On the Classification of Self-Dual \mathbb{Z}_{k}-Codes

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Masaaki Harada)
December 15, 2009
12th IMA Conference on Cryptography and Coding

Self-Dual \mathbb{Z}_{k}-Codes

- $k \in \mathbb{Z}, k \geq 2$.
- \mathbb{Z}_{k} : the ring of integers modulo k.
- $(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{n} x_{i} y_{i}$, where $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{Z}_{k}^{n}$,
- Euclidean weight: $\mathrm{wt}(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \in \mathbb{Z}$, where $\mathbb{Z}_{k}=\{0, \pm 1, \pm 2, \ldots\}$ is considered as $\subset \mathbb{Z}$
- a submodule $C \subset \mathbb{Z}_{k}^{n}$ is called a code of length n over \mathbb{Z}_{k}, or a \mathbb{Z}_{k}-code of length n.
- C is self-dual if $C=C^{\perp}$, where $C^{\perp}=\left\{\boldsymbol{x} \in \mathbb{Z}_{k}^{n} \mid(\boldsymbol{x}, \boldsymbol{y})=0(\forall \boldsymbol{y} \in C)\right\}$,
- For k even, C is Type II $\Longleftrightarrow C=C^{\perp}$ and $2 k \mid \mathrm{wt}(\boldsymbol{x})$ for all $\boldsymbol{x} \in C$.

For k even, C is Type II $C=C^{\perp}$ and $w t(x) \equiv 0(\bmod 2 k)$.

A Type II code of length n exists if and only if $8 \mid n$.
For $n=8$:

- $k=2$: Binary Extended Hamming Code (unique).
- $k=4$: Four Codes (Conway-Sloane, 1993).
- $k=6$: Two Codes (Kitazume-Ooi, 2004).
- $k=8$: (Dougherty-Gulliver-Wong, 2006, incomplete).

Mass formula (which gives the total number of Type II codes of given length and k) is known for $k=2,4,6$ but not known for $k=8$ until 2009 (previous talk).

New Method of Classifying Self-Dual and Type II Codes Using Lattices

Proposed by Harada-Munemasa-Venkov (2009).

- $\pi: \mathbb{Z} \rightarrow \mathbb{Z}_{k}$: canonical surjection.
- $\pi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}_{k}^{n} \supset C$.

$$
L=\frac{1}{\sqrt{k}} \pi^{-1}(C) \subset \mathbb{R}^{n}
$$

- $C=C^{\perp} \Longrightarrow L$: unimodular.
- C : Type II $\Longrightarrow L$: even unimodular

Such lattices have been classified for $n \leq 24$.
Example: $n=8: \mathbb{Z}^{8}$ and E_{8}.

$$
L=\frac{1}{\sqrt{k}} \pi^{-1}(C) \subset \mathbb{R}^{n}
$$

Example: $n=2, k=2, C=\langle(1,1)\rangle \subset \mathbb{Z}_{2}^{2}$.

$$
L=\frac{1}{\sqrt{2}}\left\{(x, y) \in \mathbb{Z}^{2} \mid x \equiv y \quad(\bmod 2)\right\}
$$

L unimodular
$\Longleftrightarrow \operatorname{det}($ Gram matrix $)=1$
$\Longleftrightarrow \operatorname{vol}($ fundamental domain $)=1$

$$
f_{1}=(\sqrt{2}, 0), f_{2}=(0, \sqrt{2}) .
$$

$L \subset \mathbb{R}^{n}:$ unimodular lattice

If L contains a k-frame $\mathcal{F}=\left\{ \pm f_{1}, \ldots, \pm f_{n}\right\}$, i.e.,

$$
\left(f_{i}, f_{j}\right)=k \delta_{i, j}
$$

then $L \subset \frac{1}{k} \mathbb{Z} \mathcal{F}$, so

$$
C=L / \mathbb{Z} \mathcal{F} \subset \frac{1}{k} \mathbb{Z} \mathcal{F} / \mathbb{Z} \mathcal{F} \cong \mathbb{Z}_{k}^{n}
$$

and C is a self-dual code.
(If, moreover, L is even, then C is Type II).

- Knowledge of unimodular lattices can be used to classify self-dual codes or Type II codes.
- The method does not require k to be a prime.

$C \subset \mathbb{Z}_{k}^{n}, \mathcal{F} \subset L \subset \mathbb{R}^{n}$

$$
\begin{aligned}
C & \mapsto \frac{1}{\sqrt{k}} \pi^{-1}(C): \text { lattice } \\
L, \mathcal{F} & \mapsto L / \mathbb{Z} \mathcal{F}: \text { code }
\end{aligned}
$$

The above correspondence gives, for a fixed lattice L :
$\left\{\operatorname{codes} C\right.$ with $\left.\frac{1}{\sqrt{k}} \pi^{-1}(C) \cong L\right\} /(\pm 1)$-monomial equiv.
$\stackrel{1: 1}{\longleftrightarrow}\{k$-frames of $L\} / \operatorname{Aut}(L)$

$L \subset \mathbb{R}^{n}:$ unimodular lattice

Define a graph 「

- vertices $V(\Gamma)=\{\{ \pm f\} \mid f \in L,(f, f)=k\}$
- edges: $\{ \pm f\} \sim\left\{ \pm f^{\prime}\right\} \Longleftrightarrow\left(f, f^{\prime}\right)=0$

Then k-frames of $L \leftrightarrow n$-cliques (complete subgraph) in Γ, and $\exists \varphi: \operatorname{Aut}(L) \rightarrow \operatorname{Aut}(\Gamma)$.
$\left\{\operatorname{codes} C\right.$ with $\left.\frac{1}{\sqrt{k}} \pi^{-1}(C) \cong L\right\} /(\pm 1)$-monomial equiv.
$\stackrel{1: 1}{\longleftrightarrow}\{k$-frames of $L\} / \operatorname{Aut}(L)$
$\stackrel{1: 1}{\longleftrightarrow}\{n$-cliques of $\Gamma\} / \varphi(\operatorname{Aut}(L))$

$$
V(\Gamma)=\{\{ \pm f\} \mid f \in L,(f, f)=k\}
$$

How large is $|V(\Gamma)|$?
For example, for any n, there is a standard unimodular lattice \mathbb{Z}^{n}, and it has a k-frame when $n \geq 4$.

n	16	17	18	19	20		
$k=4$	14576	19057	24498	31027	38780		

Remark: For prime k :
$k=2$: $n \leq 34$ by Bilous (2006),
$k=3: n \leq 24$ by Harada-Munemasa (2009),
$k=5: n \leq 16$ by Harada-Östergård (2003),
$k=7: n \leq 12$ by Harada-Östergård (2002).

Table

$k=4$	$1,2, \ldots, 15$	$16,17,18,19$
	Conway-Sloane (1993) Fields-Gaborit-Leon-Pless (1998)	
$k=6$	4	8
	Dougherty-Harada-Solé (1999)	$4 \mid n$
$k=8$	2,4	$6,8,10,12$
	Dougherty-Gulliver-Wong (2004)	$2 \mid n$
$k=9$	$1,2, \ldots, 8$	$9,10,11,12$
	Bealmaceda-Betty-Nemenzo (2009)	
$k=10$		$2,4,6,8,10$
		$2 \mid n$

