A characterization of quasi-line graphs

Akihiro Munemasa1

1Graduate School of Information Sciences
Tohoku University
(joint work with Tetsuji Taniguchi)

July 10, 2010
Kyushu University
A graph $G = (V, E)$ consists of a finite set V together with a set E of two-element subsets of V.

- V: vertices
- E: edges

The line graph $L(G)$ of a graph G has E as the set of vertices and its set of edges is

$$\{\{e, f\} \mid e, f \in E, |e \cap f| = 1\}.$$
Properties of Line Graphs

G: a graph
$\Gamma = L(G)$: the line graph of G.

(i) The neighborhood of every vertex in Γ is a union of two subsets, each of which is a clique.

(ii) The graph Γ admits a representation by vectors of squared norm 2 in \mathbb{Z}^n, where $n = |V|$.

Here, a representation by vectors of squared norm 2 means a mapping $\phi : V(\Gamma) \rightarrow \mathbb{Z}^n$ such that $\|\phi(e)\|^2 = 2$ for $e \in E(\Gamma)$, $(\phi(e), \phi(f)) = 1$ or 0, according as $\{e, f\} \in E(\Gamma)$ or not. A graph satisfying (i) is called a quasi-line graph, while a graph satisfying (ii) is called a generalized line graph. (ii) means the image of ϕ is contained in the root system of type D.
Representation of Graphs by Vectors

The incidence matrix:

\[
\begin{align*}
\text{edges} &= \text{vertices of } L(G) = \\
&= \begin{pmatrix}
(1 & 1 & 0 & 0 & 0) \\
(0 & 1 & 1 & 0 & 0) \\
(1 & 0 & 0 & 1 & 0) \\
(0 & 0 & 1 & 1 & 0) \\
(0 & 0 & 1 & 0 & 1)
\end{pmatrix}
\end{align*}
\]

Allowing \(-1\)

\[
\begin{pmatrix}
(-1 & 1 & 0 & 0 & 0 & 0) \\
(0 & 1 & -1 & 0 & 0) \\
(-1 & 0 & 0 & 1 & 0) \\
(0 & 0 & -1 & 1 & 0) \\
(0 & 0 & -1 & 0 & 1)
\end{pmatrix} \subseteq \text{root system of type } A
\]
Examples

A claw can be represented by the vectors of squared norm 2:

\[
\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0
\end{pmatrix}
\]

hence it is a generalized line graph, but it is not a quasi-line graph. The graph with adjacency matrix

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

is a quasi-line graph, but not a generalized line graph.
Exceptional Root Systems

If

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
\end{bmatrix}
\]

then \(A + 2I \) is a Gram matrix of the \(E_6 \)-lattice, which is known not to be contained in \(D_n \) for any \(n \). Hence the graph \(\Gamma \) with adjacency matrix \(A \) is not a generalized line graph. However, \(\Gamma \) is a quasi-line graph.

\[
\{ \text{line graph} \} \subset \{ \text{generalized line graph} \} \subset \{ \text{quasi-line graph} \} \subset \{ \text{claw-free graph} \}
\]
Chudnovsky–Seymour gave a structural characterization of claw-free graphs, and also of quasi-line graphs. We wish to characterize quasi-line graphs using the concept of sums of Hoffman graphs.

Definition

A **Hoffman graph** is a graph H with vertex labeling $V(H) \rightarrow \{s, f\}$, satisfying the following conditions:

(i) every vertex with label f is adjacent to at least one vertex with label s;

(ii) vertices with label f are pairwise non-adjacent.

$s = \text{“slim,”} \quad f = \text{“fat.”}$

$V_s(H) (V_f(H)) = \text{the set of slim (fat) vertices of } H.$

An ordinary graph $= \text{Hoffman graph without fat vertex.}$
Sums of Hoffman graphs

Definition
Let H be a Hoffman graph, and let H^i ($i = 1, 2, \ldots, n$) be a family of subgraphs of H. We write

$$H = \bigcup_{i=1}^{n} H^i$$

if

(i) $V(H) = \bigcup_{i=1}^{n} V(H^i)$;

(ii) $V_s(H^i) \cap V_s(H^j) = \emptyset$ if $i \neq j$;

(iii) if $x \in V_s(H^i)$ and $\alpha \in V_f(H)$ are adjacent, then $\alpha \in V(H^i)$;

(iv) if $x \in V_s(H^i)$, $y \in V_s(H^j)$ and $i \neq j$, then x and y have at most one common fat neighbour, and they have one if and only if they are adjacent.
Given a bipartite graph G with bipartition $V_1 \cup V_2$,

$\hat{G} = \text{Hoffman graph obtained from } G \text{ by making every pair of vertices in } V_i \text{ adjacent, attaching a common fat neighbor } f_i \text{ to } V_i$, for $i = 1, 2$
A construction of quasi-line graphs

Suppose

\[
V(Q) = \bigcup_{i=1}^{n} V_i \quad \text{(disjoint cliques)}
\]

\[
V_i = \bigcup_{j=1}^{n} V_{ij}, \quad V_{ii} = \emptyset,
\]

\[
x \in V_{ij}, \quad y \notin V_i, \quad x \sim y \implies y \in V_{ji}.
\]

Then \(Q\) is a quasi-line graph which can be expressed as a sum of Hoffman graphs of the form \(\hat{G}\).