Steiner quadruple systems with abelian regular automorphism group

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Masanori Sawa)

RIMS, Kyoto University, January 7, 2009

Steiner systems originated from a problem posed by Steiner (1853), solved by Kirkman (1847). The concept was already introduced by Woolhouse (1844).

A Steiner system (or a Steiner *t*-design), denoted S(t, k, v), where t < k < v are integers, is a pair $(\mathcal{P}, \mathcal{B})$ with

• \mathcal{P} : a set of v "points,"

• \mathcal{B} : a family of k-subsets of \mathcal{P} , "blocks," "lines," "planes," etc such that

$$\forall T \in \binom{\mathcal{P}}{t}, \ \exists ! B \in \mathcal{B}, \ T \subset B.$$

t = 2: $\forall 2$ distinct points $\subset \exists !$ line, every line consists of k points. S(t, k, v) denotes not necessarily a unique mathematical object. There may be many non-isomorphic S(t, k, v)'s for a fixed (t, k, v).

$$S(t,k,v): \forall T \in \binom{\mathcal{P}}{t}, \exists B \in \mathcal{B}, T \subset B$$

Affine space over \mathbb{F}_q : $\mathcal{P} = \mathbb{F}_q^n$, $\mathcal{B} = \{\text{lines in } \mathbb{F}_q^n\}$. $\forall 2 \text{ distinct points } \subset \exists ! \text{ line (has size } q), v = |\mathcal{P}| = q^n$

$$\implies S(2,q,q^n).$$

$$t = 3$$
: $\forall 3$ distinct points $\subset \exists !$?
collinear non-collinear
line plane
does not occur if $q = 2$

$$\implies S(\mathbf{3},\mathbf{4},\mathbf{2}^n).$$

$S(\mathbf{t}, k, v)$: $\forall T \in \binom{\mathcal{P}}{\mathbf{t}}, \exists ! B \in \mathcal{B}, T \subset B$

 $t \ge 4$: Only finitely many S(t, k, v) known. Witt (1938): S(4, 5, 11), S(5, 6, 12), etc. (Mathieu groups) Can't expect any more from 4-transitive groups (Mathieu groups are the only nontrivial 4-transitive ones, by CFSG)

If we are to prove there are infinitely many (too ambitious), we need a unified algebraic approach.

t = 2: affine space over \mathbb{F}_q is a unified construction, but not clear for t > 3.

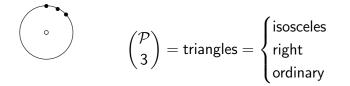
(Be modest): first understand completely known algebraic construction of S(3, k, v). Hope to see why t > 3 is so different from

 $t \leq 3.$

(Be even more modest): first understand completely known algebraic construction of S(3, 4, v) (called a Steiner quadruple system, denoted SQS(v))

 $\forall T \in \binom{\mathcal{P}}{\mathbf{3}}, \exists ! B \in \mathcal{B}, T \subset B$ Steiner quadruple systems $SQS(v) = S(\mathbf{3}, \mathbf{4}, v)$

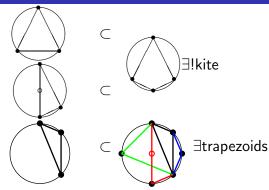
Theorem (Hanani, 1963) \exists SQS $(v) \iff v \equiv 2 \text{ or } 4 \pmod{6}$. Cyclic SQS(v): $\mathcal{P} = \{\xi \in \mathbb{C} \mid \xi^v = 1\}$.



Find a family of quadrangles $\mathcal B$ such that

$$\forall T \in \binom{\mathcal{P}}{3}, \ \exists ! B \in \mathcal{B}, \ T \subset B$$

$\begin{aligned} \mathsf{SQS}(v) &= S(\mathsf{3},\mathsf{4},v) \ v \equiv \mathsf{2} \text{ or } \mathsf{4} \pmod{\mathsf{6}} \\ \mathcal{P} &= \{\xi \in \mathbb{C} \mid \xi^v = \mathsf{1}\}, \ \forall \triangle \subset \exists \ \square \in \mathcal{B} \end{aligned}$



ordinary triangle $\not\subset$ kite isosceles, right triangle $\not\subset$ trapezoid ($\not\supset$ diameter) $\mathcal{B} = \{\text{all kites}\} \cup \{\text{some trapezoids}\}:$ **Example:** v = 10. Take all trapezoids $\not\supset$ diam. \implies SQS(10).

$\mathcal{P} = \{\xi \in \mathbb{C} \mid \xi^v = 1\}, \forall \triangle \subset \exists ! \square \in \mathcal{B} \\ \text{triangle} \subset \text{kite or trapezoid}$

- We have implicitly assumed symmetry under the dihedral group D_v of order 2v.
- \exists ? SQS(v) invariant under D_v
- No such SQS(8) (but \exists SQS(8) on \mathbb{F}_2^3)
- It may not be a good idea to stick to cyclic groups or dihedral groups for assumed symmetry. (Quite a lot of work has been done for cyclic case, nevertheless)

SQS(v) as a (0, 1)-solution to a linear equation

$$T \in \begin{pmatrix} \mathcal{P} \\ 3 \end{pmatrix} \begin{bmatrix} B \in \begin{pmatrix} \mathcal{P} \\ 4 \end{pmatrix} \supset \mathcal{B} \\ \begin{bmatrix} 1 & T \subset B \\ 0 & T \not \subset B \end{bmatrix} \begin{bmatrix} 0 \\ \text{or} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

A solution is the characteristic vector of a subset \mathcal{B} , forming SQS(v):

$$\forall T \in \binom{\mathcal{P}}{3}, \ \exists ! B \in \mathcal{B}, \ T \subset B.$$

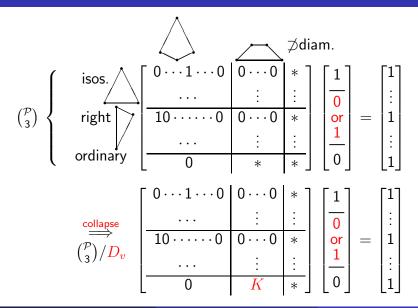
SQS(v) invariant under G acting on \mathcal{P}

$$T \in \begin{pmatrix} \mathcal{P} \\ \mathbf{3} \end{pmatrix} \begin{bmatrix} \mathbf{1} & T \subset B \\ \mathbf{0} & T \not\subset B \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathsf{or} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \vdots \\ \mathbf{1} \end{bmatrix}$$

A permutation group G on \mathcal{P} allows to collapse the matrix: $B \in \binom{\mathcal{P}}{4}/G$

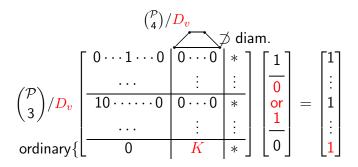
$$T \in \binom{\mathcal{P}}{3} / G \begin{bmatrix} \geq 1 & T \subset B \\ 0 & T \not\subset B \end{bmatrix} \begin{bmatrix} 0 \\ \text{or} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Collapsing $\binom{\mathcal{P}}{3} \times \binom{\mathcal{P}}{4}$ matrix by D_v



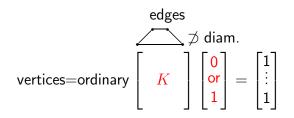
Akihiro Munemasa (Tohoku University)

Collapsing $\binom{\mathcal{P}}{3} \times \binom{\mathcal{P}}{4}$ matrix by D_v



- K has at most three 1's in each row
- K has exactly two 1's in each column (∀trapezoid⊃two triangles/≡)
- K can be regarded as an incidence matrix of a graph (columns=edges, rows=vertices)

Incidence matrix



edges
vertices
$$\begin{bmatrix} K \\ \end{bmatrix} \begin{bmatrix} 0 \\ or \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \iff \begin{array}{c} 1 \text{-factor} \\ \text{of the graph } K \end{array}$$

1-factor \iff a subset of edges covering every vertex exactly once

Köhler (1979) $\mathcal{P} = \{\xi \mid \xi^v = 1\}$

- $v \equiv 2 \text{ or } 4 \pmod{6}$
- $T = \{ \text{ ordinary triangles } \subset \mathcal{P} \} / \text{cong.: vertices}$
- $\mathcal{E} = \{ \text{ trapezoids } \not\supset \text{diam.} \} / \text{cong.: edges}$
- The Köhler graph $\mathcal{G}(\mathbb{Z}_v)$ is $(\mathcal{T}, \mathcal{E})$, K: its incidence matrix

A solution to

$$\begin{bmatrix} K \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ or \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

corresponds to a subset ${\mathcal F}$ of edges with

 $\forall \mathsf{vertex} \subset \exists !\mathsf{member of } \mathcal{F}.$

called a 1-factor.

Theorem (Köhler) $\exists 1$ -factor in $\mathcal{G}(\mathbb{Z}_v) \implies \exists SQS(v).$

$\exists 1 \text{-factor in } \mathcal{G}(\mathbb{Z}_v) \implies \exists SQS(v).$

Piotrowski (1985)

- $\exists 1$ -factor in $\mathcal{G}(\mathbb{Z}_v)$ for infinitely many v
- existence of a 1-factor in G(Z_v) reduces to the case v = 2p, p: odd prime
- **Still an open problem:** Determine v such that $\exists 1$ -factor in $\mathcal{G}(\mathbb{Z}_v)$.
- \implies Leads to a number theoretic problem.

Our approach:

- A: abelian group of order v
- define "isosceles", "right" triangles in $\binom{A}{3}$
- define "kite", "trapezoid" in $\begin{pmatrix} A \\ A \end{pmatrix}$
- define the Köhler graph $\mathcal{G}(A)$ of A

Theorem (joint work with M. Sawa) $\exists 1-factor in \mathcal{G}(A) \implies \exists SQS(v).$