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Köhler (Fitting?) graph

Fitting (1915). A = Z34
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Fitting (1915), Key–Wagner (1986)
Construction of Steiner systems

(1) Fitting considered a graph associated to a cyclic group of order
v in order to construct a cyclic 3-(v, 4, 1) design.

(2) Key and Wagner noticed ovals can be used to extend AG(d, q)
to a 3-(qd + 1, q + 1, 1) design.

(1)’ Consider a graph associated to an abelian group of order v in
order to construct a 3-(v, 4, 1) design.

(2)’ Ovals can be used to extend AG(d, 3) to a 3-(3d + 1, 4, 1) design.

However,

(1)” An abelian group acts regularly on points.

(2)” The abelian group Zd
3 fixes the extended point and acts regularly

on the rest.
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Regular action of abelian group
Construction of Steiner systems

A = a finite abelian group, Â = A o 〈τ〉, aτ = −a (a ∈ A).

Â acts on A, and also on
(

A
3

)
and on

(
A
4

)
.

Köhler graph of A = (T ,Q), where

T ⊂
(

A

3

)
/Â, Q ⊂

(
A

4

)
/Â

are “generic” triples and quadruples.

Generic means, for example, for A = Zd
3, non-collinear points in

AG(d, 3).
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Example
A = a finite abelian group, Â = A o 〈τ〉, aτ = −a (a ∈ A).

A = Z2
3

T consists of Â-orbits of non-collinear triples of A = AG(2, 3).
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incidence matrix of graph

ovals (6 orbits)

{(0, 0), (1, 0), (0, 1)}
{(0, 0), (1, 0), (0, 2)}
{(0, 0), (1, 0), (2, 2)}
{(0, 0), (0, 1), (2, 2)}

non-collinear
triples
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Kramer–Mesner matrix
A = Z2

3

The
(

A
3

)
×

(
A
4

)
Kramer–Mesner matrix.(

A∪{∞}
4

)
(

A∪{∞}
3

) 2 oval orbits ∞∪line · · ·
∞∪ 2 points 0 1 ?

lines 0 1 ?
non- 1 0 ?

collinear 1 0 ?

Aim:

Generalize this construction to A = Zd
3 for d ≥ 3, and give a

lower bound on the number of isomorphism classes of
SQS(3d + 1) which extend AG(d, 3).

Describe analogy with Fitting’s method.
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