A characterization of quasi-line graphs

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Tetsuji Taniguchi)

July 10, 2010
Kyushu University

Graphs and Line Graphs

A graph $G=(V, E)$ consists of a finite set V together with a set E of two-element subsets of V.

- V : vertices
- E : edges

The line graph $L(G)$ of a graph G has E as the set of vertices and its set of edges is

$$
\{\{e, f\}|e, f \in E,|e \cap f|=1\}
$$

Properties of Line Graphs

G : a graph
$\Gamma=L(G)$: the line graph of G.
(i) The neighborhood of every vertex in Γ is a union of two subsets, each of which is a clique.
(ii) The graph 「 admits a representation by vectors of squared norm 2 in \mathbf{Z}^{n}, where $n=|V|$.

Here, a representation by vectors of squared norm 2 means a mapping $\phi: V(\Gamma) \rightarrow \mathbf{Z}^{n}$ such that $\|\phi(e)\|^{2}=2$ for $e \in E(\Gamma)$, $(\phi(e), \phi(f))=1$ or 0 , according as $\{e, f\} \in E(\Gamma)$ or not.
A graph satisfying (i) is called a quasi-line graph, while a graph satisfying (ii) is called a generalized line graph. (ii) means the image of ϕ is contained in the root system of type D.

Representation of Graphs by Vectors

The incidence matrix:

$$
\text { edges }=\text { vertices of } L(G)=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right)
$$

Allowing -1

Examples

A claw can be represented by the vectors of squared norm 2 :
hence it is a generalized line graph, but it is not a quasi-line graph. The graph with adjacency matrix

$$
\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

is a quasi-line graph, but not a generalized line graph.

Exceptional Root Systems

If

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

then $A+2 I$ is a Gram matrix of the E_{6}-lattice, which is known not to be contained in D_{n} for any n. Hence the graph Γ with adjacency matrix A is not a generalized line graph. However, Γ is a quasi-line graph.
$\{$ line graph $\} \subset$ \{generalized line graph $\}$
$\{$ line graph $\} \subset$ \{quasi-line graph $\} \subset$ \{claw-free graph $\}$

Quasi-line graph

Chudnovsky-Seymour gave a structural characterization of claw-free graphs, and also of quasi-line graphs. We wish to characterize quasi-line graphs using the concept of sums of Hoffman graphs.

Definition

A Hoffman graph is a graph H with vertex labeling $V(H) \rightarrow\{s, f\}$, satisfying the following conditions:
(i) every vertex with label f is adjacent to at least one vertex with label s;
(ii) vertices with label f are pairwise non-adjacent.
$s=$ "slim," $f=$ "fat."
$V_{s}(H)\left(V_{f}(H)\right)=$ the set of slim (fat) vertices of H.
An ordinary graph $=$ Hoffman graph without fat vertex.

Sums of Hoffman graphs

Definition

Let H be a Hoffman graph, and let $H^{i}(i=1,2, \ldots, n)$ be a family of subgraphs of H. We write

$$
H=\biguplus_{i=1}^{n} H^{i}
$$

if
(i) $V(H)=\bigcup_{i=1}^{n} V\left(H^{i}\right)$;
(ii) $V_{s}\left(H^{i}\right) \cap V_{s}\left(H^{j}\right)=\emptyset$ if $i \neq j$;
(iii) if $x \in V_{s}\left(H^{i}\right)$ and $\alpha \in V_{f}(H)$ are adjacent, then $\alpha \in V\left(H^{i}\right) ;$
(iv) if $x \in V_{s}\left(H^{i}\right), y \in V_{s}\left(H^{j}\right)$ and $i \neq j$, then x and y have at most one common fat neighbour, and they have one if and only if they are adjacent.

\hat{G} of a bipartite graph G

Given a bipartite graph G with bipartition $V_{1} \cup V_{2}$,
$\hat{G}=$ Hoffman graph obtained from G by making every pair of vertices in V_{i} adjacent, attaching a common fat neighbor f_{i} to V_{i}, for $i=1,2$

A construction of quasi-line graphs

Suppose

$$
\begin{gathered}
V(Q)=\bigcup_{i=1}^{n} V_{i} \quad \text { (disjoint cliques) } \\
V_{i}=\bigcup_{j=1}^{n} V_{i j}, \quad V_{i i}=\emptyset \\
x \in V_{i j}, y \notin V_{i}, x \sim y \Longrightarrow y \in V_{j i} .
\end{gathered}
$$

Then Q is a quasi-line graph which can be expressed as a sum of Hoffman graphs of the form \hat{G}.

