Steiner quadruple systems extending affine triple systems

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University (joint work with Masanori Sawa)

RIMS, Kyoto University, October 14, 2008

Köhler (Fitting?) graph

Fitting (1915). $A=\mathbb{Z}_{34}$

Fitting (1915), Key-Wagner (1986)

Construction of Steiner systems

(1) Fitting considered a graph associated to a cyclic group of order v in order to construct a cyclic 3- $(v, 4,1)$ design.
(2) Key and Wagner noticed ovals can be used to extend $\operatorname{AG}(d, q)$ to a $3-\left(q^{d}+1, q+1,1\right)$ design.
(1)' Consider a graph associated to an abelian group of order v in order to construct a 3- $(v, 4,1)$ design.
(2)' Ovals can be used to extend $\operatorname{AG}(d, 3)$ to a $3-\left(3^{d}+1,4,1\right)$ design.

However,
(1)" An abelian group acts regularly on points.
(2)" The abelian group \mathbb{Z}_{3}^{d} fixes the extended point and acts regularly on the rest.

Regular action of abelian group

Construction of Steiner systems

- $A=$ a finite abelian group, $\hat{A}=A \rtimes\langle\tau\rangle, a^{\tau}=-a(a \in A)$.
- \hat{A} acts on A, and also on $\binom{A}{3}$ and on $\binom{A}{4}$.
- Köhler graph of $A=(\mathcal{T}, \mathcal{Q})$, where

$$
\mathcal{T} \subset\binom{A}{3} / \hat{A}, \quad \mathcal{Q} \subset\binom{A}{4} / \hat{A}
$$

are "generic" triples and quadruples.

- Generic means, for example, for $A=\mathbb{Z}_{3}^{d}$, non-collinear points in $\mathrm{AG}(d, 3)$.

Example

$A=$ a finite abelian group, $\hat{A}=A \rtimes\langle\tau\rangle, a^{\tau}=-a(a \in A)$.

- $A=\mathbb{Z}_{3}^{2}$
- \mathcal{T} consists of \hat{A}-orbits of non-collinear triples of $A=\mathrm{AG}(2,3)$. ovals (6 orbits)

	$\{(0,0),(1,0),(0,1)\}$
non-collinear	$\{(0,0),(1,0),(0,2)\}$
triples	$\{(0,0),(1,0),(2,2)\}$
	$\{(0,0),(0,1),(2,2)\}$

Kramer-Mesner matrix

$A=\mathbb{Z}_{3}^{2}$

The $\binom{A}{3} \times\binom{ A}{4}$ Kramer-Mesner matrix.

$(A \cup\{\infty\}$				
		2 oval orbits	∞ Uline	\cdots
$\binom{A \cup\{\infty\}}{3}$	$\infty \cup 2$ points	0	1	$?$
	lines	0	1	$?$
	non-	1	0	$?$
	collinear	1	0	$?$

Aim:

- Generalize this construction to $A=\mathbb{Z}_{3}^{d}$ for $d \geq 3$, and give a lower bound on the number of isomorphism classes of SQS $\left(3^{d}+1\right)$ which extend $\mathrm{AG}(d, 3)$.
- Describe analogy with Fitting's method.

