Steiner quadruple systems extending affine triple systems

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Masanori Sawa)

RIMS, Kyoto University, October 14, 2008

Fitting (1915). $A = \mathbb{Z}_{34}$

Fitting (1915), Key–Wagner (1986) Construction of Steiner systems

- (1) Fitting considered a graph associated to a cyclic group of order v in order to construct a cyclic 3-(v, 4, 1) design.
- (2) Key and Wagner noticed ovals can be used to extend AG(d,q) to a 3- $(q^d + 1, q + 1, 1)$ design.
- (1)' Consider a graph associated to an abelian group of order v in order to construct a 3-(v, 4, 1) design.
- (2)' Ovals can be used to extend AG(d, 3) to a 3-($3^d + 1, 4, 1$) design. However,
- (1)" An abelian group acts regularly on points.
- (2)" The abelian group \mathbb{Z}_3^d fixes the extended point and acts regularly on the rest.

イロト 人間ト イヨト イヨト

Regular action of abelian group Construction of Steiner systems

- A = a finite abelian group, $\hat{A} = A \rtimes \langle \tau \rangle$, $a^{\tau} = -a$ $(a \in A)$.
- \hat{A} acts on A, and also on $\binom{A}{3}$ and on $\binom{A}{4}$.
- Köhler graph of $A = (\mathcal{T}, \mathcal{Q})$, where

$$\mathcal{T} \subset {A \choose 3}/\hat{A}, \quad \mathcal{Q} \subset {A \choose 4}/\hat{A}$$

are "generic" triples and quadruples.

• Generic means, for example, for $A = \mathbb{Z}_3^d$, non-collinear points in AG(d, 3).

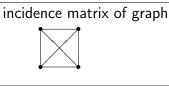
Example A = a finite abelian group, $\hat{A} = A \rtimes \langle \tau \rangle$, $a^{\tau} = -a$ $(a \in A)$.

- $A = \mathbb{Z}_3^2$
- \mathcal{T} consists of \hat{A} -orbits of non-collinear triples of A = AG(2,3).

ovals (6 orbits)

non-collinear triples

$$\{(0,0), (1,0), (0,1)\} \\ \{(0,0), (1,0), (0,2)\} \\ \{(0,0), (1,0), (2,2)\} \\ \{(0,0), (0,1), (2,2)\}$$



Kramer–Mesner matrix $A = \mathbb{Z}_{2}^{2}$

The $\binom{A}{3} \times \binom{A}{4}$ Kramer–Mesner matrix.				
$\begin{pmatrix} A \cup \{\infty\} \\ 4 \end{pmatrix}$				
		2 oval orbits	$\infty \cup$ line	
	$\infty \cup 2$ points	0	1	?
$\binom{A\cup\{\infty\}}{3}$	lines	0	1	?
	non-	1	0	?
	collinear	1	0	?

Aim:

- Generalize this construction to $A = \mathbb{Z}_3^d$ for $d \ge 3$, and give a lower bound on the number of isomorphism classes of $SQS(3^d + 1)$ which extend AG(d, 3).
- Describe analogy with Fitting's method.