Frames of the Leech lattice and their applications

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

August 6, 2009

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

The Leech lattice

A \mathbb{Z} -submodule L of rank 24 in \mathbb{R}^{24} with basis B characterized by the following properties of $G = BB^T$ (Gram matrix):

- det G = 1,
- $G_{ij} \in \mathbb{Z}$,
- $G_{ii} \in 2\mathbb{Z}$
- rootless: $\forall x \in L$, $||x||^2 \neq 2$.

unique up to isometry in \mathbb{R}^{24} .

cf. E_8 -lattice is a unique even unimodular lattice of rank 8.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Factorization of the polynomial $X^{23}-1$

$$(X - 1)(X^{22} + X^{21} + \dots + X + 1)$$
 over \mathbb{Z}
= $(X - 1)(X^{11} + X^{10} + \dots + 1)$
 $\times (X^{11} + X^9 + \dots + 1)$ over \mathbb{F}_2

$$= (X - 1)(X^{11} - X^{10} + \dots - 1) \\ \times (X^{11} + 2X^{10} - X^9 + \dots - 1) \quad \text{over } \mathbb{Z}/4\mathbb{Z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(by Hensel's lemma).

$$X^{23} - 1 = (X - 1)f(X)g(X)$$
 over $\mathbb{Z}/4\mathbb{Z}$

L is generated by the rows of:

 $(23 + 24) \times 24$ matrix Bonnecaze-Calderbank-Solé (1995)

cf. $\overline{f}(X) = f(X) \mod 2$. Golay code is

row sp. of
$$\begin{bmatrix} 1 & \overline{f}(X) \\ 1 & \overline{f}(X) \\ 1 & \overline{f}(X) \\ \vdots & \ddots \end{bmatrix}$$
 over \mathbb{F}_2 (mod 2 reduction of L).

L =Leech lattice

min $L = \min\{||x||^2 \mid 0 \neq x \in L\} = 4$ (rootless). A frame of L is $\{\pm f_1, \pm f_2, \dots, \pm f_{24}\}$ with $(f_i, f_j) = 4\delta_{ij}$.

$$\#\{x\in L\mid \|x\|^2=4\}=196560$$

cf. E_8 has 240 roots and a unique frame (of norm 2) up to $W(E_8)$.

Contents

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- History
- Quadratic Forms
- Triply Even Codes
- Framed Vertex Operator Algebras
- Frames of Leech Lattice

History

- E. Mathieu (1861, 1873): Mathieu groups
- E. Witt (1938): (Aut(Steiner system $S(5, 8, 24)) = M_{24}$)
- M.J.E. Golay (1949): $(Aut(Golay code) = M_{24})$
- J. Leech (1965): lattice L
- J.H. Conway (1968): Aut(L) = Co₀
- E. Bannai and N.J.A. Sloane (1981): 196560 vectors
- B. Fischer, R. Griess (1982): The Monster $\mathbb M$
- I. Frenkel, J. Lepowsky and A. Meurman (1988): Aut(V^は) = M.

Total of 26 sporadic finite simple groups. The most remarkable of all \mathbb{M} : moonshine $1 + 196883 = 196884 \rightarrow V^{\natural}$ (vertex operator algebra). Ultimate Goal: Want to understand V^{\natural} or \mathbb{M} better.

Quadratic Forms

L = even unimodular, rank 24, without roots B: basis of L $\rightarrow G = BB^T$: Gram matrix $\rightarrow Q(x) = x^T G x$ is a pos. def. quadratic form $\mathbb{Z}^{24} \rightarrow 2\mathbb{Z}$. $\rightarrow L$.

Golay code is also related to a quadratic form in a different sense.

Example. For $x, y, z \in \mathbb{F}_2$, $x^2 + y^2 + z^2 + xy + yz + zx = \frac{1}{2} \operatorname{wt}((x, y, z, x + y + z)) \mod 2$, where $\operatorname{wt}((x_1, \dots, x_n)) = \#i$ with $x_i = 1$.

A quadratic form over \mathbb{F}_2

More generally,

$$\mathbb{F}_2^n \supset \mathbf{E}_n = \{ u \in \mathbb{F}_2^n \mid \mathsf{wt}(u) \text{ even} \} : \quad \mathsf{dim} = n - 1.$$
 $Q : \mathbf{E}_n \to \mathbb{F}_2, \quad Q(u) = rac{\mathsf{wt}(u)}{2} \mod 2$

Then

$$Q(u + v) = Q(u) + Q(v) + \sum_{i=1}^{n} u_i v_i.$$

Witt's theorem $\implies \exists ! \text{ maximal subspace } U \text{ of } \mathbf{E}_n \text{ such that } Q|_U = 0, \text{ up to the action of } O(\mathbf{E}_n, Q).$ Note, however, that $O(\mathbf{E}_n, Q)$ does not preserve wt(u). The subgroup S_n preserves wt(u).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$Q(u) = \frac{\operatorname{wt}(u)}{2} \mod 2$$

A linear subspace of \mathbb{F}_2^n is called a (binary) code of length n. A code $C \subset \mathbf{E}_n$ is said to be doubly even if $Q|_C = 0$, i.e., $4| \operatorname{wt}(u) \forall u \in C$.

$$\min C = \{ \mathsf{wt}(u) \mid \mathsf{0} \neq u \in C \}.$$

$$C^{\perp} = \{ u \in \mathbb{F}_2^n \mid (u, v) = \mathbf{0} \; \forall v \in C \}.$$

Witt's theorem $\implies \exists ! maximal doubly even code of length n up to the action of <math>O(\mathbf{E}_n, Q)$.

 $S_n \subset O(\mathbf{E}_n, Q)$ acts on the set of maximal doubly even code of length n. Equivalence of codes is defined by the action of S_n .

n = 24: there are 9 maximal doubly even codes up to S_{24} , Golay code is one of them.

- $\mathbb{F}_2^n \to \mathbb{F}_2$, $u \mapsto \mathsf{wt}(u) \mod 2$: linear
- $\mathbf{E}_n \to \mathbb{F}_2$, $Q: u \mapsto \frac{\mathsf{wt}(u)}{2} \mod 2$: quadratic
- for a doubly even code C, $C \to \mathbb{F}_2$, $T: u \mapsto \frac{\operatorname{wt}(u)}{4} \mod 2$: cubic

There is no analogue of Witt's theorem for cubic forms \implies it is nontrivial to classify maximal codes C with $T|_C = 0$, i.e.,

 $\forall u \in C, 8 | wt(u).$

Call such C triply even.

$\operatorname{Aut} V^{\natural} = \mathbb{M}$

C is triply even iff $\forall u \in C, 8 | wt(u)$

A triply even code appeared in the construction of V^{\natural} due to Dong–Griess–Höhn (1998), Miyamoto (2004). Leech lattice $\rightsquigarrow D_7 \subset \mathbb{F}_2^{48} \rightsquigarrow V^{\natural}$.

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix} \qquad H_3 = \begin{bmatrix} H & H & H \\ 1_8 & 0 & 0 \\ 0 & 1_8 & 0 \\ 0 & 0 & 1_8 \end{bmatrix}$$
$$D_7 = \mathbb{F}_2 \text{-span of} \begin{bmatrix} H_3 & H_3 \\ 1_{24} & 0 \\ 0 & 1_{24} \end{bmatrix} : \text{ triply even}$$
$$\text{where } \mathbf{1}_n = (1, 1, \dots, 1) \in \mathbb{F}_2^n.$$

 \mathbb{F}_2 -span of

$$H_3 = \begin{bmatrix} H & H & H \\ \mathbf{1}_8 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_8 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}_8 \end{bmatrix}$$

is doubly even $\implies \mathbb{F}_2$ -span of

$$D_7 = \mathcal{D}(H_3) = \begin{bmatrix} H_3 & H_3 \\ \mathbf{1}_{24} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_{24} \end{bmatrix}$$

is triply even.

More generally, if A spans a doubly even code C of length $n \equiv 0 \pmod{8}$ then

$$\mathcal{D}(C) = \mathbb{F}_2\text{-span of} \begin{bmatrix} A & A \\ \mathbf{1}_n & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_n \end{bmatrix}$$

is a triply even code of length 2n. $\mathcal{D} =$ doubling.

Framed Vertex Operator Algebra Dong-Griess-Höhn (1998), Miyamoto (2004): $L \rightsquigarrow D_7 \subset \mathbb{F}_2^{48} \rightsquigarrow V^{\natural}$. $V^{\natural} \supset L(1/2,0)^{\otimes 48}$, where L(1/2,0) : Virasoro VOA 24 $L \supset F = \bigoplus \mathbb{Z}f_i$, where $(f_i, f_j) = 4\delta_{ij}$: frame i=1 $L = \bigcup (x + F)$ coset decomposition $x \in L/F$ $V^{\natural} = \bigoplus V^{\beta}$ as $L(1/2, 0)^{\otimes 48}$ -modules $\beta \in D$ $F \subset L$: not unique.

 $L(1/2,0)^{\otimes 48} \cong \mathcal{T} \subset V^{\natural}$: not unique $\implies D$: depends on \mathcal{T} (Virasoro frame), but:

 $D \subset \mathbb{F}_2^{48}, D$: triply even, $\mathbf{1}_{48} \in D$.

Frame of $L \rightarrow \text{Virasoro Frame of } V^{\natural}$ Dong-Mason-Zhu (1994)

$$\begin{split} L \supset F &= \bigoplus_{i=1}^{24} \mathbb{Z}f_i: \text{ frame} \\ & \longrightarrow V^{\natural} \supset \mathcal{T} \cong L(1/2,0)^{\otimes 48}: \text{ Virasoro frame} \\ V^{\natural} &= \bigoplus_{\beta \in D} V^{\beta} \text{ as } \mathcal{T}\text{-modules} \\ D &= \text{ structure code of } \mathcal{T} \\ &= \mathcal{D}(L/F \text{ mod } 2). \end{split}$$

Note $L/F \subset (\mathbb{Z}/4\mathbb{Z})^{24}$ since $F \subset L \subset \frac{1}{4}F$, so $L/F \mod 2 \subset \mathbb{F}_2^{24}$

Classification of $F \subset L \implies$ classification of $\mathcal{T} \subset V^{\natural}$?

Frame of $L \rightarrow \text{Virasoro Frame of } V^{\natural}$

$$\begin{aligned} & \{ \text{Virasoro frames of } V^{\natural} \} & \xrightarrow{\text{str}} & \left\{ \begin{array}{l} \text{triply even } D \\ & \text{len} = 48, \ \mathbf{1}_{48} \in D \\ & \min D^{\perp} \geq 4 \end{array} \right\} \\ & \uparrow \text{ DMZ} & & \uparrow \mathcal{D} \text{ (doubling)} \\ & \{ \text{frames of } L \} & \xrightarrow{L/F \text{ mod } 2} & \left\{ \begin{array}{l} \text{doubly even } C \\ & \text{len} = 24, \ \mathbf{1}_{24} \in C \\ & \min C^{\perp} \geq 4 \\ & \text{easily enumerated} \end{array} \right\} \end{aligned}$$

The diagram commutes, and

DMZ({frames of L}) $\stackrel{(\subset)}{=}$ str⁻¹($\mathcal{D}(\{\text{doubly even}\})).$

Theorem (Betsumiya–Harada–Shimakura–M.) Every maximal member of

$$\left\{ egin{array}{c} {
m triply even } D \ {
m length} = 48, \ {f 1}_{48} \in D \end{array}
ight\}$$

is

- $\mathcal{D}(C)$ for some doubly even code C of length 24, or
- decomposable (only two such codes, one of the form $\mathcal{D}(C_1) \oplus \mathcal{D}(C_2) \oplus \mathcal{D}(C_3)$, another of the form $\mathcal{D}(C_1) \oplus \mathcal{D}(C_2)$), or
- a code of dimension 9 obtained from the triangular graph T_{10} on $45 = |S_{10} : S_2 \times S_8|$ vertices.

The last case does not occur if we assume min $D^{\perp} \ge 4$. According to Lam-Yamauchi, it must be a structure code of some framed VOA, not V^{\natural} .

Corollary (Betsumiya–Harada–Shimakura–M.)

$$\begin{cases} \text{triply even } D \\ \text{len} = 48, \ \mathbf{1}_{48} \in D \\ \min D^{\perp} \ge 4 \end{cases} \\ = \mathcal{D}\left(\begin{cases} \text{doubly even } C \\ \text{len} = 24, \ \mathbf{1}_{24} \in C \\ \min C^{\perp} \ge 4 \end{cases} \right) \end{cases}$$

 \cup {subcodes of decomposable $\mathcal{D}(C_1) \oplus \mathcal{D}(C_2), \dots$ }

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

$$\{\mathcal{T} \subset V^{\natural}\} \quad \stackrel{\text{str}}{\to} \quad \mathcal{D}\left(\left\{\begin{array}{cc} \text{doubly even } C\\ \text{length} = 24\\ \mathbf{1}_{24} \in C\\ \min C^{\perp} \geq 4\end{array}\right\}\right) \cup \{\mathcal{D}(C_1) \oplus \mathcal{D}(C_2), \dots\}$$

 $\uparrow \mathsf{DMZ} \qquad \qquad \uparrow \mathcal{D} \text{ (doubling)}$

$$\{F \subset L\} \xrightarrow{\text{mod } 2} \left\{ \begin{array}{l} \text{doubly even } C \\ \text{length} = 24 \\ \mathbf{1}_{24} \in C \\ \min C^{\perp} \ge 4 \end{array} \right\}$$

 $\mathsf{DMZ}(\{\mathsf{frames of } L\}) = \mathsf{str}^{-1}(\mathcal{D}(\{\mathsf{doubly even}\})).$

Problem remains:

• {
$$\mathcal{T} \subset V^{\natural}$$
} \rightarrow { $\mathcal{D}(C_1) \oplus \mathcal{D}(C_2), \dots$ } ?

• $\{F \subset L\}$?

Determine $\{F \subset L\}$, i.e., classify all frames of the Leech lattice L, with the help of the map

$$\{F \subset L\} \xrightarrow{L/F \text{ mod } 2} \begin{cases} \text{doubly even } C \\ \text{length} = 24 \\ \mathbf{1}_{24} \in C \\ \min C^{\perp} \ge 4 \\ \text{easily enumerated} \end{cases}$$

 $F \subset L \subset \frac{1}{4}F \rightsquigarrow \mathcal{C}_F = L/F \subset (\mathbb{Z}/4\mathbb{Z})^{24} \rightsquigarrow C = L/F \mod 2.$

For each $C \in \text{RHS}$, classify F such that $C_F \mod 2 \cong C$. The map $F \mapsto L/F \mod 2$ is neither injective nor surjective.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Codes over $\mathbb{Z}/4\mathbb{Z}$

A code over $\mathbb{Z}/4\mathbb{Z}$ of length n is a submodule of $(\mathbb{Z}/4\mathbb{Z})^n$. Equivalence is by $\{\pm 1\}^n \rtimes S_n$. For $u \in (\mathbb{Z}/4\mathbb{Z})^n$, $\operatorname{wt}(u) = \sum_{i=1}^{n} u_i^2$,

where we regard
$$u_i \in \{\mathsf{0},\mathsf{1},\mathsf{2},-\mathsf{1}\} \subset \mathbb{Z}$$
, and define

$$\min \mathcal{C} = \min \{ \mathsf{wt}(u) \mid \mathsf{0} \neq u \in \mathcal{C} \}.$$

A code $\mathcal{C} \subset (\mathbb{Z}/4\mathbb{Z})^n$ is Type II if 8| wt(u) for all $u \in \mathcal{C}$. Then

$$\{\text{frames of } L\} \stackrel{1:1}{\leftrightarrow} \left\{ \begin{array}{c} \mathcal{C} \subset (\mathbb{Z}/4\mathbb{Z})^{24} \\ \mathcal{C} : \text{Type II} \\ \min \mathcal{C} = 16 \end{array} \right\} \stackrel{\text{mod } 2}{\to} \left\{ \begin{array}{c} \text{doubly even } C \\ \text{length} = 24 \\ \mathbf{1}_{24} \in C \\ \min C^{\perp} \ge 4 \end{array} \right\}$$

$$\left\{\begin{array}{l} \mathcal{C} \subset (\mathbb{Z}/4\mathbb{Z})^{24}, \\ \mathcal{C} : \text{ Type II}, \\ \min \mathcal{C} = 16 \end{array}\right\} \stackrel{\text{mod } 2}{\to} \left\{\begin{array}{l} \text{doubly even } C \\ \text{length} = 24 \\ \mathbf{1}_{24} \in C \\ \min C^{\perp} \ge 4 \end{array}\right\}$$

Let C be a doubly even code of length n spanned by the rows of a matrix $A \in Mat_{k \times n}(\mathbb{F}_2)$.

$$V = \{ M \in \mathsf{Mat}_{k \times n}(\mathbb{F}_2) \mid MA^T + AM^T = \mathbf{0} \},\$$

$$W = \langle \{ M \in \mathsf{Mat}_{k \times n}(\mathbb{F}_2) \mid MA^T = \mathbf{0} \}, \{ AE_{ii} \mid 1 \le i \le n \} \rangle.$$

Theorem (Rains (1999)) $\exists \operatorname{Aut}(C) \rightarrow \operatorname{AGL}(V/W)$ and

$$\{\mathcal{C} \subset (\mathbb{Z}/4\mathbb{Z})^n \mid \mathcal{C} = \mathcal{C}^{\perp}, \ \mathcal{C} \text{ mod } 2 = C\}/\sim$$

$$\stackrel{1:1}{\leftrightarrow} \{\text{orbits of Aut}(C) \text{ on } V/W\}$$

Hopefully leads to the classification of $F \subset L$.