Codes and Lattices of Hadamard Matrices

Akihiro Munemasa
Graduate School of Information Sciences
Tohoku University munemasa@math.is.tohoku.ac.jp

June 12, 2007

Let H be a Hadamard matrix of order 24 whose first row is the all-ones vector. Let $C_{3}(H)$ denote the ternary code generated by the rows of H :

$$
C_{3}(H)=\mathbb{F}_{3}^{24} H
$$

Let $B=\frac{1}{2}(H+J)$ be the binary Hadamard matrix associated to H, and let $C_{2}(H)$ denote the binary code generated by the rows of B :

$$
C_{2}(H)=\mathbb{F}_{2}^{24} B
$$

Then

- $C_{3}(H)$ is a self-dual code with minimum weight 6 or 9 .
- $C_{2}(H)$ is a doubly even self-dual code with minimum weight 4 or 8 .

As a consequence of complete classification of Hadamard matrices of order 24 (there are 60 of them, up to equivalence, see [4, 5]), Assmus and Key [1] observed the following:

Observation. $C_{2}(H)$ has minimum weight 8 if and only if $C_{3}\left(H^{T}\right)$ has minimum weight 9 .

Note that $C_{2}(H)$ has minimum weight 8 if and only if it is equivalent to the extended binary Golay code, while $C_{3}\left(H^{T}\right)$ has minimum weight 9 if and only if it is an extremal ternary self-dual $[24,12,9]$ codes which were classified
in [6]. I found in January 2007, a proof which does not use the classification. In March 2007, I found another proof using lattices. In this report, I give the latter proof.

Let

$$
\Lambda(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}
H+J \\
8 I \\
4 e_{1}+1
\end{array}\right] \subset \mathbb{R}^{24}
$$

Then $\Lambda(H)$ is an even unimodular lattice, and its minimum norm is 2 or 4.
Theorem 1. Let H be a Hadamard matrix of order 24 whose first row is the all-ones vector. The following statements are equivalent:
(i) $C_{2}(H)$ has minimum weight 8 ,
(ii) $C_{3}\left(H^{T}\right)$ has minimum weight 9 ,
(iii) $\Lambda(H)$ has minimum norm 4 .

Note that there are exactly two Hadamard matrices satisfying the conditions of Theorem 1. For one of these Hadamard matrices, the code $C_{3}\left(H^{T}\right)$ is the quadratic residue code, and for the other Hadamard matrix, $C_{3}\left(H^{T}\right)$ is the Pless symmetry code. For both of these Hadamard matrices, $C_{2}(H)$ is the binary extended Golay code, and $\Lambda(H)$ is the Leech lattice.

An interesting point is how the transpose of H come into play in (ii). The equivalence of (i) and (ii) can be shown directly (indeed this was the proof I discovered in January 2007), and that explains why H^{T} appears in (ii). The other proof involving (iii) also explains why H^{T} appears, as you will see below.

To prove Theorem 1, set

$$
\Lambda_{0}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
8 I
\end{array}\right]
$$

and observe

$$
\text { (iii) } \begin{aligned}
& \Longleftrightarrow \Lambda(H) \text { has minimum norm }>2 \\
& \Longleftrightarrow \Lambda_{0}(H) \text { has minimum norm }>2 .
\end{aligned}
$$

Indeed, since $\Lambda(H) \backslash \Lambda_{0}(H) \subset \frac{1}{2 \sqrt{2}}(1+2 \mathbb{Z})^{24}, \Lambda(H) \backslash \Lambda_{0}(H)$ has minimum norm at least 3 .

There are two unimodular lattices containing $\Lambda_{0}(H)$, other than $\Lambda(H)$. These are given by the following lemma.

Lemma 2. The lattice $\Lambda_{0}(H)$ is a sublattice of index 2 in $\Lambda(H)$. The two unimodular lattices containing $\Lambda_{0}(H)$, other than $\Lambda(H)$ are

$$
\Lambda^{\prime}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right], \quad \Lambda^{\prime \prime}(H)=\frac{1}{\sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
\frac{1}{2}(H+J) \\
2 I
\end{array}\right] .
$$

In particular,

$$
\begin{align*}
\Lambda_{0}(H) & =\left\{x \in \Lambda^{\prime}(H) \mid\|x\|^{2} \equiv 0 \quad(\bmod 2)\right\} \tag{1}\\
& =\left\{x \in \Lambda^{\prime \prime}(H) \left\lvert\, \frac{1}{\sqrt{2}} x \cdot \mathbf{1} \equiv 0 \quad(\bmod 2)\right.\right\} \tag{2}
\end{align*}
$$

Proof. Since

$$
\mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
8 I
\end{array}\right] \subset(2 \mathbb{Z})^{24}
$$

and $4 e_{1}+\mathbf{1} \notin(2 \mathbb{Z})^{24}$, we have $\Lambda(H) \supsetneq \Lambda_{0}(H)$. Since

$$
2\left(4 e_{1}+\mathbf{1}\right)=8 e_{1}+(H+J)_{1} \in \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
8 I
\end{array}\right]
$$

we have $\left|\Lambda(H): \Lambda_{0}(H)\right|=2$.
Clearly, $\Lambda_{0}(H) \subset \Lambda^{\prime}(H) \cap \Lambda^{\prime \prime}(H)$. Since $\Lambda_{0}(H)$ is even and $\Lambda^{\prime}(H)$ is odd, $\Lambda_{0}(H) \subsetneq \Lambda^{\prime}(H)$. Since $\Lambda^{\prime}(H)=\left\langle\Lambda_{0}(H), \frac{1}{2 \sqrt{2}} \mathbf{1}\right\rangle$ and $2 \cdot \frac{1}{2 \sqrt{2}} \mathbf{1} \in \Lambda_{0}(H)$, we obtain $\left|\Lambda^{\prime}(H): \Lambda_{0}(H)\right|=2$. Since $\Lambda^{\prime \prime}(H)$ is even, we have $\Lambda^{\prime}(H) \neq \Lambda^{\prime \prime}(H)$ and since

$$
\Lambda^{\prime \prime}(H) \subset \frac{1}{2 \sqrt{2}}(2 \mathbb{Z})^{24} \not \supset \Lambda(H)
$$

we have $\Lambda^{\prime \prime}(H) \neq \Lambda(H)$.
Since $\mathbb{F}_{2}^{24}\left(\frac{1}{2}(H+J)\right)$ is a self-dual code, $\Lambda^{\prime \prime}(H)$ is unimodular. Thus $\operatorname{det} \Lambda^{\prime \prime}(H)=1=\operatorname{det} \Lambda(H)$, and hence by [2, p.2],

$$
\begin{aligned}
\left|\Lambda^{\prime \prime}(H): \Lambda_{0}(H)\right|^{2} & =\frac{\operatorname{det} \Lambda_{0}(H)}{\operatorname{det} \Lambda^{\prime \prime}(H)} \\
& =\frac{\operatorname{det} \Lambda_{0}(H)}{\operatorname{det} \Lambda(H)} \\
& =\left|\Lambda(H): \Lambda_{0}(H)\right|^{2} \\
& =2^{2} .
\end{aligned}
$$

The two expressions (1) and (2) for $\Lambda_{0}(H)$ follows by observing that each forms a proper sublattice of $\Lambda(H)$ containing $\Lambda_{0}(H)$.

By (1), we find

$$
\begin{aligned}
& \min \Lambda_{0}(H) \\
& =\frac{1}{8} \min \left\{\|x\|^{2} \left\lvert\, 0 \neq x \in \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right] \frac{1}{\sqrt{24}} H^{T}\right.,\|x\|^{2} \equiv 0 \quad(\bmod 16)\right\} \\
& =\frac{1}{3} \min \left\{\|x\|^{2} \left\lvert\, 0 \neq x \in \mathbb{Z}^{48}\left[\begin{array}{c}
H^{T} \\
3 I
\end{array}\right]\right.,\|y\|^{2} \equiv 0 \quad(\bmod 16)\right\} \\
& = \begin{cases}2 & \text { if } C_{3}\left(H^{T}\right) \text { has a codeword of weight } 6, \\
4 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Also, by (2), we find

$$
\begin{aligned}
\min \Lambda_{0}(H) & =\frac{1}{8} \min \left\{\|x\|^{2} \left\lvert\, 0 \neq x \in \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
4 I
\end{array}\right]\right., x \cdot \mathbf{1} \equiv 0 \quad(\bmod 8)\right\} \\
& =\frac{1}{2} \min \left\{\|y\|^{2} \left\lvert\, 0 \neq y \in \mathbb{Z}^{48}\left[\begin{array}{c}
B \\
2 I
\end{array}\right]\right., y \cdot \mathbf{1} \equiv 0 \quad(\bmod 4)\right\} \\
& = \begin{cases}2 & \text { if } C_{2}(H) \text { has a codeword of weight } 4, \\
4 & \text { otherwise. }\end{cases}
\end{aligned}
$$

This completes the proof of Theorem 1.

References

[1] E. F. Assmus, Jr. and J. D. Key, "Designs and Their Codes," Cambridge University Press, Cambridge, 1992.
[2] W. Ebeling, "Lattices and Codes," 2nd ed., Vieweg, 2002.
[3] M. Hall, Jr., "Combinatorial Theory," 2nd edition, Wiley, New York, 1986.
[4] N. Ito, J.S. Leon and J.Q. Longyear, Classification of 3-(24, 12, 5) designs and 24-dimensional Hadamard matrices, J. Combin. Theory, Ser. A 31 (1981), 66-93.
[5] H. Kimura, New Hadamard matrix of order 24, Graphs Combin. 5 (1989), 235-242.
[6] J.S. Leon, V. Pless and N.J.A. Sloane, On ternary self-dual codes of length 24, IEEE Trans. Inform. Theory 27 (1981), 176-180.

