On the Classification of Self-Dual \mathbb{Z}_k -Codes

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Masaaki Harada)

December 15, 2009 12th IMA Conference on Cryptography and Coding

Self-Dual \mathbb{Z}_k -Codes

- $k \in \mathbb{Z}$, $k \ge 2$.
- \mathbb{Z}_k : the ring of integers modulo k.
- $({m x},{m y})=\sum_{i=1}^n x_i y_i$, where ${m x},{m y}\in\mathbb{Z}_k^n$,
- Euclidean weight: wt $(x) = \sum_{i=1}^{n} x_i^2 \in \mathbb{Z}$, where $\mathbb{Z}_k = \{0, \pm 1, \pm 2, \dots\}$ is considered as $\subset \mathbb{Z}$
- a submodule C ⊂ Zⁿ_k is called a code of length n over Z_k, or a Z_k-code of length n.
- C is self-dual if $C = C^{\perp}$, where $C^{\perp} = \{ \boldsymbol{x} \in \mathbb{Z}_{k}^{n} \mid (\boldsymbol{x}, \boldsymbol{y}) = 0 \; (\forall \boldsymbol{y} \in C) \},$
- For k even, C is Type II $\iff C = C^{\perp}$ and 2k | wt(x) for all $x \in C$.

For k even, C is Type II \iff $C = C^{\perp}$ and wt $(x) \equiv 0 \pmod{2k}$.

A Type II code of length n exists if and only if 8|n. For n = 8:

- k = 2: Binary Extended Hamming Code (unique).
- k = 4: Four Codes (Conway–Sloane, 1993).
- k = 6: Two Codes (Kitazume–Ooi, 2004).
- k = 8: (Dougherty–Gulliver–Wong, 2006, incomplete).

Mass formula (which gives the total number of Type II codes of given length and k) is known for k = 2, 4, 6 but not known for k = 8 until 2009 (previous talk).

New Method of Classifying Self-Dual and Type II Codes Using Lattices

Proposed by Harada-Munemasa-Venkov (2009).

• $\pi: \mathbb{Z} \to \mathbb{Z}_k$: canonical surjection.

•
$$\pi: \mathbb{Z}^n \to \mathbb{Z}^n_k \supset C.$$

$$L = \frac{1}{\sqrt{k}} \pi^{-1}(C) \subset \mathbb{R}^n$$

• $C = C^{\perp} \implies L$: unimodular.

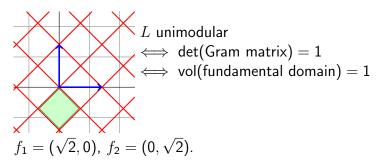
• C: Type II \implies L: even unimodular

Such lattices have been classified for $n \leq 24$. Example: n = 8: \mathbb{Z}^8 and E_8 .

$$L = rac{1}{\sqrt{k}} \pi^{-1}(C) \subset \mathbb{R}^n$$

Example: n = 2, k = 2, $C = \langle (1,1) \rangle \subset \mathbb{Z}_2^2$.

$$L = \frac{1}{\sqrt{2}} \{ (x, y) \in \mathbb{Z}^2 \mid x \equiv y \pmod{2} \}.$$



$L \subset \mathbb{R}^n$: unimodular lattice

If L contains a k-frame $\mathcal{F} = \{\pm f_1, \ldots, \pm f_n\}$, i.e.,

$$(f_i, f_j) = k\delta_{i,j},$$

then $L \subset \frac{1}{k}\mathbb{Z}\mathcal{F}$, so

$$C = L/\mathbb{Z}\mathcal{F} \subset \frac{1}{k}\mathbb{Z}\mathcal{F}/\mathbb{Z}\mathcal{F} \cong \mathbb{Z}_k^n$$

and C is a self-dual code.

(If, moreover, L is even, then C is Type II).

- Knowledge of unimodular lattices can be used to classify self-dual codes or Type II codes.
- The method does not require k to be a prime.

$$C \subset \mathbb{Z}_k^n$$
, $\mathcal{F} \subset L \subset \mathbb{R}^n$

$$C \mapsto \frac{1}{\sqrt{k}} \pi^{-1}(C)$$
: lattice
 $L, \mathcal{F} \mapsto L/\mathbb{Z}\mathcal{F}$: code

The above correspondence gives, for a fixed lattice L:

{codes
$$C$$
 with $\frac{1}{\sqrt{k}}\pi^{-1}(C) \cong L$ }/(± 1)-monomial equiv.
 $\stackrel{1:1}{\leftrightarrow} \{k\text{-frames of } L\}/\operatorname{Aut}(L)$

$L \subset \mathbb{R}^n$: unimodular lattice

Define a graph Γ

- vertices $V(\Gamma) = \{ \{ \pm f \} \mid f \in L, (f, f) = k \}$
- edges: $\{\pm f\} \sim \{\pm f'\} \iff (f, f') = 0$

Then k-frames of $L \leftrightarrow n$ -cliques (complete subgraph) in Γ , and $\exists \varphi : \operatorname{Aut}(L) \to \operatorname{Aut}(\Gamma)$.

{codes
$$C$$
 with $\frac{1}{\sqrt{k}}\pi^{-1}(C) \cong L$ }/(± 1)-monomial equiv.
 $\stackrel{1:1}{\leftrightarrow} \{k\text{-frames of } L\}/\operatorname{Aut}(L)$
 $\stackrel{1:1}{\leftrightarrow} \{n\text{-cliques of } \Gamma\}/\varphi(\operatorname{Aut}(L))$

$V(\Gamma) = \{ \{ \pm f \} \mid f \in L, \ (f, f) = k \}$

How large is $|V(\Gamma)|$?

For example, for any n, there is a standard unimodular lattice \mathbb{Z}^n , and it has a k-frame when $n \ge 4$.

n		16	17	18	19	20			
k =	4	14576	19057	24498	31027	38780			
n		8	9	10	11	12	13	14	
k =	6	1568	*	*	*	32208	*	*	
k =	8	4664	*	26010	*	126852	*	544726	
k =	9	6056	17401	44330	104775	236380	515957		
k =	10	7056	*	64532	*	412632	*		

Remark: For prime k:

k = 2: $n \le 34$ by Bilous (2006), k = 3: $n \le 24$ by Harada–Munemasa (2009), k = 5: $n \le 16$ by Harada–Östergård (2003), k = 7: $n \le 12$ by Harada–Östergård (2002).

Table

<i>k</i> = 4	$1, 2, \ldots, 15$	16, 17, 18, 19
	Conway–Sloane (1993)	
	Fields–Gaborit–Leon–Pless (1998)	
<i>k</i> = 6	4	8
	Dougherty–Harada–Solé (1999)	4 n
<i>k</i> = 8	2,4	6, 8, 10, 12
	Dougherty–Gulliver–Wong (2004)	2 n
<i>k</i> = 9	1,2,,8	9, 10, 11, 12
	Bealmaceda–Betty–Nemenzo (2009)	
k = 10		2, 4, 6, 8, 10
		2 n