-polynomial) association scheme.

> Remark

> There are association schemes related to spherical designs, whose existence is not guaranteed by the above theorem.

Another Theorem of Delsarte-Goethals-Seidel

Theorem

If X is a spherical t-design with degree s satisfying $t \geq 2 s-2$, then X carries a (Q-polynomial) association scheme.

Remark

Looks somewhat similar to a theorem of Cohn-Kumar on universal optimality of spherical codes.

> There are association schemes related to spherical designs, whose existence is not guaranteed by the above theorem.

Another Theorem of Delsarte-Goethals-Seidel

Theorem

If X is a spherical t-design with degree s satisfying $t \geq 2 s-2$, then X carries a (Q-polynomial) association scheme.

Remark

Looks somewhat similar to a theorem of Cohn-Kumar on universal optimality of spherical codes.
There are association schemes related to spherical designs, whose existence is not guaranteed by the above theorem.

New (?) Association Schemes

Let L be the Leech lattice, $X=L_{4}$ has $t=11, s^{\prime}=5$.
Subconstituents:
$1+4600+47104+93150+47104+4600+1=196560$
Every nontrivial subconstituent is a spherical 7-design
4600: $s=4$, hence association scheme $(t \geq 2 s-2)$
47104: $s=5$, also association scheme (why?)
Subconstituents of "47104"

$$
1+2025+15400+22275+7128+275=47104
$$

Every nontrivial subconstituent is a spherical
$(7+1-5)=3$-design.
2025: $s=3$, also association scheme (why?)
7128: $s=4$, also association scheme (why?)
275: $s=2$, hence associaton scheme $(t \geq 2 s=$

New (?) Association Schemes

Let L be the Leech lattice, $X=L_{4}$ has $t=11, s^{\prime}=5$.
Subconstituents:

$$
1+4600+47104+93150+47104+4600+1=196560
$$

Every nontrivial subconstituent is a spherical 7-design.

Every nontrivial subconstituent is a spherical
\square
2025: $s=3$, also association scheme (why?)
7128: $s=4$, also association scheme (why?)

New (?) Association Schemes

Let L be the Leech lattice, $X=L_{4}$ has $t=11, s^{\prime}=5$. Subconstituents:

$$
1+4600+47104+93150+47104+4600+1=196560
$$

Every nontrivial subconstituent is a spherical 7-design. 4600: $s=4$, hence association scheme $(t \geq 2 s-2)$

```
47104: s=5, also association scheme (why?)
Subconstituents of "47104"
1+2025+15100+22275+7128+275=47104
```

Every nontrivial subconstituent is a spherical
$(7+1-5)=3$-design.
2025: $s=3$, also association scheme (why?)
7128: $s=4$, also association scheme (why?)

New (?) Association Schemes

Let L be the Leech lattice, $X=L_{4}$ has $t=11, s^{\prime}=5$.
Subconstituents:

$$
1+4600+47104+93150+47104+4600+1=196560
$$

Every nontrivial subconstituent is a spherical 7-design. 4600: $s=4$, hence association scheme $(t \geq 2 s-2)$ 47104: $s=5$, also association scheme (why?)
Subconstituents of
$1+2025+15400+22275+7128+275=47104$
Every nontrivial subconstituent is a spherical
$(7+1-5)=3$-design.
2025: $s=3$, also association scheme (why?)
7128: $s=4$, also association scheme (why?)

New (?) Association Schemes

Let L be the Leech lattice, $X=L_{4}$ has $t=11, s^{\prime}=5$.
Subconstituents:

$$
1+4600+47104+93150+47104+4600+1=196560
$$

Every nontrivial subconstituent is a spherical 7-design. 4600: $s=4$, hence association scheme $(t \geq 2 s-2)$
47104: $s=5$, also association scheme (why?)
Subconstituents of "47104":

$$
1+2025+15400+22275+7128+275=47104
$$

Every nontrivial subconstituent is a spherical

$$
(7+1-5)=3 \text {-design. }
$$

New (?) Association Schemes

Let L be the Leech lattice, $X=L_{4}$ has $t=11, s^{\prime}=5$.
Subconstituents:

$$
1+4600+47104+93150+47104+4600+1=196560
$$

Every nontrivial subconstituent is a spherical 7-design. 4600: $s=4$, hence association scheme $(t \geq 2 s-2)$
47104: $s=5$, also association scheme (why?)
Subconstituents of "47104":

$$
1+2025+15400+22275+7128+275=47104
$$

Every nontrivial subconstituent is a spherical
$(7+1-5)=3$-design.
2025: $s=3$, also association scheme (why?)
7128: $s=4$, also association scheme (why?)

New (?) Association Schemes

Let L be the Leech lattice, $X=L_{4}$ has $t=11, s^{\prime}=5$.
Subconstituents:

$$
1+4600+47104+93150+47104+4600+1=196560
$$

Every nontrivial subconstituent is a spherical 7-design.
4600: $s=4$, hence association scheme $(t \geq 2 s-2)$
47104: $s=5$, also association scheme (why?)
Subconstituents of "47104":

$$
1+2025+15400+22275+7128+275=47104
$$

Every nontrivial subconstituent is a spherical
$(7+1-5)=3$-design.
2025: $s=3$, also association scheme (why?)
7128: $s=4$, also association scheme (why?)
275: $s=2$, hence associaton scheme $(t \geq 2 s=2)$

Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge One cannot work directly with the set of shortest vectors Besides, there are three lattices known, up to isometry. Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

Theorem (Venkov, 1004)

L_{6} is a spherical 11-design
Using the property of being a spherical 11-design, we can compute the sizes of generalized subconstituents.

Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge:
One cannot work directly with the set of shortest vectors.
Besides, there are three lattices known, up to isometry.
Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

Theorem (Venkov, 1984)
 L_{6} is a spherical ${ }^{11}$-design
 Using the property of being a spherical 11-design, we can compute the sizes of generalized subconstituents.

Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge: $52,416,000$.
One cannot work directly with the set of shortest vectors.
Besides, there are three lattices known, up to isometry.
Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

> Theorem (Venkov, 1984)
> L_{6} is a spherical 11-design
> Using the property of being a spherical 11-design, we can compute the sizes of generalized subconstituents.

Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge: $52,416,000$. One cannot work directly with the set of shortest vectors.
Besides, there are three lattices known, up to isometry.
Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

> Theorem (Venkov, 1984)
> L_{6} is a spherical 11-design
> Using the property of being a spherical 11-design, we can compute the sizes of generalized subconstituents.

Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge: $52,416,000$. One cannot work directly with the set of shortest vectors. Besides, there are three lattices known, up to isometry.

> Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

```
Theorem (Venkov, 1984)
L
Using the property of being a spherical 11-design, we can compute
the sizes of generalized subconstituents.
```


Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge: $52,416,000$. One cannot work directly with the set of shortest vectors. Besides, there are three lattices known, up to isometry. Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

> Theorem (Venkov, 1984)
> L_{6} is a spherical 11-design
> Using the property of being a spherical 11-design, we can compute the sizes of generalized subconstituents.

Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge: $52,416,000$. One cannot work directly with the set of shortest vectors. Besides, there are three lattices known, up to isometry. Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

Theorem (Venkov, 1984)

L_{6} is a spherical 11-design.
Using the property of being a spherical 11-design, we can compute the sizes of generalized subconstituents.

Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the minimum norm of even unimodular lattices jumps from 4 to 6 . The number of the shortest vectors is huge: $52,416,000$.
One cannot work directly with the set of shortest vectors. Besides, there are three lattices known, up to isometry. Let L be an even unimodular lattice of dimension 48, minimum norm 6 (We wish to classify such lattices, if possible)

Theorem (Venkov, 1984)

L_{6} is a spherical 11-design.
Using the property of being a spherical 11-design, we can compute the sizes of generalized subconstituents.

Subconstituents in Dimension 48

Let L be an even unimodular lattice of dimension 48, minimum norm 6 . Then the sizes of subconstituents are:

- w.r.t. elt. of norm 6

$$
1,36848,1678887,12608784,23766960
$$

- w.r.t. elt. of norm 8
\square
- w.r.t. elt. of norm 10 $100,17150,475300,3898200,12612600,18409300$,
- wr.t certain elt of norm 12 : $1176,58656,833592,4642848,12270384,16802688$,
- w.r.t. certain elt. of norm 14

53, 5496, 133992, 1215048, 5190387, 11883840,
15558368,

Subconstituents in Dimension 48

Let L be an even unimodular lattice of dimension 48, minimum norm 6. Then the sizes of subconstituents are:

- w.r.t. elt. of norm 6 :

1, 36848, 1678887, 12608784, 23766960,...,

- w.r.t. elt. of norm 8:

2256, 192512, 2905728, 12816384, 20582240,

- w.r.t. elt. of norm 10

$$
100,17150,475300,3898200,12612600,18409300,
$$

- w.r.t. certain elt. of norm 12:

1176, 58656, 833592, 4642848, 12270384,16802688

- w.r.t. certain elt. of norm 14

53, 5496, 133992, 1215048, 5190387, 11883840,
15558368,

Subconstituents in Dimension 48

Let L be an even unimodular lattice of dimension 48, minimum norm 6. Then the sizes of subconstituents are:

- w.r.t. elt. of norm 6 :

1, 36848, 1678887, 12608784, 23766960,...,

- w.r.t. elt. of norm 8 :
$2256,192512,2905728,12816384,20582240, \ldots$,
- w.r.t. elt. of norm 10

100, 17150, 475300, 3898200, 12612600, 18409300,

- w.r.t. certain elt. of norm 12 :

1176, 58656, 833592, 4642848, 12270384, 16802688

- w.r.t. certain elt. of norm 14

53, 5496, 133992, 1215048, 5190387, 11883840
15558368,

Subconstituents in Dimension 48

Let L be an even unimodular lattice of dimension 48, minimum norm 6. Then the sizes of subconstituents are:

- w.r.t. elt. of norm 6 :

1, 36848, 1678887, 12608784, 23766960,...,

- w.r.t. elt. of norm 8 :

2256, 192512, 2905728, 12816384, 20582240,...,

- w.r.t. elt. of norm 10 :

$$
100,17150,475300,3898200,12612600,18409300, \ldots,
$$

- w.r.t. certain elt. of norm 12

1176, 58656, 833592, 4642848, 12270384, 16802688,

- w.r.t. certain elt. of norm 14

53, 5496, 133992, 1215048, 5190387, 11883840,
15558368,

Subconstituents in Dimension 48

Let L be an even unimodular lattice of dimension 48, minimum norm 6. Then the sizes of subconstituents are:

- w.r.t. elt. of norm 6 : 1, 36848, 1678887, 12608784, 23766960,...,
- w.r.t. elt. of norm 8 :

2256, 192512, 2905728, 12816384, 20582240,...,

- w.r.t. elt. of norm 10 :

$$
100,17150,475300,3898200,12612600,18409300, \ldots,
$$

- w.r.t. certain elt. of norm 12:
$1176,58656,833592,4642848,12270384,16802688, \ldots$,
- w.r.t. certain elt. of norm 14

53, 5496, 133992, 1215048, 5190387, 11883840,
15558368,

Subconstituents in Dimension 48

Let L be an even unimodular lattice of dimension 48, minimum norm 6. Then the sizes of subconstituents are:

- w.r.t. elt. of norm 6 :

1, 36848, 1678887, 12608784, 23766960,...,

- w.r.t. elt. of norm 8 :

2256, 192512, 2905728, 12816384, 20582240,...,

- w.r.t. elt. of norm 10 :
$100,17150,475300,3898200,12612600,18409300, \ldots$,
- w.r.t. certain elt. of norm 12:

1176, 58656, 833592, 4642848, 12270384, 16802688,...,

- w.r.t. certain elt. of norm 14:

53, 5496, 133992, 1215048, 5190387, 11883840, 15558368,....

Equiangular Lines

Theorem

Let L be an even unimodular lattice of dimension 48, minimum norm 6. Then for every element $\alpha \in L_{10}$

is a set of equiangular lines with angle $\arccos \frac{1}{7}$, of size 50 . Also, there exists an element $\beta \in L_{14}$ such that

is a set of equiangular lines with angle $\arccos \frac{1}{7}$, of size 53 .

Equiangular Lines

Theorem

Let L be an even unimodular lattice of dimension 48, minimum norm 6 . Then for every element $\alpha \in L_{10}$,

$$
\left\{\left. \pm\left(x-\frac{5}{2} \alpha\right) \right\rvert\, x \in L_{6},(x, \alpha)=5\right\}
$$

is a set of equiangular lines with angle $\arccos \frac{1}{7}$, of size 50 .
Also, there exists an element $\beta \in L_{14}$ such that

is a set of equiangular lines with angle $\arccos \frac{1}{7}$, of size 53 .

Equiangular Lines

Theorem

Let L be an even unimodular lattice of dimension 48, minimum norm 6 . Then for every element $\alpha \in L_{10}$,

$$
\left\{\left. \pm\left(x-\frac{5}{2} \alpha\right) \right\rvert\, x \in L_{6},(x, \alpha)=5\right\}
$$

is a set of equiangular lines with angle $\arccos \frac{1}{7}$, of size 50 .
Also, there exists an element $\beta \in L_{14}$ such that

$$
\left\{\left. \pm\left(x-\frac{5}{14} \beta\right) \right\rvert\, x \in L_{6},(x, \alpha)=6\right\}
$$

is a set of equiangular lines with angle $\arccos \frac{1}{7}$, of size 53 .

