On Graphs with Complete Multipartite μ -Graphs

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

(joint work with Aleksandar Jurišić and Yuki Tagami)

Pusan National University

February 10, 2007.

A graph Γ is a pair (V, E), where

V = a finite set (called vertices)

E = a subset of the set of all pairs of V (called edges)

A graph Γ is a pair (V, E), where

V = a finite set (called vertices)

E = a subset of the set of all pairs of V (called edges)

Write $x \sim y$ if $\{x, y\} \in E$.

$$\Gamma(x) = \{ y \in V \mid x \sim y \}$$
 neighbors

A graph Γ is a pair (V, E), where

V = a finite set (called vertices)

E = a subset of the set of all pairs of V (called edges)

Write $x \sim y$ if $\{x, y\} \in E$.

$$\Gamma(x) = \{ y \in V \mid x \sim y \}$$
 neighbors

$$\Gamma(x,y) = \Gamma(x) \cap \Gamma(y),$$

A graph Γ is a pair (V, E), where

V = a finite set (called vertices)

E = a subset of the set of all pairs of V (called edges)

Write $x \sim y$ if $\{x, y\} \in E$.

$$\Gamma(x) = \{ y \in V \mid x \sim y \}$$
 neighbors

 $\Gamma(x,y) = \Gamma(x) \cap \Gamma(y)$, path, distance, diameter, etc.

A graph Γ is a pair (V, E), where

V = a finite set (called vertices)

E = a subset of the set of all pairs of V (called edges)

Write $x \sim y$ if $\{x, y\} \in E$.

$$\Gamma(x) = \{ y \in V \mid x \sim y \}$$
 neighbors

 $\Gamma(x,y) = \Gamma(x) \cap \Gamma(y)$, path, distance, diameter, etc.

$$\Gamma_{\mathbf{i}}(x) = \{ y \in V \mid d(x, y) = \mathbf{i} \}$$

A graph Γ is a pair (V, E), where

V = a finite set (called vertices)

E = a subset of the set of all pairs of V (called edges)

Write $x \sim y$ if $\{x, y\} \in E$.

$$\Gamma(x) = \{ y \in V \mid x \sim y \}$$
 neighbors

 $\Gamma(x,y) = \Gamma(x) \cap \Gamma(y)$, path, distance, diameter, etc.

$$\Gamma_{i}(x) = \{ y \in V \mid d(x, y) = i \}$$

$$x$$
 $\Gamma(x)$ On Graphs with Correlate

Regard $\Gamma(x)$ as a subgraph of the graph Γ . Then $\Gamma(x)$ is called a local graph of Γ .

Regard $\Gamma(x)$ as a subgraph of the graph Γ . Then $\Gamma(x)$ is called a local graph of Γ .

Local characterization means:

Regard $\Gamma(x)$ as a subgraph of the graph Γ . Then $\Gamma(x)$ is called a local graph of Γ .

Local characterization means: Suppose Γ is a graph in which $\Gamma(x) \cong \Delta$ for every x.

Regard $\Gamma(x)$ as a subgraph of the graph Γ . Then $\Gamma(x)$ is called a local graph of Γ .

Local characterization means: Suppose Γ is a graph in which $\Gamma(x) \cong \Delta$ for every x.

Show that Γ is the only such graph (possibly under some more assumption).

Regard $\Gamma(x)$ as a subgraph of the graph Γ . Then $\Gamma(x)$ is called a local graph of Γ .

Local characterization means: Suppose Γ is a graph in which $\Gamma(x) \cong \Delta$ for every x.

Show that Γ is the only such graph (possibly under some more assumption).

Regard $\Gamma(x)$ as a subgraph of the graph Γ . Then $\Gamma(x)$ is called a local graph of Γ .

Local characterization means: Suppose Γ is a graph in which $\Gamma(x)\cong \Delta$ for every x.

Show that Γ is the only such graph (possibly under some more assumption).

Example: locally 5-gon \implies icosahedron

 Γ is regular of valency k if $|\Gamma(x)| = k$ for all x.

strongly regular

```
\Gamma is regular of valency k if |\Gamma(x)| = k for all x.

For regular graph \Gamma,

edge-regular if |\Gamma(x,y)| = \lambda whenever x \sim y

co-edge-regular if |\Gamma(x,y)| = \mu whenever x \not\sim y

amply regular if edge-regular and |\Gamma(x,y)| = \mu whenever d(x,y) = 2
```

if edge-regular and co-edge-regular

On Graphs with Complete Multipartite μ -Graphs – p.4/?

```
\Gamma is regular of valency k if |\Gamma(x)|=k for all x.

For regular graph \Gamma,

edge-regular if |\Gamma(x,y)|=\lambda whenever x\sim y

co-edge-regular if |\Gamma(x,y)|=\mu whenever x\not\sim y

amply regular if edge-regular and |\Gamma(x,y)|=\mu whenever d(x,y)=2

strongly regular if edge-regular and co-edge-regular
```

The subgraph of the form $\Gamma(x,y)$ (d(x,y)=2) is called a μ -graph of Γ .

```
\Gamma is regular of valency k if |\Gamma(x)| = k for all x. For regular graph \Gamma,
```

```
edge-regular if |\Gamma(x,y)| = \lambda whenever x \sim y co-edge-regular if |\Gamma(x,y)| = \mu whenever x \not\sim y amply regular if edge-regular and |\Gamma(x,y)| = \mu whenever d(x,y) = 2 strongly regular if edge-regular and co-edge-regular
```

The subgraph of the form $\Gamma(x,y)$ (d(x,y)=2) is called a μ -graph of Γ .

$$x$$
. $\Gamma(x)$

```
\Gamma is regular of valency k if |\Gamma(x)| = k for all x. For regular graph \Gamma,
```

```
edge-regular if |\Gamma(x,y)| = \lambda whenever x \sim y co-edge-regular if |\Gamma(x,y)| = \mu whenever x \not\sim y amply regular if edge-regular and |\Gamma(x,y)| = \mu whenever d(x,y) = 2 strongly regular if edge-regular and co-edge-regular
```

The subgraph of the form $\Gamma(x,y)$ (d(x,y)=2) is called a μ -graph of Γ .

$$x$$
, $\Gamma(x)$

a μ -graph of a local graph "=" a local graph of a μ -graph

a μ -graph of a local graph "=" a local graph of a μ -graph

a μ -graph of a local graph "=" a local graph of a μ -graph

In particular,
$$\mu' = |\mu \circ \operatorname{local}(\Gamma)| = |\operatorname{local} \circ \mu(\Gamma)|$$

a μ -graph of a local graph "=" a local graph of a μ -graph

In particular, $\mu' = |\mu \circ \operatorname{local}(\Gamma)| = |\operatorname{local} \circ \mu(\Gamma)|$

Locally co-edge-regular
$$\iff |\mu \circ \operatorname{local}(\Gamma)|$$
 is constant $\iff |\operatorname{local} \circ \mu(\Gamma)|$ is constant $\iff \mu$ -graph is regular

a μ -graph of a local graph "=" a local graph of a μ -graph

In particular, $\mu' = |\mu \circ \operatorname{local}(\Gamma)| = |\operatorname{local} \circ \mu(\Gamma)|$

Locally co-edge-regular
$$\iff |\mu \circ \operatorname{local}(\Gamma)|$$
 is constant $\iff |\operatorname{local} \circ \mu(\Gamma)|$ is constant $\iff \mu\text{-graph}$ is regular

Lemma. μ, μ' constant and $\mu > \mu' + 1 \implies$ regular.

 $K_{t \times n} = \overline{K_n} * \overline{K_n} * \cdots \overline{K_n} = \overline{t \cdot K_n}$ (t parts, each being $\overline{K_n} = \text{graph with } n$ vertices, no edges)

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu = nt > n(t-1) + 1 = \mu' + 1$$
. Hence by

 $K_{t\times n}=\overline{K_n}*\overline{K_n}*\cdots\overline{K_n}=\overline{t\cdot K_n}$ (t parts, each being $\overline{K_n}=$ graph with n vertices, no edges) Suppose every μ -graph of Γ is $\cong K_{t\times n}$, where $n\geq 2$. Then

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu = nt > n(t-1) + 1 = \mu' + 1$$
. Hence by

Lemma. μ, μ' constant and $\mu > \mu' + 1 \implies$ regular.

$$K_{t\times n}=\overline{K_n}*\overline{K_n}*\cdots\overline{K_n}=\overline{t\cdot K_n}$$
 (t parts, each being $\overline{K_n}=$ graph with n vertices, no edges) Suppose every μ -graph of Γ is $\cong K_{t\times n}$, where $n\geq 2$. Then

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu = nt > n(t-1) + 1 = \mu' + 1$$
. Hence by

Lemma. μ, μ' constant and $\mu > \mu' + 1 \implies$ regular.

 Γ is regular.

 $K_{t\times n}=\overline{K_n}*\overline{K_n}*\cdots\overline{K_n}=\overline{t\cdot K_n}$ (t parts, each being $\overline{K_n}=$ graph with n vertices, no edges) Suppose every μ -graph of Γ is $\cong K_{t\times n}$, where $n\geq 2$. Then

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu = nt > n(t-1) + 1 = \mu' + 1$$
. Hence by

Lemma. μ, μ' constant and $\mu > \mu' + 1 \implies$ regular.

 Γ is regular.

 $\mathcal{G}_{t,n}$: the class of graphs with μ -graph $\cong K_{t\times n}$

 $K_{t\times n}=\overline{K_n}*\overline{K_n}*\cdots\overline{K_n}=\overline{t\cdot K_n}$ (t parts, each being $\overline{K_n}=$ graph with n vertices, no edges) Suppose every μ -graph of Γ is $\cong K_{t\times n}$, where $n\geq 2$. Then

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu = nt > n(t-1) + 1 = \mu' + 1$$
. Hence by

Lemma. μ, μ' constant and $\mu > \mu' + 1 \implies$ regular.

 Γ is regular.

 $\mathcal{G}_{t,n}$: the class of graphs with μ -graph $\cong K_{t\times n}$ $\mathcal{G}_{t,n}$ consists of regular graphs,

 $K_{t\times n}=\overline{K_n}*\overline{K_n}*\cdots\overline{K_n}=\overline{t\cdot K_n}$ (t parts, each being $\overline{K_n}=$ graph with n vertices, no edges) Suppose every μ -graph of Γ is $\cong K_{t\times n}$, where $n\geq 2$. Then

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu = nt > n(t-1) + 1 = \mu' + 1$$
. Hence by

Lemma. μ, μ' constant and $\mu > \mu' + 1 \implies$ regular.

 Γ is regular.

 $\mathcal{G}_{t,n}$: the class of graphs with μ -graph $\cong K_{t\times n}$ $\mathcal{G}_{t,n}$ consists of regular graphs, $\operatorname{local}(\Gamma) \in \mathcal{G}_{t-1,n}$ for $\Gamma \in \mathcal{G}_{t,n}$

Complete Multipartite Graph

$$K_{t\times n}=\overline{K_n}*\overline{K_n}*\cdots\overline{K_n}=\overline{t\cdot K_n}$$
 (t parts, each being $\overline{K_n}=$ graph with n vertices, no edges) Suppose every μ -graph of Γ is $\cong K_{t\times n}$, where $n\geq 2$. Then

$$\mu \circ \operatorname{local}(\Gamma) = \operatorname{local} \circ \mu(\Gamma) = K_{(t-1) \times n}.$$

$$\mu' = |\mu \circ local(\Gamma)| = |K_{(t-1)\times n}| = n(t-1).$$

$$\mu = nt > n(t-1) + 1 = \mu' + 1$$
. Hence by

Lemma. μ, μ' constant and $\mu > \mu' + 1 \implies$ regular.

 Γ is regular.

 $\mathcal{G}_{t,n}$: the class of graphs with μ -graph $\cong K_{t\times n}$ $\mathcal{G}_{t,n}$ consists of regular graphs, $\operatorname{local}(\Gamma) \in \mathcal{G}_{t-1,n}$ for $\Gamma \in \mathcal{G}_{t,n}$

If $t \geq 2$, then $\Gamma \in \mathcal{G}_{t,n}$ is edge-regular, hence amply regular.

The Diagram

 Γ is a distance-regular graph if

$$p_{ij}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$
 constant

where $x \in \Gamma_h(y)$, for all h, i, j.

The Diagram

 Γ is a distance-regular graph if

$$p_{ij}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$
 constant

where $x \in \Gamma_h(y)$, for all h, i, j. The diagram showing $p_{i,i-1}^1, p_{i,i}^1, p_{i,i+1}^1$:

The Diagram

 Γ is a distance-regular graph if

$$p_{ij}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$
 constant

where $x \in \Gamma_h(y)$, for all h, i, j. The diagram showing $p_{i,i-1}^1, p_{i,i}^1, p_{i,i+1}^1$:

The Intersection Number α

y

The Intersection Number α

 \mathcal{X}_{\bullet}

y

The Intersection Number α

 x_{\bullet}

y

If $|\Gamma(x, y, z)|$ is constant whenever d(x, y) = 1, $z \in \Gamma_2(x) \cap \Gamma_2(y)$ (and there exists at least one such triple x, y, z), then we say

 α exists

and denote this constant as α .

Generalized quadrangle GQ(p,q) is a SRG where every μ -graph is $K_{1\times(q+1)}=\overline{K_{q+1}}$ $(t=\alpha=1)$ (and conversely).

Generalized quadrangle GQ(p,q) is a SRG where every μ -graph is $K_{1\times (q+1)}=\overline{K_{q+1}}$ $(t=\alpha=1)$ (and conversely).

Triangular extended generalized quadrangles $(t = \alpha = 2)$.

Generalized quadrangle GQ(p,q) is a SRG where every μ -graph is

$$K_{1\times(q+1)}=\overline{K_{q+1}}\ (t=\alpha=1)$$
 (and conversely).

Triangular extended generalized quadrangles $(t = \alpha = 2)$.

Graph	k	n	t	α
J(8,4)	16	2	2	2
halved 8-cube	28	2	3	3
$3.O_7(3)$	117	3	4	4
Meixner2	176	4	3	3
Patterson	280	4	2	2

Generalized quadrangle GQ(p,q) is a SRG where every μ -graph is

$$K_{1\times(q+1)}=\overline{K_{q+1}}\ (t=\alpha=1)$$
 (and conversely).

Triangular extended generalized quadrangles $(t = \alpha = 2)$.

Graph	k	n	t	α
J(8,4)	16	2	2	2
halved 8-cube	28	2	3	3
$3.O_7(3)$	117	3	4	4
Meixner2	176	4	3	3
Patterson	280	4	2	2

Generalized quadrangle GQ(p,q) is a SRG where every μ -graph is

$$K_{1\times(q+1)}=\overline{K_{q+1}}\ (t=\alpha=1)$$
 (and conversely).

Triangular extended generalized quadrangles $(t = \alpha = 2)$.

Graph $k \quad n \quad t \quad \alpha$

J(8,4) 16 2 2 2

halved 8-cube 28 2 3 3

 $3.O_7(3)$ 117 3 4 4

Meixner2 176 4 3 3

Patterson 280 4 2 2

Always $t = \alpha$?

Is *t* bounded?

Generalized quadrangle GQ(p,q) is a SRG where every μ -graph is

$$K_{1\times(q+1)}=\overline{K_{q+1}}\ (t=\alpha=1)$$
 (and conversely).

Triangular extended generalized quadrangles $(t = \alpha = 2)$.

Graph $k \quad n \quad t \quad \alpha$

J(8,4) 16 2 2 2

halved 8-cube 28 2 3 3

 $3.O_7(3)$ 117 3 4 4

Meixner2 176 4 3 3

Patterson 280 4 2 2

Always $t = \alpha$?

Is *t* bounded?

If α exists in Γ , then α exists in a local graph Δ of Γ , and $\alpha(\Delta) = \alpha(\Gamma) - 1$.

Jurišić and Koolen (2007, to appear in JACO) proposed:

Jurišić and Koolen (2007, to appear in JACO) proposed: Suppose $n \ge 2, t \ge 2$,

Jurišić and Koolen (2007, to appear in JACO) proposed: Suppose $n \geq 2, t \geq 2$, every μ -graph of Γ is $\cong K_{t \times n}$,

Jurišić and Koolen (2007, to appear in JACO) proposed: Suppose $n \geq 2, t \geq 2$, every μ -graph of Γ is $\cong K_{t \times n}$, the intersection number α exists.

Jurišić and Koolen (2007, to appear in JACO) proposed: Suppose $n \geq 2, t \geq 2$, every μ -graph of Γ is $\cong K_{t \times n}$, the intersection number α exists. Then $\alpha \in \{t, t-1\}$. Show: $\alpha = t$.

Jurišić and Koolen (2007, to appear in JACO) proposed:

Suppose $n \geq 2$, $t \geq 2$,

every μ -graph of Γ is $\cong K_{t \times n}$,

the intersection number α exists.

Then $\alpha \in \{t, t-1\}$. Show: $\alpha = t$.

Theorem (Jurišić.-M.-Tagami). If $t \geq 3$, then $\alpha = t$.

Jurišić and Koolen (2007, to appear in JACO) proposed:

Suppose $n \geq 2$, $t \geq 2$,

every μ -graph of Γ is $\cong K_{t \times n}$,

the intersection number α exists.

Then $\alpha \in \{t, t-1\}$. Show: $\alpha = t$.

Theorem (Jurišić.-M.-Tagami). If $t \geq 3$, then $\alpha = t$.

If $n \geq 3$, then such a graph is locally^{t-1} GQ(n-1, n-1)

Jurišić and Koolen (2007, to appear in JACO) proposed:

Suppose $n \geq 2$, $t \geq 2$,

every μ -graph of Γ is $\cong K_{t \times n}$,

the intersection number α exists.

Then $\alpha \in \{t, t-1\}$. Show: $\alpha = t$.

Theorem (Jurišić.-M.-Tagami). If $t \geq 3$, then $\alpha = t$.

If $n \geq 3$, then such a graph is locally^{t-1} GQ(n-1, n-1)

Moreover, $t \leq 4$, with equality holds only if n = 3.

Jurišić and Koolen : $\alpha \in \{t, t-1\}$. So if $\alpha = t-1$, then

Jurišić and Koolen : $\alpha \in \{t, t-1\}$. So if $\alpha = t-1$, then

Graph Γ local (Γ) \cdots local $^{t-2}(\Gamma)$ local $^{t-1}(\Gamma)$ μ -Graph $K_{t \times n}$ $K_{(t-1) \times n}$ \cdots $K_{2 \times n}$ $K_{1 \times n}$ α α α $\alpha - 1$ \cdots $\alpha - t + 2$ $\alpha - t + 1$

Jurišić and Koolen : $\alpha \in \{t, t-1\}$. So if $\alpha = t-1$, then

Graph Γ local (Γ) \cdots local $^{t-2}(\Gamma)$ local $^{t-1}(\Gamma)$ μ -Graph $K_{t \times n}$ $K_{(t-1) \times n}$ \cdots $K_{2 \times n}$ $K_{1 \times n}$ α t-1 t-2 \cdots 1

Jurišić and Koolen : $\alpha \in \{t, t-1\}$. So if $\alpha = t-1$, then Graph Γ local (Γ) \cdots local $^{t-2}(\Gamma)$ local $^{t-1}(\Gamma)$ μ -Graph $K_{t \times n}$ $K_{(t-1) \times n}$ \cdots $K_{2 \times n}$ $K_{1 \times n}$ α t-1 t-2 \cdots 1 0 local $^{t-1}(\Gamma)$: μ -graph $K_{1 \times n} = \overline{K_n}$, and $\alpha = 0$

```
Jurišić and Koolen : \alpha \in \{t, t-1\}. So if \alpha = t-1, then

Graph \Gamma local(\Gamma) \cdots local^{t-2}(\Gamma) local^{t-1}(\Gamma)

\mu-Graph K_{t \times n} K_{(t-1) \times n} \cdots K_{2 \times n} K_{1 \times n}

\alpha t-1 t-2 \cdots 1

local^{t-1}(\Gamma): \mu-graph K_{1 \times n} = \overline{K_n}, and \alpha = 0

\Longrightarrow local^{t-1}(\Gamma): triangle-free
```

```
Jurišić and Koolen : \alpha \in \{t, t-1\}. So if \alpha = t-1, then Graph \Gamma local(\Gamma) \cdots local^{t-2}(\Gamma) local^{t-1}(\Gamma) \mu-Graph K_{t \times n} K_{(t-1) \times n} \cdots K_{2 \times n} K_{1 \times n} \alpha t-1 t-2 \cdots 1 0 local^{t-1}(\Gamma): \mu-graph K_{1 \times n} = \overline{K_n}, and \alpha = 0 \Longrightarrow local^{t-1}(\Gamma): triangle-free Since t \geq 3, local^{t-2}(\Gamma): SRG, locally triangle-free
```

```
Jurišić and Koolen : \alpha \in \{t, t-1\}. So if \alpha = t-1, then 

Graph \Gamma local(\Gamma) \cdots local^{t-2}(\Gamma) local^{t-1}(\Gamma) \mu-Graph K_{t \times n} K_{(t-1) \times n} \cdots K_{2 \times n} K_{1 \times n} \alpha t-1 t-2 \cdots 1 0 local^{t-1}(\Gamma): \mu-graph K_{1 \times n} = \overline{K_n}, and \alpha = 0 \Rightarrow local^{t-1}(\Gamma): triangle-free Since t \geq 3, local^{t-2}(\Gamma): SRG, locally triangle-free Use integrality of multiplicity \Rightarrow contradiction, hence \alpha = t.
```

Jurišić and Koolen : $\alpha \in \{t, t-1\}$. So if $\alpha = t-1$, then Graph Γ local (Γ) \cdots local $^{t-2}(\Gamma)$ local $^{t-1}(\Gamma)$ μ -Graph $K_{t \times n}$ $K_{(t-1) \times n}$ \cdots $K_{2 \times n}$ $K_{1 \times n}$ α t-1 t-2 \cdots 1 0 local $^{t-1}(\Gamma)$: μ -graph $K_{1 \times n} = \overline{K_n}$, and $\alpha = 0$ \Rightarrow local $^{t-1}(\Gamma)$: triangle-free Since $t \geq 3$, local $^{t-2}(\Gamma)$: SRG, locally triangle-free Use integrality of multiplicity \Rightarrow contradiction, hence $\alpha = t$.

If $n \ge 3$, then invoke the known classification of triangular EGQ to conclude n = 3.

Jurišić and Koolen : $\alpha \in \{t, t-1\}$. So if $\alpha = t-1$, then Graph Γ local (Γ) \cdots local $^{t-2}(\Gamma)$ local $^{t-1}(\Gamma)$ μ -Graph $K_{t \times n}$ $K_{(t-1) \times n}$ \cdots $K_{2 \times n}$ $K_{1 \times n}$ α t-1 t-2 \cdots 1 0 local $^{t-1}(\Gamma)$: μ -graph $K_{1 \times n} = \overline{K_n}$, and $\alpha = 0$ \Rightarrow local $^{t-1}(\Gamma)$: triangle-free Since $t \geq 3$, local $^{t-2}(\Gamma)$: SRG, locally triangle-free Use integrality of multiplicity \Rightarrow contradiction, hence $\alpha = t$.

If $n \ge 3$, then invoke the known classification of triangular EGQ to conclude n = 3.

THE END.