Frames of the Leech lattice and their applications

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University

August 6, 2009

The Leech lattice

A \mathbb{Z}-submodule L of rank 24 in \mathbb{R}^{24} with basis B characterized by the following properties of $G=B B^{T}$ (Gram matrix):

- $\operatorname{det} G=1$,
- $G_{i j} \in \mathbb{Z}$,
- $G_{i i} \in 2 \mathbb{Z}$
- rootless: $\forall x \in L,\|x\|^{2} \neq 2$.
unique up to isometry in \mathbb{R}^{24}.
cf. E_{8}-lattice is a unique even unimodular lattice of rank 8 .

Factorization of the polynomial $X^{23}-1$

$$
\left.\begin{array}{cr}
(X-1)\left(X^{22}+X^{21}+\cdots+X+1\right) & \text { over } \mathbb{Z} \\
=(X-1)\left(X^{11}+X^{10}+\cdots+1\right) & \\
\times\left(X^{11}+X^{9}+\cdots+1\right) & \text { over } \mathbb{F}_{2} \\
& \\
& (X-1)\left(X^{11}-X^{10}+\cdots-1\right) \\
& \times\left(X^{11}+2 X^{10}-X^{9}+\cdots-1\right)
\end{array}\right) \text { over } \mathbb{Z} / 4 \mathbb{Z}
$$

(by Hensel's lemma).

$$
X^{23}-1=(X-1) f(X) g(X) \text { over } \mathbb{Z} / 4 \mathbb{Z}
$$

L is generated by the rows of:
$\left[\begin{array}{c|c|}\hline \frac{1}{2} & \frac{1}{2} f(X) \\ \hline \frac{1}{2} & \frac{1}{2} f(X) \\ \frac{1}{2} & \frac{1}{2} f(X) \\ \hline & \end{array} \begin{array}{l} \\ \\ \text { Bonnecaze-Calderbank-S }\end{array}\right.$

Bonnecaze-Calderbank-Solé (1995)
cf. $\bar{f}(X)=f(X) \bmod 2$. Golay code is

$L=$ Leech lattice

$$
\min L=\min \left\{\|x\|^{2} \mid 0 \neq x \in L\right\}=4 \quad \text { (rootless) }
$$

A frame of L is $\left\{ \pm f_{1}, \pm f_{2}, \ldots, \pm f_{24}\right\}$ with $\left(f_{i}, f_{j}\right)=4 \delta_{i j}$.

$$
\begin{aligned}
& {\left[\begin{array}{c|c}
\frac{1}{2} & \frac{1}{2} f(X) \\
\frac{1}{2} & \frac{1}{2} f(X) \\
\frac{1}{2} & \frac{1}{2} f(X) \\
\frac{1}{2} & \ddots \\
\vdots & 2 I_{24}
\end{array}\right] \leftarrow \text { here }} \\
& \hline
\end{aligned} \begin{aligned}
& \#\left\{x \in L \mid\|x\|^{2}=4\right\}=196560
\end{aligned}
$$

cf. E_{8} has 240 roots and a unique frame (of norm 2) up to $W\left(E_{8}\right)$.

Contents

- History
- Quadratic Forms
- Triply Even Codes
- Framed Vertex Operator Algebras
- Frames of Leech Lattice

History

- E. Mathieu (1861, 1873): Mathieu groups
- E. Witt (1938): (Aut(Steiner system $\left.S(5,8,24))=M_{24}\right)$
- M.J.E. Golay (1949): $($ Aut(Golay code $\left.)=M_{24}\right)$
- J. Leech (1965): lattice L
- J.H. Conway (1968): $\operatorname{Aut}(L)=C o_{0}$
- E. Bannai and N.J.A. Sloane (1981): 196560 vectors
- B. Fischer, R. Griess (1982): The Monster \mathbb{M}
- I. Frenkel, J. Lepowsky and A. Meurman (1988): $\operatorname{Aut}\left(V^{\mathrm{a}}\right)=\mathbb{M}$.
Total of 26 sporadic finite simple groups.
The most remarkable of all \mathbb{M} : moonshine
$1+196883=196884 \rightarrow V^{\natural}$ (vertex operator algebra).
Ultimate Goal: Want to understand V^{\natural} or \mathbb{M} better.

Quadratic Forms

$L=$ even unimodular, rank 24 , without roots
B : basis of L
$\rightarrow G=B B^{T}$: Gram matrix
$\rightarrow Q(x)=x^{T} G x$ is a pos. def. quadratic form $\mathbb{Z}^{24} \rightarrow 2 \mathbb{Z}$.
$\rightarrow L$.
Golay code is also related to a quadratic form in a different sense.

Example. For $x, y, z \in \mathbb{F}_{2}$,
$x^{2}+y^{2}+z^{2}+x y+y z+z x=\frac{1}{2} \mathrm{wt}((x, y, z, x+y+z)) \bmod 2$,
where $\operatorname{wt}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\# i$ with $x_{i}=1$.

A quadratic form over \mathbb{F}_{2}

More generally,

$$
\begin{gathered}
\mathbb{F}_{2}^{n} \supset \mathbf{E}_{n}=\left\{u \in \mathbb{F}_{2}^{n} \mid \text { wt }(u) \text { even }\right\}: \quad \operatorname{dim}=n-1 \\
Q: \mathbf{E}_{n} \rightarrow \mathbb{F}_{2}, \quad Q(u)=\frac{\mathrm{wt}(u)}{2} \bmod 2
\end{gathered}
$$

Then

$$
Q(u+v)=Q(u)+Q(v)+\sum_{i=1}^{n} u_{i} v_{i}
$$

Witt's theorem $\Longrightarrow \exists$! maximal subspace U of \mathbf{E}_{n} such that $\left.Q\right|_{U}=0$, up to the action of $\mathrm{O}\left(\mathbf{E}_{n}, Q\right)$.
Note, however, that $\mathrm{O}\left(\mathbf{E}_{n}, Q\right)$ does not preserve wt (u).
The subgroup S_{n} preserves wt (u).

$$
Q(u)=\frac{\mathrm{wt}(u)}{2} \bmod 2
$$

A linear subspace of \mathbb{F}_{2}^{n} is called a (binary) code of length n. A code $C \subset \mathbf{E}_{n}$ is said to be doubly even if $\left.Q\right|_{C}=0$, i.e., 4| $\operatorname{wt}(u) \forall u \in C$.

$$
\begin{gathered}
\min C=\{\operatorname{wt}(u) \mid 0 \neq u \in C\} . \\
C^{\perp}=\left\{u \in \mathbb{F}_{2}^{n} \mid(u, v)=0 \forall v \in C\right\} .
\end{gathered}
$$

Witt's theorem $\Longrightarrow \exists$! maximal doubly even code of length n up to the action of $\mathrm{O}\left(\mathbf{E}_{n}, Q\right)$.
$S_{n} \subset \mathrm{O}\left(\mathbf{E}_{n}, Q\right)$ acts on the set of maximal doubly even code of length n. Equivalence of codes is defined by the action of S_{n}.
$n=24$: there are 9 maximal doubly even codes up to S_{24}, Golay code is one of them.

Quadratic \leftrightarrow doubly even

Cubic \leftrightarrow triply even

- $\mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}, u \mapsto \mathrm{wt}(u) \bmod 2$: linear
- $\mathbf{E}_{n} \rightarrow \mathbb{F}_{2}, Q: u \mapsto \frac{\mathrm{wt}(u)}{2} \bmod 2:$ quadratic
- for a doubly even code $C, C \rightarrow \mathbb{F}_{2}, T: u \mapsto \frac{\operatorname{wt}(u)}{4} \bmod 2$: cubic

There is no analogue of Witt's theorem for cubic forms \Longrightarrow it is nontrivial to classify maximal codes C with $\left.T\right|_{C}=0$, i.e.,

$$
\forall u \in C, 8 \mid \operatorname{wt}(u) .
$$

Call such C triply even.

Aut $V^{\natural}=\mathbb{M}$

C is triply even iff $\forall u \in C, 8 \mid \operatorname{wt}(u)$

A triply even code appeared in the construction of V^{\natural} due to Dong-Griess-Höhn (1998), Miyamoto (2004). Leech lattice $\rightsquigarrow D_{7} \subset \mathbb{F}_{2}^{48} \rightsquigarrow V^{\natural}$.

$$
\begin{gathered}
H=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right] \quad H_{3}=\left[\begin{array}{ccc}
H & H & H \\
\mathbf{1}_{8} & 0 & 0 \\
0 & \mathbf{1}_{8} & 0 \\
0 & 0 & \mathbf{1}_{8}
\end{array}\right] \\
D_{7}=\mathbb{F}_{2} \text {-span of }\left[\begin{array}{cc}
H_{3} & H_{3} \\
\mathbf{1}_{24} & 0 \\
0 & \mathbf{1}_{24}
\end{array}\right] \text { : triply even } \\
\text { where } \mathbf{1}_{n}=(1,1, \ldots, 1) \in \mathbb{F}_{2}^{n} \text {. }
\end{gathered}
$$

\mathbb{F}_{2}-span of

$$
H_{3}=\left[\begin{array}{ccc}
H & H & H \\
\mathbf{1}_{8} & 0 & 0 \\
0 & \mathbf{1}_{8} & 0 \\
0 & 0 & \mathbf{1}_{8}
\end{array}\right]
$$

is doubly even $\Longrightarrow \mathbb{F}_{2}$-span of

$$
D_{7}=\mathcal{D}\left(H_{3}\right)=\left[\begin{array}{cc}
H_{3} & H_{3} \\
\mathbf{1}_{24} & 0 \\
0 & \mathbf{1}_{24}
\end{array}\right]
$$

is triply even.
More generally, if A spans a doubly even code C of length $n \equiv 0(\bmod 8)$, then

$$
\mathcal{D}(C)=\mathbb{F}_{2} \text {-span of }\left[\begin{array}{cc}
A & A \\
\mathbf{1}_{n} & 0 \\
0 & \mathbf{1}_{n}
\end{array}\right]
$$

is a triply even code of length $2 n . \mathcal{D}=$ doubling.

Framed Vertex Operator Algebra

Dong-Griess-Höhn (1998), Miyamoto (2004):
$L \rightsquigarrow D_{7} \subset \mathbb{F}_{2}^{48} \rightsquigarrow V^{\natural}$.

$$
\begin{aligned}
& V^{\natural} \supset L(1 / 2,0)^{\otimes 48}, \text { where } L(1 / 2,0): \text { Virasoro VOA } \\
& L \supset F=\bigoplus_{i=1}^{24} \mathbb{Z} f_{i} \text {, where }\left(f_{i}, f_{j}\right)=4 \delta_{i j} \text { : frame } \\
& L=\bigcup_{x \in L / F}(x+F) \text { coset decomposition } \\
& V^{\natural}=\bigoplus_{\beta \in D} V^{\beta} \text { as } L(1 / 2,0)^{\otimes 48} \text {-modules }
\end{aligned}
$$

$F \subset L$: not unique.
$L(1 / 2,0)^{\otimes 48} \cong \mathcal{T} \subset V^{\text {}}$: not unique $\Longrightarrow D$: depends on \mathcal{T}
(Virasoro frame), but:

$$
D \subset \mathbb{F}_{2}^{48}, D: \text { triply even, } \mathbf{1}_{48} \in D .
$$

Frame of $L \rightarrow$ Virasoro Frame of V^{\natural}

Dong-Mason-Zhu (1994)

$$
\begin{aligned}
L \supset F & =\bigoplus_{i=1}^{24} \mathbb{Z} f_{i}: \text { frame } \\
\rightarrow V^{\natural} & \supset \mathcal{T} \cong L(1 / 2,0)^{\otimes 48}: \text { Virasoro frame } \\
V^{\natural} & =\bigoplus_{\beta \in D} V^{\beta} \text { as } \mathcal{T} \text {-modules } \\
D & =\text { structure code of } \mathcal{T} \\
& =\mathcal{D}(L / F \bmod 2) .
\end{aligned}
$$

Note $L / F \subset(\mathbb{Z} / 4 \mathbb{Z})^{24}$ since $F \subset L \subset \frac{1}{4} F$, so $L / F \bmod 2 \subset \mathbb{F}_{2}^{24}$

Classification of $F \subset L \Longrightarrow$ classification of $\mathcal{T} \subset V^{\text {a }}$?

Frame of $L \rightarrow$ Virasoro Frame of V^{\natural}

$\left\{\right.$ Virasoro frames of $\left.V^{\natural}\right\}$ most difficult
\uparrow DMZ
$\{$ frames of $L\} \quad \xrightarrow[\rightarrow]{L / F \bmod 2}\left\{\begin{array}{l}\text { doubly even } C \\ \text { len }=24, \mathbf{1}_{24} \in C \\ \min C^{\perp} \geq 4 \\ \text { easily enumerated }\end{array}\right\}$
$\xrightarrow{\text { str }}\left\{\begin{array}{l}\text { triply even } D \\ \text { len }=48,1_{48} \in D \\ \min D^{\perp} \geq 4\end{array}\right\}$
$\uparrow \mathcal{D}$ (doubling)

The diagram commutes, and
$\operatorname{DMZ}(\{$ frames of $L\}) \stackrel{(C)}{=} \operatorname{str}^{-1}(\mathcal{D}(\{$ doubly even $\}))$.

Theorem (Betsumiya-Harada-Shimakura-M.)

Every maximal member of

$$
\left\{\begin{array}{l}
\text { triply even } D \\
\text { length }=48, \mathbf{1}_{48} \in D
\end{array}\right\}
$$

is

- $\mathcal{D}(C)$ for some doubly even code C of length 24 , or
- decomposable (only two such codes, one of the form $\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right) \oplus \mathcal{D}\left(C_{3}\right)$, another of the form $\left.\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right)\right)$, or
- a code of dimension 9 obtained from the triangular graph T_{10} on $45=\left|S_{10}: S_{2} \times S_{8}\right|$ vertices.
The last case does not occur if we assume $\min D^{\perp} \geq 4$.
According to Lam-Yamauchi, it must be a structure code of some framed VOA, not V^{\natural}.

Corollary (Betsumiya-Harada-Shimakura-M.)

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\text { triply even } D \\
\text { len }=48,1_{48} \in D \\
\min D^{\perp} \geq 4
\end{array}\right\} \\
=\mathcal{D}\left(\left\{\begin{array}{l}
\text { doubly even } C \\
\text { len }=24,1_{24} \in C \\
\min C^{\perp} \geq 4
\end{array}\right\}\right) \\
\end{array} \cup\left\{\text { subcodes of decomposable } \mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right), \ldots\right\}\right) . ~ \$
$$

$\left\{\mathcal{T} \subset V^{\natural}\right\} \quad \stackrel{\text { str }}{\rightarrow} \mathcal{D}\left(\left\{\begin{array}{l}\text { doubly even } C \\ \text { length }=24 \\ 1_{24} \in C \\ \min C^{\perp} \geq 4\end{array}\right\}\right) \cup\left\{\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right), \ldots\right\}$
\uparrow DMZ $\uparrow \mathcal{D}$ (doubling)
$\{F \subset L\} \xrightarrow{\bmod 2}\left\{\begin{array}{l}\text { doubly even } C \\ \text { length }=24 \\ \mathbf{1}_{24} \in C \\ \min C^{\perp} \geq 4\end{array}\right\}$
$\operatorname{DMZ}(\{$ frames of $L\})=\operatorname{str}^{-1}(\mathcal{D}(\{$ doubly even $\}))$.
Problem remains:

- $\left\{\mathcal{T} \subset V^{\natural}\right\} \rightarrow\left\{\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right), \ldots\right\}$?
- $\{F \subset L\}$?

Determine $\{F \subset L\}$, i.e., classify all frames of the Leech lattice L, with the help of the map

$$
\{F \subset L\} \quad \xrightarrow{L / F \bmod 2}\left\{\begin{array}{l}
\text { doubly even } C \\
\text { length }=24 \\
\mathbf{1}_{24} \in C \\
\min C^{\perp} \geq 4 \\
\text { easily enumerated }
\end{array}\right\}
$$

$$
F \subset L \subset \frac{1}{4} F \rightsquigarrow \mathcal{C}_{F}=L / F \subset(\mathbb{Z} / 4 \mathbb{Z})^{24} \rightsquigarrow C=L / F \bmod 2
$$

For each $C \in$ RHS, classify F such that $\mathcal{C}_{F} \bmod 2 \cong C$. The map $F \mapsto L / F \bmod 2$ is neither injective nor surjective.

Codes over $\mathbb{Z} / 4 \mathbb{Z}$

A code over $\mathbb{Z} / 4 \mathbb{Z}$ of length n is a submodule of $(\mathbb{Z} / 4 \mathbb{Z})^{n}$.
Equivalence is by $\{ \pm 1\}^{n} \rtimes S_{n}$.
For $u \in(\mathbb{Z} / 4 \mathbb{Z})^{n}$,

$$
\mathrm{wt}(u)=\sum_{i=1}^{n} u_{i}^{2},
$$

where we regard $u_{i} \in\{0,1,2,-1\} \subset \mathbb{Z}$, and define

$$
\min \mathcal{C}=\min \{\operatorname{wt}(u) \mid 0 \neq u \in \mathcal{C}\} .
$$

A code $\mathcal{C} \subset(\mathbb{Z} / 4 \mathbb{Z})^{n}$ is Type II if $8 \mid \operatorname{wt}(u)$ for all $u \in \mathcal{C}$. Then
$\{$ frames of $L\} \stackrel{1: 1}{\leftrightarrow}\left\{\begin{array}{c}\mathcal{C} \subset(\mathbb{Z} / 4 \mathbb{Z})^{24} \\ \mathcal{C}: \text { Type II } \\ \min \mathcal{C}=16\end{array}\right\} \xrightarrow{\bmod 2}\left\{\begin{array}{l}\text { doubly even } C \\ \text { length }=24 \\ \mathbf{1}_{24} \in C \\ \min C^{\perp} \geq 4\end{array}\right\}$

$$
\left\{\begin{array}{c}
\mathcal{C} \subset(\mathbb{Z} / 4 \mathbb{Z})^{24}, \\
\mathcal{C}: \text { Type II, } \\
\min \mathcal{C}=16
\end{array}\right\} \xrightarrow{\bmod 2}\left\{\begin{array}{l}
\text { doubly even } C \\
\text { length }=24 \\
1_{24} \in C \\
\min C^{\perp} \geq 4
\end{array}\right\}
$$

Let C be a doubly even code of length n spanned by the rows of a matrix $A \in \operatorname{Mat}_{k \times n}\left(\mathbb{F}_{2}\right)$.

$$
\begin{aligned}
V & =\left\{M \in \operatorname{Mat}_{k \times n}\left(\mathbb{F}_{2}\right) \mid M A^{T}+A M^{T}=0\right\}, \\
W & =\left\langle\left\{M \in \operatorname{Mat}_{k \times n}\left(\mathbb{F}_{2}\right) \mid M A^{T}=0\right\},\left\{A E_{i i} \mid 1 \leq i \leq n\right\}\right\rangle .
\end{aligned}
$$

Theorem (Rains (1999))
$\exists \operatorname{Aut}(C) \rightarrow \operatorname{AGL}(V / W)$ and

$$
\begin{aligned}
& \left\{\mathcal{C} \subset(\mathbb{Z} / 4 \mathbb{Z})^{n} \mid \mathcal{C}=\mathcal{C}^{\perp}, \mathcal{C} \bmod 2=C\right\} / \sim \\
& \stackrel{1: 1}{\leftrightarrow}\{\text { orbits of } \operatorname{Aut}(C) \text { on } V / W\}
\end{aligned}
$$

Hopefully leads to the classification of $F \subset_{\Delta} L$.

