Codes and Lattices of Hadamard Matrices

Akihiro Munemasa
Graduate School of Information Sciences
Tohoku University

RIMS, Kyoto University
June 12, 2007.

Hadamard Matrix

A Hadamard matrix H is a square matrix of order n with entries ± 1, satisfying

$$
H H^{T}=n I
$$

Hadamard Matrix

A Hadamard matrix H is a square matrix of order n with entries ± 1, satisfying

$$
H H^{T}=n I .
$$

Example:

Hadamard Matrix

A Hadamard matrix H is a square matrix of order n with entries ± 1, satisfying

$$
H H^{T}=n I .
$$

Example:

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Normalized Hadamard Matrix

$\left[\begin{array}{rrrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right]$

Normalized Hadamard Matrix

$$
\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
$$

Normalized if the entries of the first row are all 1.

Code of a Hadamard Matrix

- H : a Hadamard matrix of order n,
- p : an odd prime.

Code of a Hadamard Matrix

- H : a Hadamard matrix of order n,
- p : an odd prime.

$$
C_{p}(H)=\mathbb{F}_{p}^{n} H
$$

Code of a Hadamard Matrix

- H : a Hadamard matrix of order n,
- p : an odd prime.

$$
C_{p}(H)=\mathbb{F}_{p}^{n} H \quad=\left\{v H \mid v \in \mathbb{F}_{p}^{n}\right\}
$$

Code of a Hadamard Matrix

- H : a Hadamard matrix of order n,
- p : an odd prime.

$$
\begin{aligned}
& C_{p}(H)=\mathbb{F}_{p}^{n} H \quad=\left\{v H \mid v \in \mathbb{F}_{p}^{n}\right\} \\
& \quad=\text { row space of } H \text { over } \mathbb{F}_{p} \subset \mathbb{F}_{p}^{n}
\end{aligned}
$$

Code of a Hadamard Matrix

- H : a Hadamard matrix of order n,
- p : an odd prime.

$$
\begin{aligned}
& C_{p}(H)=\mathbb{F}_{p}^{n} H=\left\{v H \mid v \in \mathbb{F}_{p}^{n}\right\} \\
& \quad=\text { row space of } H \text { over } \mathbb{F}_{p} \subset \mathbb{F}_{p}^{n}
\end{aligned}
$$

- Fact : If $p \| n$, then $C_{p}(H)$ is self-dual.

Code of a Hadamard Matrix

- H : a Hadamard matrix of order n,
- p : an odd prime.
$C_{p}(H)=\mathbb{F}_{p}^{n} H \quad=\left\{v H \mid v \in \mathbb{F}_{p}^{n}\right\}$
$=$ row space of H over $\mathbb{F}_{p} \subset \mathbb{F}_{p}^{n}$
- Fact : If $p \| n$, then $C_{p}(H)$ is self-dual.
- $C_{3}(H)$ is self-dual for Hadamard matrix H of order 24.

Code of a Hadamard Matrix

- H : a Hadamard matrix of order n,
- p : an odd prime.
$C_{p}(H)=\mathbb{F}_{p}^{n} H \quad=\left\{v H \mid v \in \mathbb{F}_{p}^{n}\right\}$
$=$ row space of H over $\mathbb{F}_{p} \subset \mathbb{F}_{p}^{n}$
- Fact : If $p \| n$, then $C_{p}(H)$ is self-dual.
- $C_{3}(H)$ is self-dual for Hadamard matrix H of order 24.

What if $p=2$?

Binary Hadamard Matrix

- H : a Hadamard matrix of order n.
- J : the all-ones matrix of order n.

Binary Hadamard Matrix

- H : a Hadamard matrix of order n.
- J : the all-ones matrix of order n.

$$
B=\frac{1}{2}(H+J) .
$$

Binary Hadamard Matrix

- H : a Hadamard matrix of order n.
- J : the all-ones matrix of order n.

$$
\begin{gathered}
B=\frac{1}{2}(H+J) . \\
(-1 \mapsto 0)
\end{gathered}
$$

Binary Hadamard Matrix

- H : a Hadamard matrix of order n.
- J : the all-ones matrix of order n.

$$
\begin{gathered}
B=\frac{1}{2}(H+J) . \\
(-1 \mapsto 0)
\end{gathered}
$$

$C_{2}(H)=\mathbb{F}_{2}^{n} B=\left\{v B \mid v \in \mathbb{F}_{2}^{n}\right\}$
$=$ row space of B over $\mathbb{F}_{2} \subset \mathbb{F}_{2}^{n}$

Binary Hadamard Matrix

- H : a Hadamard matrix of order n.
- J : the all-ones matrix of order n.

$$
\begin{gathered}
B=\frac{1}{2}(H+J) . \\
(-1 \mapsto 0)
\end{gathered}
$$

$C_{2}(H)=\mathbb{F}_{2}^{n} B=\left\{v B \mid v \in \mathbb{F}_{2}^{n}\right\}$
$=$ row space of B over $\mathbb{F}_{2} \subset \mathbb{F}_{2}^{n}$

- Fact : If $n \equiv 8(\bmod 16)$, then $C_{2}(H)$ is self-dual.

Binary Hadamard Matrix

- H : a Hadamard matrix of order n.
- J : the all-ones matrix of order n.

$$
\begin{gathered}
B=\frac{1}{2}(H+J) . \\
(-1 \mapsto 0)
\end{gathered}
$$

$C_{2}(H)=\mathbb{F}_{2}^{n} B=\left\{v B \mid v \in \mathbb{F}_{2}^{n}\right\}$
$=$ row space of B over $\mathbb{F}_{2} \subset \mathbb{F}_{2}^{n}$

- Fact: If $n \equiv 8(\bmod 16)$, then $C_{2}(H)$ is self-dual.
- $n=24: C_{2}(H)$ is self-dual.

Hadamard Matrices of Order 24

$H:$ a Hadamard matrix of order 24. Then

Hadamard Matrices of Order 24

$H:$ a Hadamard matrix of order 24. Then

- $C_{3}(H)$ has minimum weight 6 or 9

Hadamard Matrices of Order 24

$H:$ a Hadamard matrix of order 24. Then

- $C_{3}(H)$ has minimum weight 6 or 9
- $C_{2}(H)$ has minimum weight 4 or 8

Hadamard Matrices of Order 24

H : a Hadamard matrix of order 24. Then

- $C_{3}(H)$ has minimum weight 6 or 9
- $C_{2}(H)$ has minimum weight 4 or 8
- There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)

Hadamard Matrices of Order 24

H : a Hadamard matrix of order 24. Then

- $C_{3}(H)$ has minimum weight 6 or 9
- $C_{2}(H)$ has minimum weight 4 or 8
- There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)
- Assmus and Key observed (in their book "Designs and Their Codes"):

Hadamard Matrices of Order 24

H : a Hadamard matrix of order 24. Then

- $C_{3}(H)$ has minimum weight 6 or 9
- $C_{2}(H)$ has minimum weight 4 or 8
- There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)
- Assmus and Key observed (in their book "Designs and Their Codes"):
$\min C_{2}(H)=8$

Hadamard Matrices of Order 24

$H:$ a Hadamard matrix of order 24. Then

- $C_{3}(H)$ has minimum weight 6 or 9
- $C_{2}(H)$ has minimum weight 4 or 8
- There are 60 Hadamard matrices of order 24 up to equivalence. (Ito-Leon-Longyear 1981; and Kimura 1989)
- Assmus and Key observed (in their book "Designs and Their Codes"):
$\min C_{2}(H)=8 \Longleftrightarrow \min C_{3}\left(H^{T}\right)=9$

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{24} B$

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I\end{array}\right]$

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} 1\end{array}\right]$

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} 1\end{array}\right] \times \frac{1}{\sqrt{2}}$

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} \mathbb{1}\end{array}\right] \times \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}H+J \\ 8 I \\ 4 e_{1}+1\end{array}\right]$
$=\Lambda(H) \subset \mathbb{R}^{24}$.

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} 1\end{array}\right] \times \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}H+J \\ 8 I \\ 4 e_{1}+1\end{array}\right]$

$$
=\Lambda(H) \subset \mathbb{R}^{24}
$$

Fact: $\Lambda(H)$ is an even unimodular lattice.

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} 1\end{array}\right] \times \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}H+J \\ 8 I \\ 4 e_{1}+1\end{array}\right]$

$$
=\Lambda(H) \subset \mathbb{R}^{24}
$$

Fact: $\Lambda(H)$ is an even unimodular lattice.
$\left\{\|x\|^{2} \mid 0 \neq x \in \Lambda(H)\right\} \subset 2 \mathbb{Z}$

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} 1\end{array}\right] \times \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}H+J \\ 8 I \\ 4 e_{1}+1\end{array}\right]$

$$
=\Lambda(H) \subset \mathbb{R}^{24}
$$

Fact: $\Lambda(H)$ is an even unimodular lattice.
$\min \left\{\|x\|^{2} \mid 0 \neq x \in \Lambda(H)\right\}$
$=$ minimum norm of $\Lambda(H)$

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} 1\end{array}\right] \times \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}H+J \\ 8 I \\ 4 e_{1}+1\end{array}\right]$

$$
=\Lambda(H) \subset \mathbb{R}^{24}
$$

Fact: $\Lambda(H)$ is an even unimodular lattice.
$\min \left\{\|x\|^{2} \mid 0 \neq x \in \Lambda(H)\right\}$
$=$ minimum norm of $\Lambda(H)$
$=2$ or 4 .

Lattice of a Hadamard Matrix

- H : a Hadamard matrix of order $24, B=\frac{1}{2}(H+J)$.
- $\mathbb{Z}^{48}\left[\begin{array}{c}B \\ 4 I \\ 2 e_{1}+\frac{1}{2} 1\end{array}\right] \times \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}H+J \\ 8 I \\ 4 e_{1}+1\end{array}\right]$

$$
=\Lambda(H) \subset \mathbb{R}^{24} .
$$

Fact: $\Lambda(H)$ is an even unimodular lattice.
$\min \left\{\|x\|^{2} \mid 0 \neq x \in \Lambda(H)\right\}$
$=$ minimum norm of $\Lambda(H)$
$=2$ or (4).

Equivalence

Given a Hadamard matrix H of order 24,

Equivalence

Given a Hadamard matrix H of order 24,

	min weight or norm	description
$C_{2}(H)$	4,8	Golay
$C_{3}(H)$	6,9	QR or Pless symmetry
$\Lambda(H)$	2,4	

Equivalence

Given a Hadamard matrix H of order 24,

	min weight or norm	description
$C_{2}(H)$	4,8	Golay
$C_{3}\left(H^{T}\right)$	6,9	QR or Pless symmetry
	\uparrow	
$\Lambda(H)$	2,4	Leech

Theorem

Let H be a Hadamard matrix of order 24 whose first row is the all-ones vector. The following statements are equivalent:
(i) $C_{2}(H)$ has minimum weight 8 ,
(ii) $C_{3}\left(H^{T}\right)$ has minimum weight 9 ,
(iii) $\Lambda(H)$ has minimum norm 4 .

Theorem

Let H be a Hadamard matrix of order 24 whose first row is the all-ones vector. The following statements are equivalent:
(i) $C_{2}(H)$ has minimum weight 8 ,
(ii) $C_{3}\left(H^{T}\right)$ has minimum weight 9 ,
(iii) $\Lambda(H)$ has minimum norm 4 .

Proof uses "Neighbors" of $\Lambda(H)$.

Neighbors

$$
\begin{array}{cc}
\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}
H+J \\
8 I \\
4 e_{1}+1
\end{array}\right] & \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right]
\end{array} \begin{gathered}
\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
4 I
\end{array}\right] \\
=\Lambda(H)
\end{gathered}
$$

Neighbors

$$
\begin{array}{cc}
\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}
H+J \\
8 I \\
4 e_{1}+1
\end{array}\right] & \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right] \\
=\Lambda(H) & \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
4 I
\end{array}\right] \\
\Lambda_{0}^{\prime}(H) & =\Lambda^{\prime \prime}(H)
\end{array}
$$

Neighbors

$$
\begin{array}{cc}
\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}
H+J \\
8 I \\
4 e_{1}+1
\end{array}\right] & \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right] \\
=\Lambda(H) & =\Lambda^{\prime}(H) \\
2 & 2 \\
\Lambda_{0}^{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
4 I
\end{array}\right] \\
\Lambda_{0}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H) \\
H+J
\end{array}\right]
\end{array}
$$

Neighbors

$$
\begin{array}{ccc}
\frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}
H+J \\
8 I \\
4 e_{1}+1
\end{array}\right] & \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right] & \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
4 I
\end{array}\right] \\
=\Lambda(H) & =\Lambda^{\prime}(H) & =\Lambda^{\prime \prime}(H) \\
\Lambda_{0}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
\|x\|^{2} \\
\text { even } \\
8 I
\end{array}\right]
\end{array}
$$

Neighbors

$$
\begin{aligned}
& \frac{1}{2 \sqrt{2}} \mathbb{Z}^{49}\left[\begin{array}{c}
H+J \\
8 I \\
4 e_{1}+1
\end{array}\right] \quad \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right] \quad \frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
4 I
\end{array}\right] \\
& =\Lambda(H) \\
& =\Lambda^{\prime}(H) \\
& =\Lambda^{\prime \prime}(H) \\
& \min \Lambda(H) \\
& =\min \Lambda_{0}(H) \quad \begin{array}{l}
\|x\|^{2} \\
\text { even }
\end{array} \quad \frac{1}{\sqrt{2}} x \cdot 1 \text { even } \\
& \Lambda_{0}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
8 I
\end{array}\right]
\end{aligned}
$$

Neighbors

$\min \Lambda(H)$

$=2$ or 4

Neighbors

$$
\min \Lambda(H)
$$

$$
=2 \text { or } 4
$$

$=\min \Lambda_{0}(H)$

Neighbors

$$
\begin{aligned}
& \min \Lambda(H) \quad=2 \text { or } 4 \\
& =\min \Lambda_{0}(H) \\
& =\min \left\{\|x\|^{2} \left\lvert\, 0 \neq x \in \Lambda^{\prime}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right]\right.,\|x\|^{2} \text { even }\right\}
\end{aligned}
$$

Neighbors

$$
\begin{aligned}
& \min \Lambda(H) \quad=2 \text { or } 4 \\
& =\min \Lambda_{0}(H) \\
& =\min \left\{\|x\|^{2} \left\lvert\, 0 \neq x \in \Lambda^{\prime}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H \\
8 I
\end{array}\right]\right.,\|x\|^{2} \text { even }\right\} \\
& =\min \left\{\|x\|^{2} \left\lvert\, 0 \neq x \in \Lambda^{\prime \prime}(H)=\frac{1}{2 \sqrt{2}} \mathbb{Z}^{48}\left[\begin{array}{c}
H+J \\
4 I
\end{array}\right]\right.\right. \\
& \\
& \left.\frac{1}{\sqrt{2}} x \cdot 1 \text { even }\right\}
\end{aligned}
$$

