Linear, Quadratic, and Cubic Forms over the Binary Field

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

> October 28, 2009 POSTECH

Linear, Quadratic, and Cubic Forms over the Binary Field

Linear form is a homogeneous polynomial of degree 1: e.g. $2x_1 - x_2 + x_3 + 3x_4$. Quadratic Form is a homogeneous polynomial of degree 2: e.g. $x_1^2 - x_2x_3 + 3x_4^2$.

Cubic Form is a homogeneous polynomial of degree 3: e.g. $x_1^3 - x_2^2x_3 + 2x_1x_2x_4$.

The Binary Field is $\mathbb{F}_2=\{0,1\}$ with addition and multiplication defined by

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

Polynomials and Functions

In high school mathematics, where polynomials are exclusively used for calculus and analytic geometry,

 $\mathsf{Polynomials}\approx\mathsf{Functions}$

In abstract algebra (college level), a polynomial is a purely algebraic object,

 $\mathsf{Functions}\approx\mathsf{Mappings}$

and a polynomial f(x) with real coefficients can be regarded as a mapping $\mathbb{R} \to \mathbb{R}$. This means

some functions can be represented by a polynomial.

Linear Form as Polynomial

Linear form is a homogeneous polynomial of degree 1: e.g. $f(x_1, x_2, x_3, x_4) = 2x_1 - x_2 + x_3 + 3x_4$.

f can be regarded as a polynomial in four indeterminates, or as a mapping $f : \mathbb{R}^4 \to \mathbb{R}$ with four variables or arguments. Then f is a linear mapping:

$$f(\boldsymbol{x} + \boldsymbol{y}) = f(\boldsymbol{x}) + f(\boldsymbol{y}),$$

$$f(a\boldsymbol{x}) = af(\boldsymbol{x}),$$

where $\boldsymbol{x} = (x_1, \ldots, x_4)$, $\boldsymbol{y} = (y_1, \ldots, y_4)$, $a \in \mathbb{R}$. More generally, and conversely,...

Linear Form as Function

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a mapping. A theorem in elementary linear algebra says:

f satisfies

$$f(\boldsymbol{x} + \boldsymbol{y}) = f(\boldsymbol{x}) + f(\boldsymbol{y}),$$

$$f(a\boldsymbol{x}) = af(\boldsymbol{x}),$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ and $a \in \mathbb{R}$ \iff $\exists a_1, \dots, a_n \in \mathbb{R}, \forall \boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n,$ $f(\boldsymbol{x}) = a_1 x_1 + \dots + a_n x_n.$

Vector Space over \mathbb{R}

Standard linear algebra deals with vector spaces over \mathbb{R} , not necessarily of the form \mathbb{R}^n , and linear mappings among them.

A vector space V is equipped with addition and scalar multiplication, and is required to satisfy certain axioms. I assume the audience is familiar with the concept of "basis" and "subspace".

If $\{b_1, \ldots, b_n\}$ is a basis of V, then $f: V \to \mathbb{R}$ is linear if and only if $\exists a_1, \ldots, a_n$ such that

$$f(\sum_{i=1}^n x_i \boldsymbol{b}_i) = a_1 x_1 + \dots + a_n x_n.$$

Indeed, one can define $a_i = f(b_i)$.

Polynomial Function on Vector Space

For a function $f: V \to \mathbb{R}$, let

$$g(x_1,\ldots,x_n)=f(\sum_{i=1}^n x_i \boldsymbol{b}_i)$$

be the function with n variables defined by f and a basis $\{b_1, \ldots, b_n\}$ of V.

f	g is homogeneous of degree:	$f^{-1}(0)$	
linear	1	hyperplane	
quadratic	2	(quadratic) surface	
cubic	3	(cubic) surface	
This definition is independent of the choice of a basis			

This definition is independent of the choice of a basis.

is a vector space over \mathbb{F}_2 ; it has entrywise addition and scalar (0 and 1 only!) multiplication. All the standard concepts (basis, dimension, subspace, etc) can be carried over and work without any change

$$\ell: \mathbb{F}_2^n \to \mathbb{F}_2, \quad \ell(x_1, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

is a linear form. Its value is

$$\ell(x_1, \dots, x_n) = \begin{cases} 0 & \text{if } |\{i \mid x_i = 1\}|: \text{ even,} \\ 1 & \text{if } |\{i \mid x_i = 1\}|: \text{ odd.} \end{cases}$$

$$\ell^{-1}(0) = \mathsf{Ker}\,\ell$$
 is a subspace of dimension $n-1$.

\mathbb{F}_2^n as Power Set

$$|\mathbb{F}_{2}^{n}| = |\{(x_{1}, \ldots, x_{n}) \mid x_{i} \in \mathbb{F}_{2}\}| = 2^{n}$$

A vector space of dimension k over \mathbb{F}_2 has 2^k elements. There is a 1-1 correspondence

$$\begin{array}{rccccc} (1,0,1,1,0) & \leftrightarrow & \{1,3,4\} \\ \boldsymbol{x} \in \mathbb{F}_2^n & S \subset \{1,\ldots,n\} \\ \boldsymbol{x} & \rightarrow & \mathsf{supp}(\boldsymbol{x}) \\ \boldsymbol{e}_S = \sum_{i \in S} \boldsymbol{e}_i & \leftarrow & S \\ \mathsf{wt}(\boldsymbol{x}) & = & |S| \\ \mathsf{Characteristic} & \mathsf{Support} \\ \mathsf{vector} \end{array}$$

Quadratic Form

On the subspace

$$W = \operatorname{\mathsf{Ker}} \ell = \{ \boldsymbol{x} \in \mathbb{F}_2^n \mid \operatorname{wt}(\boldsymbol{x}): \operatorname{even} \}$$

there is a quadratic form

$$q(\boldsymbol{x}) = (\frac{\mathsf{wt}(\boldsymbol{x})}{2} \bmod 2).$$

Why is this a quadratic form?

(Take a basis, then express q as a polynomial function in the basis-coefficient, and see it is homogeneous of degree 2). To do this, we need the interpretation of the addition via support-characteristic vector correspondence.

 $egin{array}{ccc} \mathsf{sum} & \mathsf{symmetric} \ \mathsf{difference} \ x+y & \leftrightarrow & (\mathsf{supp}(x)\cup\mathsf{supp}(y))\setminus(\mathsf{supp}(x)\cap\mathsf{supp}(y)) \end{array}$

$$q(\boldsymbol{x}) = \left(\frac{\operatorname{wt}(\boldsymbol{x})}{2} \mod 2\right)$$
 on $W = \operatorname{Ker} \ell$
 $S \triangle T$ denote the symmetric difference
 $S \triangle T = (S \cup T) \setminus (S \cap T).$

Then

Let

$$|S \triangle T| = |S \cup T| - |S \cap T| = |S| + |T| - 2|S \cap T|.$$

Since $\operatorname{supp}(x+y) = \operatorname{supp}(x) riangle \operatorname{supp}(y)$,

$$\operatorname{wt}(x+y) = \operatorname{wt}(x) + \operatorname{wt}(y) - 2\operatorname{wt}(x * y),$$

where x * y denotes the entrywise product.

$$\operatorname{wt}({m x}+{m y})=\operatorname{wt}({m x})+\operatorname{wt}({m y})-2\operatorname{wt}({m x}*{m y})$$

$$\operatorname{wt}(\sum_{i=1}^m oldsymbol{b}_i) \equiv \sum_{i=1}^m \operatorname{wt}(oldsymbol{b}_i) - 2\sum_{i < j} \operatorname{wt}(oldsymbol{b}_i * oldsymbol{b}_j) \pmod{4}.$$

If $oldsymbol{b}_i \in W = \operatorname{\mathsf{Ker}} \ell$, then $2|\operatorname{\mathsf{wt}}(oldsymbol{b}_i)$, so

$$rac{1}{2}\operatorname{wt}(\sum_{i=1}^m oldsymbol{b}_i) \equiv \sum_{i=1}^m rac{1}{2}\operatorname{wt}(oldsymbol{b}_i) - \sum_{i < j}\operatorname{wt}(oldsymbol{b}_i * oldsymbol{b}_j) \pmod{2}.$$

$$q(\sum_{i=1}^m oldsymbol{b}_i) = \sum_{i=1}^m q(oldsymbol{b}_i) + \sum_{i < j} (\mathsf{wt}(oldsymbol{b}_i st oldsymbol{b}_j) ext{ mod 2})$$

$$\operatorname{wt}({m x}+{m y})=\operatorname{wt}({m x})+\operatorname{wt}({m y})-2\operatorname{wt}({m x}*{m y})$$

$$\operatorname{wt}(\sum_{i=1}^m oldsymbol{b}_i) \equiv \sum_{i=1}^m \operatorname{wt}(oldsymbol{b}_i) - 2\sum_{i < j} \operatorname{wt}(oldsymbol{b}_i * oldsymbol{b}_j) \pmod{4}.$$

If $\boldsymbol{b}_i \in W = \operatorname{Ker} \ell$, then $2 | \operatorname{wt}(\boldsymbol{b}_i)$, so

$$rac{1}{2}\operatorname{wt}(\sum_{i=1}^m oldsymbol{b}_i) \equiv \sum_{i=1}^m rac{1}{2}\operatorname{wt}(oldsymbol{b}_i) - \sum_{i < j}\operatorname{wt}(oldsymbol{b}_i st oldsymbol{b}_j) \pmod{2}.$$

$$q(\sum_{i=1}^{m} x_i \boldsymbol{b}_i) = \sum_{i=1}^{m} q(x_i \boldsymbol{b}_i) + \sum_{i < j} (\mathsf{wt}(x_i \boldsymbol{b}_i * x_j \boldsymbol{b}_j) \mod 2)$$
$$= \sum_{i=1}^{m} x_i^2 q(\boldsymbol{b}_i) + \sum_{i < j} x_i x_j (\mathsf{wt}(\boldsymbol{b}_i * \boldsymbol{b}_j) \mod 2)$$

:homogeneous of degree 2 (Remark: $0^2 = 0$, $1^2 = 1$).

$$q(oldsymbol{x}) = (rac{\mathsf{wt}(oldsymbol{x})}{2} oldsymbol{ ext{mod}} 2) ext{ on } W = \operatorname{\mathsf{Ker}} \ell$$

$$\begin{aligned} |q^{-1}(\mathbf{0})| &= |\{\boldsymbol{x} \in W \mid q(\boldsymbol{x}) = \mathbf{0}\}| \\ &= |\{\boldsymbol{x} \in \mathbb{F}_2^n \mid \mathsf{wt}(\boldsymbol{x}) \equiv \mathbf{0} \pmod{4}\}| \\ &= |\{S \subset \{1, \dots, n\} \mid |S| \equiv \mathbf{0} \pmod{4}\}| \\ &= \binom{n}{\mathbf{0}} + \binom{n}{\mathbf{4}} + \binom{n}{\mathbf{8}} + \cdots . \end{aligned}$$

 $\ell^{-1}(0) = \operatorname{Ker} \ell$ was a subspace, but $q^{-1}(0)$ is not.

- The largest dimension of subspaces contained in $q^{-1}(0)$ is $\frac{n}{2} 1$ or $\lfloor \frac{n}{2} \rfloor$, according as $n \equiv 2, 4, 6 \pmod{8}$ or not.
- Every subspace contained in $q^{-1}(0)$ is contained in such a subspace of the largest dimension.
- In particular, $q^{-1}(0)$ is a union of subspaces of dimension $\frac{n}{2} 1$ or $\lfloor \frac{n}{2} \rfloor$.

Cubic Form

On the subspace $W = \text{Ker } \ell = \ell^{-1}(0)$, there was a quadratic form

$$q(\boldsymbol{x}) = (rac{\mathsf{wt}(\boldsymbol{x})}{2} \mod 2).$$

On any subspace $U \subset q^{-1}(0)$, there is a cubic form

$$c(x) = (rac{\operatorname{wt}(x)}{4} \mod 2).$$

Why is this a cubic form? (Take a basis, then express c as a polynomial function in the basis-coefficient, and see it is homogeneous of degree 3).

$$\operatorname{wt}({m x}+{m y})=\operatorname{wt}({m x})+\operatorname{wt}({m y})-2\operatorname{wt}({m x}*{m y})$$

$$\operatorname{wt}(\sum_{i=1}^m oldsymbol{b}_i) \equiv \sum_{i=1}^m \operatorname{wt}(oldsymbol{b}_i) - 2\sum_{i < j} \operatorname{wt}(oldsymbol{b}_i * oldsymbol{b}_j) \pmod{4}.$$

$$egin{aligned} \mathsf{wt}(\sum_{i=1}^m oldsymbol{b}_i) &\equiv \sum_{i=1}^m \mathsf{wt}(oldsymbol{b}_i) - 2\sum_{i < j} \mathsf{wt}(oldsymbol{b}_i * oldsymbol{b}_j) \ &+ 4\sum_{i < j < k} \mathsf{wt}(oldsymbol{b}_i * oldsymbol{b}_j * oldsymbol{b}_k) \pmod{8}. \end{aligned}$$

If $oldsymbol{b}_i \in U \subset q^{-1}(0)$, then 4 $|\operatorname{wt}(oldsymbol{b}_i)$, so

$$c(\sum_{i=1}^{m} x_i \boldsymbol{b}_i) = \sum_{i=1}^{m} x_i^3 c(\boldsymbol{b}_i) + \sum_{i < j} x_i x_j^2 (\frac{1}{2} \operatorname{wt}(\boldsymbol{b}_i * \boldsymbol{b}_j) \mod 2)$$
$$+ \sum_{i < j < k} x_i x_j x_k (\operatorname{wt}(\boldsymbol{b}_i * \boldsymbol{b}_j * \boldsymbol{b}_k) \mod 2)$$

$$c(\boldsymbol{x}) = (\frac{\operatorname{wt}(\boldsymbol{x})}{4} \mod 2)$$

$$|c^{-1}(0)| = |\{x \in q^{-1}(0) \mid c(x) = 0\}|$$

= |\{x \in \mathbb{F}_2^n \neq wt(x) \equiv 0 \mathbf{(mod 8)}\}|
= |\{S \subset \{1, \ldots, n\} \neq \|S| \equiv 0 \mathbf{(mod 8)}\}|
= \begin{pmatrix} n \\ 0 \end{pmatrix} + \begin{pmatrix} n \\ 16 \end{pmatrix} + \cdots \end{pmatrix}.

 $q^{-1}(0)$ had some nice properties, but little is known for $c^{-1}(0)$.

$q^{-1}(0)$ and $c^{-1}(0)$

 $q^{-1}(0)$ had some nice properties:

- The largest dimension of subspaces contained in $q^{-1}(0)$ is $\frac{n}{2} 1$ or $\lfloor \frac{n}{2} \rfloor$, according as $n \equiv 2, 4, 6 \pmod{8}$ or not.
- Every subspace contained in $q^{-1}(0)$ is contained in such a subspace of the largest dimension.

Little is known for $c^{-1}(0)$.

- What is the largest dimension of subspaces contained in $c^{-1}(0)$?
- Not every subspace contained in c⁻¹(0) is contained in such a subspace of the largest dimension. That is, the dimensions of maximal subspaces contained in c⁻¹(0) is not constant.
- Describe all the maximal subspaces contained in $c^{-1}(0)$.

A maximal subspace contained in $c^{-1}(0)$ Take n = 15. Observe $\binom{6}{2} = 15$. $\{1, 2, \dots, 15\} \leftrightarrow \{i, j\} \subset \{1, 2, \dots, 6\}.$

The row vectors span a 4-dimensional space $U \subset c^{-1}(0)$, and this is maximal. Up to permutation of coordinates, this is the unique maximal subspace contained in $c^{-1}(0)$. But for larger n, the situation is different.

Conclusion

- This construction of maximal subspaces using ⁶₂ can be generalized to ^{4k+2}₂ for an arbitrary positive integer k. I will talk more about it with its connection to other mathematical objects in Friday's colloquium.
- If you are interested in "linear algebra over 𝔽₂," try to read introductory textbook on coding theory, especially on "binary linear codes."

Thank you very much for attending my talk.