Codes and Lattices of Hadamard Matrices

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University

> RIMS, Kyoto University June 12, 2007.

Hadamard Matrix

A Hadamard matrix H is a square matrix of order n with entries ± 1 , satisfying

$$HH^T = nI.$$

Hadamard Matrix

A Hadamard matrix H is a square matrix of order n with entries ± 1 , satisfying

$$HH^T = nI.$$

Example:

Hadamard Matrix

A Hadamard matrix H is a square matrix of order n with entries ± 1 , satisfying

$$HH^T = nI.$$

Example:

Normalized Hadamard Matrix

Normalized Hadamard Matrix

Normalized if the entries of the first row are all 1.

- H: a Hadamard matrix of order n,
- *p* : an odd prime.

- H: a Hadamard matrix of order n,
- *p* : an odd prime.

 $C_p(H) = \mathbb{F}_p^n H$

- H: a Hadamard matrix of order n,
- *p* : an odd prime.

 $C_p(H) = \mathbb{F}_p^n H = \{ vH \mid v \in \mathbb{F}_p^n \}$

- H: a Hadamard matrix of order n,
- *p* : an odd prime.

 $C_p(H) = \mathbb{F}_p^n H = \{ vH \mid v \in \mathbb{F}_p^n \}$ = row space of H over $\mathbb{F}_p \subset \mathbb{F}_p^n$

- H: a Hadamard matrix of order n,
- *p* : an odd prime.

$$C_p(H) = \mathbb{F}_p^n H = \{ vH \mid v \in \mathbb{F}_p^n \}$$

= row space of H over $\mathbb{F}_p \subset \mathbb{F}_p^n$

• Fact : If p||n, then $C_p(H)$ is self-dual.

- H: a Hadamard matrix of order n,
- *p* : an odd prime.

 $C_p(H) = \mathbb{F}_p^n H = \{ vH \mid v \in \mathbb{F}_p^n \}$ = row space of H over $\mathbb{F}_p \subset \mathbb{F}_p^n$

- Fact : If p||n, then $C_p(H)$ is self-dual.
- C₃(H) is self-dual for Hadamard matrix H of order 24.

- H: a Hadamard matrix of order n,
- *p* : an odd prime.

 $C_p(H) = \mathbb{F}_p^n H = \{ vH \mid v \in \mathbb{F}_p^n \}$ = row space of H over $\mathbb{F}_p \subset \mathbb{F}_p^n$

- Fact : If p||n, then $C_p(H)$ is self-dual.
- C₃(H) is self-dual for Hadamard matrix H of order 24.

What if p = 2?

- H: a Hadamard matrix of order n.
- J: the all-ones matrix of order n.

- H: a Hadamard matrix of order n.
- J: the all-ones matrix of order n.

$$\mathbf{B} = \frac{1}{2}(H+J).$$

- H: a Hadamard matrix of order n.
- J: the all-ones matrix of order n.

$$B = \frac{1}{2}(H+J)$$
$$(-1 \mapsto 0)$$

- H: a Hadamard matrix of order n.
- J: the all-ones matrix of order n.

$$B = \frac{1}{2}(H + J).$$
$$(-1 \mapsto 0)$$
$$C_2(H) = \mathbb{F}_2^n B = \{vB \mid v \in \mathbb{F}_2^n\}$$
$$= \text{row space of } B \text{ over } \mathbb{F}_2 \subset \mathbb{F}_2^n$$

- H: a Hadamard matrix of order n.
- J: the all-ones matrix of order n.

$$\mathbf{B} = \frac{1}{2}(H+J)$$

 $(-1 \mapsto 0)$

$$C_2(H) = \mathbb{F}_2^n B = \{ vB \mid v \in \mathbb{F}_2^n \}$$

= row space of B over $\mathbb{F}_2 \subset \mathbb{F}_2^n$

• Fact : If $n \equiv 8 \pmod{16}$, then $C_2(H)$ is self-dual.

- H: a Hadamard matrix of order n.
- J: the all-ones matrix of order n.

$$\mathbf{B} = \frac{1}{2}(H+J)$$

$$(-1 \mapsto 0)$$

- $C_2(H) = \mathbb{F}_2^n B = \{ vB \mid v \in \mathbb{F}_2^n \}$ = row space of B over $\mathbb{F}_2 \subset \mathbb{F}_2^n$
 - Fact : If $n \equiv 8 \pmod{16}$, then $C_2(H)$ is self-dual.
 - n = 24: $C_2(H)$ is self-dual.

H: a Hadamard matrix of order 24. Then

- H: a Hadamard matrix of order 24. Then
 - $C_3(H)$ has minimum weight 6 or 9

- H: a Hadamard matrix of order 24. Then
 - $C_3(H)$ has minimum weight 6 or 9
 - $C_2(H)$ has minimum weight 4 or 8

- H: a Hadamard matrix of order 24. Then
 - $C_3(H)$ has minimum weight 6 or 9
 - $C_2(H)$ has minimum weight 4 or 8
 - There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)

- H: a Hadamard matrix of order 24. Then
 - $C_3(H)$ has minimum weight 6 or 9
 - $C_2(H)$ has minimum weight 4 or 8
 - There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)
 - Assmus and Key observed (in their book "Designs and Their Codes"):

- H: a Hadamard matrix of order 24. Then
 - $C_3(H)$ has minimum weight 6 or 9
 - $C_2(H)$ has minimum weight 4 or 8
 - There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)
 - Assmus and Key observed (in their book "Designs and Their Codes"):

 $\min C_2(H) = 8 \iff$

- H: a Hadamard matrix of order 24. Then
 - $C_3(H)$ has minimum weight 6 or 9
 - $C_2(H)$ has minimum weight 4 or 8
 - There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)
 - Assmus and Key observed (in their book "Designs and Their Codes"):

 $\min C_2(H) = \bigotimes \iff \min C_3(H^T) = \bigotimes$

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

- H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.
- $\mathbb{Z}^{24}B$

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H+J)$.

•
$$\mathbb{Z}^{48}\begin{bmatrix}B\\4I\\2e_1+\frac{1}{2}\end{bmatrix}$$

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

•
$$\mathbb{Z}^{48} \begin{bmatrix} B \\ 4I \\ 2e_1 + \frac{1}{2} \end{bmatrix} \times \frac{1}{\sqrt{2}}$$

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

•
$$\mathbb{Z}^{48}\begin{bmatrix}B\\4I\\2e_1+\frac{1}{2}\mathbf{1}\end{bmatrix} \times \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}}\mathbb{Z}^{49}\begin{bmatrix}H+J\\8I\\4e_1+\mathbf{1}\end{bmatrix}$$

= $\Lambda(H) \subset \mathbb{R}^{24}$.

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

•
$$\mathbb{Z}^{48}\begin{bmatrix}B\\4I\\2e_1+\frac{1}{2}\mathbf{1}\end{bmatrix}\times\frac{1}{\sqrt{2}}\Rightarrow\frac{1}{2\sqrt{2}}\mathbb{Z}^{49}\begin{bmatrix}H+J\\8I\\4e_1+\mathbf{1}\end{bmatrix}$$

= $\Lambda(H)\subset\mathbb{R}^{24}.$

Fact : $\Lambda(H)$ is an even unimodular lattice.

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

•
$$\mathbb{Z}^{48}\begin{bmatrix}B\\4I\\2e_1+\frac{1}{2}\mathbf{1}\end{bmatrix}\times\frac{1}{\sqrt{2}}\Rightarrow\frac{1}{2\sqrt{2}}\mathbb{Z}^{49}\begin{bmatrix}H+J\\8I\\4e_1+\mathbf{1}\end{bmatrix}$$

= $\Lambda(H)\subset\mathbb{R}^{24}.$

Fact : $\Lambda(H)$ is an even unimodular lattice. $\{||x||^2 \mid 0 \neq x \in \Lambda(H)\} \subset 2\mathbb{Z}$

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

•
$$\mathbb{Z}^{48}\begin{bmatrix}B\\4I\\2e_1+\frac{1}{2}\mathbf{1}\end{bmatrix}\times\frac{1}{\sqrt{2}}\Rightarrow\frac{1}{2\sqrt{2}}\mathbb{Z}^{49}\begin{bmatrix}H+J\\8I\\4e_1+\mathbf{1}\end{bmatrix}$$
$$=\Lambda(H)\subset\mathbb{R}^{24}.$$

Fact : $\Lambda(H)$ is an even unimodular lattice. $\min\{||x||^2 \mid 0 \neq x \in \Lambda(H)\}$ = minimum norm of $\Lambda(H)$

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

•
$$\mathbb{Z}^{48}\begin{bmatrix}B\\4I\\2e_1+\frac{1}{2}\mathbf{1}\end{bmatrix}\times\frac{1}{\sqrt{2}}\Rightarrow\frac{1}{2\sqrt{2}}\mathbb{Z}^{49}\begin{bmatrix}H+J\\8I\\4e_1+\mathbf{1}\end{bmatrix}$$

= $\Lambda(H)\subset\mathbb{R}^{24}.$

Fact : $\Lambda(H)$ is an even unimodular lattice. $\min\{||x||^2 \mid 0 \neq x \in \Lambda(H)\}$ = minimum norm of $\Lambda(H)$

= 2 or 4.

• H: a Hadamard matrix of order 24, $B = \frac{1}{2}(H + J)$.

•
$$\mathbb{Z}^{48}\begin{bmatrix}B\\4I\\2e_1+\frac{1}{2}\mathbf{1}\end{bmatrix}\times\frac{1}{\sqrt{2}}\Rightarrow\frac{1}{2\sqrt{2}}\mathbb{Z}^{49}\begin{bmatrix}H+J\\8I\\4e_1+\mathbf{1}\end{bmatrix}$$
$$=\Lambda(H)\subset\mathbb{R}^{24}.$$

Fact : $\Lambda(H)$ is an even unimodular lattice. $\min\{||x||^2 \mid 0 \neq x \in \Lambda(H)\}$ = minimum norm of $\Lambda(H)$

$$= 2 \text{ or } (4).$$

Given a Hadamard matrix H of order 24,

Equivalence

Given a Hadamard matrix H of order 24,

	min weight or norm	description
$C_2(H)$	4, 8	Golay
$C_3(H)$	6, <mark>9</mark>	QR or Pless symmetry
$\Lambda(H)$	2, 4	Leech

Equivalence

Given a Hadamard matrix H of order 24,

Theorem

Let H be a Hadamard matrix of order 24 whose first row is the all-ones vector. The following statements are equivalent:

- (i) $C_2(H)$ has minimum weight 8,
- (ii) $C_3(H^T)$ has minimum weight 9,
- (iii) $\Lambda(H)$ has minimum norm 4.

Theorem

Let H be a Hadamard matrix of order 24 whose first row is the all-ones vector. The following statements are equivalent:

- (i) $C_2(H)$ has minimum weight 8,
- (ii) $C_3(H^T)$ has minimum weight 9,
- (iii) $\Lambda(H)$ has minimum norm 4.

Proof uses "Neighbors" of $\Lambda(H)$.

 $\min \Lambda(H)$

= 2 or 4

$\min \Lambda(H)$ $= \min \Lambda_0(H)$

 $\min \Lambda(H) = 2 \text{ or } 4$ $= \min \Lambda_0(H)$ $= \min\{||x||^2 \mid 0 \neq x \in \Lambda'(H) = \frac{1}{2\sqrt{2}} \mathbb{Z}^{48} \begin{bmatrix} H\\ 8I \end{bmatrix}, ||x||^2 \text{ even } \}$

 $\min \Lambda(H)$ = 2 or 4 $= \min \Lambda_0(H)$ $= \min\{\|x\|^2 \mid 0 \neq x \in \Lambda'(H) = \frac{1}{2\sqrt{2}}\mathbb{Z}^{48} \mid \frac{H}{8I} \mid \|x\|^2 \text{ even } \}$ $= \min\{\|x\|^2 \mid 0 \neq x \in \Lambda''(H) = \frac{1}{2\sqrt{2}}\mathbb{Z}^{48} \begin{bmatrix} H+J\\ \\ 4I \end{bmatrix},$ $\frac{1}{\sqrt{2}}x \cdot \mathbf{1} \text{ even } \}$