Rains’ algorithm for classifying self-dual \mathbb{Z}_4-codes with given residue

Akihiro Munemasa1

1Graduate School of Information Sciences
Tohoku University
(joint work with Rowena A. L. Betty)

October 14, 2009
Academia Sinica
Definitions and Statement of the Problem

• \(\mathbb{Z}_4 \): the ring of integers modulo 4,

• \(\mathbb{Z}_4^n \): the free module of rank \(n \) over \(\mathbb{Z}_4 \),

• \((x, y) = \sum_{i=1}^{n} x_i y_i \), where \(x, y \in \mathbb{Z}_4^n \),

• a submodule \(C \subset \mathbb{Z}_4^n \) is called a code of length \(n \) over \(\mathbb{Z}_4 \), or a \(\mathbb{Z}_4 \)-code of length \(n \),

• \(C \) is self-dual if \(C = C^\perp \), where
 \[
 C^\perp = \{ x \in \mathbb{Z}_4^n \mid (x, y) = 0 \ (\forall y \in C) \},
 \]

• the residue: \(\text{Res}(C) \subset \mathbb{F}_2^n \) (reduction \(\mathbb{Z}_4 \to \mathbb{F}_2 \) mod 2).

Problem

Given \(C_0 \subset \mathbb{F}_2^n \), classify (up to monomial equivalence) self-dual \(C \subset \mathbb{Z}_4^n \) with \(\text{Res}(C) = C_0 \).
Given $C_0 \subset \mathbb{F}_2^n$, classify self-dual $C \subset \mathbb{Z}_4^n$ with $\text{Res}(C) = C_0$.

C: self-dual \mathbb{Z}_4-code $\implies C_0 = \text{Res}(C)$: doubly even.

Theorem (Rains, 1999)

Given a doubly even code C_0 of length n, dimension k,

- the set of all self-dual \mathbb{Z}_4-codes C with $\text{Res}(C) = C_0$ has a structure as an affine space of dimension $k(k + 1)/2$ over \mathbb{F}_2,
- the group $\{\pm 1\}^n \rtimes \text{Aut}(C_0)$ acts as an affine transformation group,
- two codes C, C' are equivalent if and only if they are in the same orbit under this group.
The set of all self-dual \mathbb{Z}_4-codes C with $\text{Res}(C) = C_0$ has a structure as an affine space of dimension $k(k + 1)/2$ over \mathbb{F}_2.

Naïvely speaking, classifying such C amounts to enumerating $k \times n$ binary matrices M such that

$$\begin{bmatrix} A + 2M \\ 2B \end{bmatrix}$$

where A generates C_0, $\begin{bmatrix} A \\ B \end{bmatrix}$ generates C_0^\perp, is self-dual. Among the 2^{kn} matrices M, not all of them generate a self-dual code, while some matrices generate the same code as the one generated by some other matrix. This reduces the number

$$2^{kn} \text{ to } 2^{k(k+1)/2}.$$
Given $C_0 \subset \mathbb{F}_2^n$, classify self-dual $C \subset \mathbb{Z}_4^n$ with $\text{Res}(C) = C_0$.

Theorem (Rains, 1999)

Given a doubly even code C_0 of length n, dimension k,

- the set of all self-dual \mathbb{Z}_4-codes C with $\text{Res}(C) = C_0$ has a structure as an affine space of dimension $k(k + 1)/2$ over \mathbb{F}_2, (due to Gaborit, 1996)
- the group $\{\pm 1\}^n \rtimes \text{Aut}(C_0)$ acts as an affine transformation group,
- two codes C, C' are equivalent if and only if they are in the same orbit under this group.
Given $C_0 \subset \mathbb{F}_2^n$, classify self-dual $C \subset \mathbb{Z}_4^n$ with $\text{Res}(C) = C_0$.

Theorem (Rains, 1999)

Given a doubly even code C_0 of length n, dimension k,

- the set of all self-dual \mathbb{Z}_4-codes C with $\text{Res}(C) = C_0$ has a structure as an affine space of dimension $k(k + 1)/2$ over \mathbb{F}_2, (due to Gaborit, 1996)
- the group $\{\pm 1\}^n \rtimes \text{Aut}(C_0)$ acts as an affine transformation group,
- two codes C, C' are equivalent if and only if they are in the same orbit under this group.
The group $\{\pm 1\}^n \rtimes \text{Aut}(C_0)$ acts as an affine transformation group on an affine space of dimension $k(k + 1)/2$.

Theorem (improved version)

Given a doubly even code C_0 of length n, dimension k,

- the set of all self-dual \mathbb{Z}_4-codes C with $\text{Res}(C) = C_0$ has a surjection onto an affine space of dimension at most $k(k + 1)/2$ over \mathbb{F}_2,
- the group $\text{Aut}(C_0)$ acts as an affine transformation group,
- two codes C, C' are equivalent if and only if their images are in the same orbit under this group.
Self-dual \mathbb{Z}_4-codes C with $\text{Res}(C') = C_0$

Given a doubly even code C_0 of length n, dimension k, with generator matrix A, C_0^\perp is generated by $\begin{bmatrix} A \\ B \end{bmatrix}$, set

- $\mathcal{M} = M_{k \times n}(\mathbb{F}_2)$,
- $V_0 = \{ M \in \mathcal{M} \mid MA^T + AM^T = 0 \}$,
- W_0: subspace of \mathcal{M} generated by $\{ M \in \mathcal{M} \mid MA^T = 0 \}$ and $\{ AE_{ii} \mid i = 1, \ldots, n \}$. Then $W_0 \subset V_0$.

$V_0/W_0 \ni M \pmod{W_0} \mapsto \text{eq. class of code generated by } \begin{bmatrix} \tilde{A} + 2M \\ 2B \end{bmatrix}$

is well-defined. (\tilde{A} will be chosen appropriately)

$\text{Aut}(C_0)$ acts on V_0/W_0 as an affine transformation group, and the orbits are the preimages of equivalence classes.
Aut(C_0) acts on V_0/W_0

First, take a matrix \tilde{A} over \mathbb{Z}_4 such that

$$\tilde{A} \mod 2 = A \text{ and } \tilde{A}\tilde{A}^T = 0.$$

For each $P \in \text{Aut}(C_0)$, there exists a unique matrix $E_1(P) \in \text{GL}(k, \mathbb{F}_2)$ such that

$$AP = E_1(P)A.$$

Also, there exists a matrix $E_2(P) \in \mathcal{M}$ such that

$$2E_2(P) = E_1(P)^{-1}\tilde{A}P - \tilde{A}.$$
Aut(C_0) acts on V_0/W_0

Theorem

The group $\text{Aut}(C_0)$ acts on V_0/W_0 by

$$P : V_0/W_0 \ni M \pmod{W_0} \mapsto E_1(P)^{-1}MP + E_2(P) \pmod{W_0} \in V_0/W_0,$$

where $P \in \text{Aut}(C_0)$. Moreover, there is a bijection

$$\text{Aut}(C_0)\text{-orbits on } V_0/W_0 \rightarrow \text{eq. class of codes } C \text{ with } \text{Res}(C) = C_0,$$

$$M \pmod{W_0} \mapsto \text{eq. class of codes generated by } \begin{bmatrix} \tilde{A} + 2M \\ 2B \end{bmatrix}$$
Practical Implementation

\[\text{Aut}(C_0) \rightarrow \text{AGL}(V_0/W_0). \]

Since \(\text{AGL}(m, \mathbb{F}_2) \subset \text{GL}(1 + m, \mathbb{F}_2) \), we actually construct a linear representation:

\[\text{Aut}(C_0) \rightarrow \text{GL}(1 + \dim V_0/W_0, \mathbb{F}_2). \]

A straightforward implementation works provided

\[\dim V_0/W_0 \leq 20 \text{ plus alpha (about)}. \]
Enumeration of self-dual \mathbb{Z}_4-codes of length 16

- Pless–Leon–Fields (1997): 133 Type II \mathbb{Z}_4-codes of length 16,
- Harada–Munemasa (2009): 1372 Type I \mathbb{Z}_4-codes of length 16.

Using Rains’ algorithm implemented by us, it took about 1 minute to enumerate all the $133 + 1372 = 1505$ self-dual \mathbb{Z}_4-codes of length 16, from the set of 146 doubly even codes C_0.

Computing time is roughly proportional to the size of the affine space

$$|V_0/W_0| = 2^{\dim V_0/W_0},$$

and the maximum value of $\dim V_0/W_0$ in the above example is 22.
Toward the classification of extremal Type II codes of length 24

A straightforward computation will not work if one wishes to enumerate self-dual codes of length 24. For example, $C_0 =$ extended Golay code, $|V_0/W_0| = 2^{55}$.

Actually, for Type II codes, it is enough to look at a subspace U_0 of V_0, so that the search space has size $|U_0/W_0| = 2^{44}$.

So we will have a matrix representation

$$M_{24} = \text{Aut}(C_0) \to \text{GL}(45, \mathbb{F}_2).$$

As an estimate:

$$\frac{2^{44}}{|M_{24}|} = 71856.7 \ldots$$

but there are only 13 extremal Type II codes C with $\text{Res}(C) =$ extended Golay code.