A characterization of quasi-line graphs

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Tetsuji Taniguchi)

> July 10, 2010 Kyushu University

> > < □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Graphs and Line Graphs

A graph G = (V, E) consists of a finite set V together with a set E of two-element subsets of V.

- V: vertices
- E: edges

The line graph L(G) of a graph G has E as the set of vertices and its set of edges is

$$\{\{e,f\} \mid e,f \in E, \ |e \cap f| = 1\}.$$

Properties of Line Graphs

- G: a graph $\Gamma = L(G)$: the line graph of G.
 - (i) The neighborhood of every vertex in Γ is a union of two subsets, each of which is a clique.
 - (ii) The graph Γ admits a representation by vectors of squared norm 2 in \mathbb{Z}^n , where n = |V|.

Here, a representation by vectors of squared norm 2 means a mapping $\phi: V(\Gamma) \to \mathbb{Z}^n$ such that $\|\phi(e)\|^2 = 2$ for $e \in E(\Gamma)$, $(\phi(e), \phi(f)) = 1$ or 0, according as $\{e, f\} \in E(\Gamma)$ or not. A graph satisfying (i) is called a quasi-line graph, while a graph satisfying (ii) is called a generalized line graph. (ii) means the image of ϕ is contained in the root system of type D.

Representation of Graphs by Vectors

The incidence matrix:

edges = vertices of
$$L(G) = \begin{pmatrix} (1 \ 1 \ 0 \ 0 \ 0 \\ (0 \ 1 \ 1 \ 0 \ 0) \\ (1 \ 0 \ 0 \ 1 \ 0) \\ (0 \ 0 \ 1 \ 1 \ 0) \\ (0 \ 0 \ 1 \ 0 \ 1) \end{pmatrix}$$

Allowing -1

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Examples

A claw can be represented by the vectors of squared norm 2:

$$egin{pmatrix} (1 & 1 & 0 & 0) \ (1 & 0 & 1 & 0) \ (0 & 1 & 0 & 1) \ (1 & 0 & -1 & 0) \end{pmatrix}$$

hence it is a generalized line graph, but it is not a quasi-line graph. The graph with adjacency matrix

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

3

is a quasi-line graph, but not a generalized line graph.

Exceptional Root Systems

lf

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

then A + 2I is a Gram matrix of the E_6 -lattice, which is known not to be contained in D_n for any n. Hence the graph Γ with adjacency matrix A is not a generalized line graph. However, Γ is a quasi-line graph.

$$\{\mathsf{line \ graph}\} \subset \{\mathsf{generalized \ line \ graph}\} \\ \{\mathsf{line \ graph}\} \subset \{\mathsf{quasi-line \ graph}\} \subset \{\mathsf{claw-free \ graph}\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Quasi-line graph

Chudnovsky–Seymour gave a structural characterization of claw-free graphs, and also of quasi-line graphs. We wish to characterize quasi-line graphs using the concept of sums of Hoffman graphs.

Definition

A Hoffman graph is a graph H with vertex labeling $V(H) \rightarrow \{s, f\}$, satisfying the following conditions:

- (i) every vertex with label f is adjacent to at least one vertex with label s;
- (ii) vertices with label f are pairwise non-adjacent.

s = "slim," f = "fat." $V_s(H) (V_f(H)) =$ the set of slim (fat) vertices of H. An ordinary graph = Hoffman graph without fat vertex.

Sums of Hoffman graphs

Definition

Let H be a Hoffman graph, and let H^i (i = 1, 2, ..., n) be a family of subgraphs of H. We write

$$H = \biguplus_{i=1} H^i$$
 if

(i)
$$V(H) = \bigcup_{i=1}^{n} V(H^i);$$

(ii)
$$V_s(H^i) \cap V_s(H^j) = \emptyset$$
 if $i \neq j$;

- (iii) if $x \in V_s(H^i)$ and $\alpha \in V_f(H)$ are adjacent, then $\alpha \in V(H^i)$;
- (iv) if $x \in V_s(H^i)$, $y \in V_s(H^j)$ and $i \neq j$, then x and y have at most one common fat neighbour, and they have one if and only if they are adjacent.

\hat{G} of a bipartite graph G

Given a bipartite graph G with bipartition $V_1 \cup V_2$,

 \hat{G} = Hoffman graph obtained from G by making every pair of vertices in V_i adjacent, attaching a common fat neighbor f_i to V_i , for i = 1, 2

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A construction of quasi-line graphs

Suppose

$$egin{aligned} V(Q) &= igcup_{i=1}^n V_i & (ext{disjoint cliques}) \ V_i &= igcup_{j=1}^n V_{ij}, & V_{ii} = \emptyset, \end{aligned}$$

$$x \in V_{ij}, \ y \notin V_i, \ x \sim y \implies y \in V_{ji}.$$

Then Q is a quasi-line graph which can be expressed as a sum of Hoffman graphs of the form \hat{G} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ