Towards the classification of 4-frames in the Leech lattice

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Rowena A. L. Betty)

> December 13, 2010 Kyoto, Japan

Main result

The Leech lattice has

1+5+29+171+755+1880+1903 (corrected after the talk)

4-frames.

- What (Definitions)
- Where (History)
- Why (Motivations)
- How (Computation)

The Leech lattice L

A \mathbb{Z} -submodule L of rank 24 in \mathbb{R}^{24} with basis B characterized by the following properties of its Gram matrix $G = BB^T$:

- det G = 1,
- $G_{ij} \in \mathbb{Z}$,
- $G_{ii} \in 2\mathbb{Z}$
- rootless: $\forall x \in L$, $||x||^2 \neq 2$.

unique up to isometry in \mathbb{R}^{24} .

McKay's construction of the Leech lattice (1972)

- A Hadamard matrix of order n is a square matrix with entries ±1 satisfying $HH^T = nI$.
- When n = 12, there exists a unique (up to equivalence) Hadamard matrix H, and one may take H with $H + H^T = -2I$.

$$L = \frac{1}{2} \operatorname{Span}_{\mathbb{Z}} \begin{bmatrix} I & H - I \\ 0 & 4I \end{bmatrix} \subset \frac{1}{2} \mathbb{Z}^{24} \subset \mathbb{R}^{24}$$

$$L \supset \frac{1}{2} \operatorname{Span}_{\mathbb{Z}} \begin{bmatrix} 4I & 4(H-I) \\ 0 & 4I \end{bmatrix} = \operatorname{Span}_{\mathbb{Z}} 2I = 2\mathbb{Z}^{24}.$$

L =Leech lattice

 $\min L = \min\{||x||^2 \mid 0 \neq x \in L\} = 4$ (rootless).

 $\#\{x \in L \mid ||x||^2 = 4\} = 196560$ A 4-frame of L is $\{\pm f_1, \pm f_2, \dots, \pm f_{24}\}$ with $(f_i, f_j) = 4\delta_{ij}$. We also call the sublattice $F = \bigoplus_{i=1}^{24} f_i$ a 4-frame. Example:

$$L \supset \frac{1}{2} \operatorname{Span}_{\mathbb{Z}} \begin{bmatrix} 4I & 4(H-I) \\ 0 & 4I \end{bmatrix} = \operatorname{Span}_{\mathbb{Z}} 2I = 2\mathbb{Z}^{24}.$$

There are many others, but certainly finite. Equivalence by isometry group of L.

$$F \subset L \subset \frac{1}{4}F.$$

$$F \subset L \subset \frac{1}{4}F$$

 $L/F \subset \frac{1}{4}F/F \cong \mathbb{Z}_4^{24}.$ A code over \mathbb{Z}_4 of length n is a submodule of \mathbb{Z}_4^n .

$$F \to \mathcal{C} = L/F \subset \mathbb{Z}_4^{24},$$

Conversely, given a code C over \mathbb{Z}_4 of length 24, there is a frame $F \subset L$ s.t. C = L/F if and only if

(1) C is self-dual,

(2) $\forall x \in C$, the Euclidean weight wt(x) is divisible by 8,

(3) $\min\{\operatorname{wt}(x) \mid x \in \mathcal{C}, x \neq 0\} = 16.$

A code C is called type II if (1) and (2) holds. If (1), (2) and (3) hold, then C is called an extremal type II code over \mathbb{Z}_4 of length 24.

$$F \to \mathcal{C} = L/F \subset \mathbb{Z}_4^{24}$$
: Equivalence

Consider another $F' \to \mathcal{C}' = L/F' \subset \mathbb{Z}_4^{24}$.

Then

 $F \cong F'$ under Aut L $\iff C$ and C' are monomially equivalent.

Classification of 4-frames in $L \iff$ classification of extremal type II code over \mathbb{Z}_4 of length 24.

Example of an extremal type II code over \mathbb{Z}_4 of length 24: Bonnecaze–Solé–Calderbank (1995): Hensel lifted Golay code.

Residue code = $\mathcal{C} \mod 2 = \operatorname{Res}(\mathcal{C})$

If C is a code over \mathbb{Z}_4 , then its modulo 2 reduction is called the residue code and is denoted by

 $\operatorname{Res}(\mathcal{C}) \subset \mathbb{F}_2^n.$

Example: For the Hensel-lifted Golay code $\mathcal{C}, \, \mathrm{Res}(\mathcal{C})$ is the Golay code.

- C : type II of length n
 - $\implies \operatorname{Res}(\mathcal{C}) \text{ is a doubly even binary code containing } \mathbf{1}$ $\implies 8|n.$

Frame of $L \rightarrow \text{Virasoro Frame of } V^{\natural}$

 $\begin{array}{l} \{ \text{Virasoro frames of } V^{\natural} \} \\ & \text{difficult} \end{array}$

 $\uparrow \mathsf{DMZ}$

$$\{\text{frames of } L\} \qquad \stackrel{L/F \text{ mod } 2}{\rightarrow} \left\{ \begin{array}{l} \text{doubly even } C \\ \text{len} = 24, \ \mathbf{1}_{24} \in C \\ \min C^{\perp} \ge 4 \\ \text{easily enumerated} \end{array} \right\}$$

/ 1 11

`

 α

DMZ = Dong-Mason-Zhu (1994)

Frame of $L \rightarrow \text{Virasoro Frame of } V^{\natural}$

$$\{ \text{Virasoro frames of } V^{\natural} \} \xrightarrow{\text{str}} \left\{ \begin{array}{l} \text{triply even } D \\ \text{len} = 48, \ \mathbf{1}_{48} \in D \\ \min D^{\perp} \ge 4 \end{array} \right\}$$

$$\uparrow \text{DMZ} \qquad \qquad \uparrow \mathcal{D} \text{ (doubling)}$$

$$\{ \text{frames of } L \} \qquad \qquad L/F \mod 2 \\ \text{min } C^{\perp} \ge 4 \\ \text{easily enumerated} \end{array} \right\}$$

Lam–Yamauchi (2008): the diagram commutes, and

 $\mathsf{DMZ}(\{\mathsf{frames of } L\}) \stackrel{(\subseteq)}{=} \mathsf{str}^{-1}(\mathcal{D}(\{\mathsf{doubly even}\})).$

Determine {frames of L}, with the help of the map

$$\{\text{frames of } L\} \xrightarrow{L/F \bmod 2} \begin{cases} \text{doubly even } C \\ \text{length} = 24, \ \mathbf{1}_{24} \in C \\ \min C^{\perp} \ge 4 \\ \text{easily enumerated} \end{cases}$$

 $F \subset L \subset \frac{1}{4}F \rightsquigarrow \mathcal{C} = L/F \subset \mathbb{Z}_4^{24} \rightsquigarrow C = L/F \mod 2.$ For each $C \in \text{RHS}$, classify F such that $\text{Res}(L/F) \cong C$.

The map $F \mapsto L/F \mod 2$ is neither injective nor surjective. Calderbank–Sloane (with Young) (1997):

 $\{$ doubly even self-dual codes $\} \subset$ image.

The image was determined by Harada–Lam–M., but not preimages.

Rains (1999) determined the preimage for C = Golay.

- $(x,y) = \sum_{i=1}^{n} x_i y_i$, where $x, y \in \mathbb{Z}_4^n$,
- a code of length n over \mathbb{Z}_4 is a submodule $\mathcal{C} \subset \mathbb{Z}_4^n$,
- C is self-dual if $C = C^{\perp}$, where $C^{\perp} = \{x \in \mathbb{Z}_{4}^{n} \mid (x, y) = 0 \ (\forall y \in C)\},\$
- the residue: $\operatorname{Res}(\mathcal{C}) \subset \mathbb{F}_2^n$ (reduction $\mathbb{Z}_4 \to \mathbb{F}_2 \mod 2$).

• For
$$u \in \mathbb{Z}_4^n$$
,

$$\operatorname{wt}(u) = \sum_{i=1}^{n} u_i^2,$$

where we regard $u_i \in \{0, 1, 2, -1\} \subset \mathbb{Z}$. A code $\mathcal{C} \subset \mathbb{Z}_4^n$ is type II if \mathcal{C} is self-dual and $8 | \operatorname{wt}(u)$ for all $u \in \mathcal{C}$.

- Conway–Sloane (1993): 4 type II codes of length 8
- Pless-Leon-Fields (1997): 133 type II codes of length 16

The set of all type II \mathbb{Z}_4 -codes C with $\operatorname{Res}(C) = C$ has a structure as an affine space of dimension (k-2)(k+1)/2 over \mathbb{F}_2

Classifying such ${\mathcal C}$ amounts to enumerating $k\times n$ binary matrices M such that

$$\begin{bmatrix} A+2M\\ 2B \end{bmatrix}, \text{ where } [A] \text{ generates } C, \quad \begin{bmatrix} A\\ B \end{bmatrix} \text{ generates } C^{\perp},$$

generates a type II code.

Among the 2^{kn} matrices M, not all of them generate a self-dual code, while some matrices generate the same code as the one generated by some other matrix. This reduces the number

$$2^{kn}$$
 to $2^{(k-2)(k+1)/2}$

Given $C \subset \mathbb{F}_2^n$, classify type II codes $\mathcal{C} \subset \mathbb{Z}_4^n$ with $\operatorname{Res}(\mathcal{C}) = C$.

Note: C: type II \mathbb{Z}_4 -code $\implies \operatorname{Res}(C)$: doubly even, $\ni 1$. Theorem (Rains, 1999)

Given a doubly even code C of length n, dimension k, \ni 1.

- the set of all type II Z₄-codes C with Res(C) = C has a structure as an affine space of dimension (k 2)(k + 1)/2 over 𝔽₂ (due to Gaborit, 1996),
- the group {±1}ⁿ ⋊ Aut(C) acts as an affine transformation group,
- two codes C, C' are equivalent if and only if they are in the same orbit under this group.

Given $C \subset \mathbb{F}_2^n$, classify type II codes $\mathcal{C} \subset \mathbb{Z}_4^n$ with $\operatorname{Res}(\mathcal{C}) = C$.

Note: C: type II \mathbb{Z}_4 -code $\implies \operatorname{Res}(C)$: doubly even, $\ni 1$. Theorem (Rains, 1999)

Given a doubly even code C of length n, dimension k, \ni 1.

- the set of all type II Z₄-codes C with Res(C) = C has a structure as an affine space of dimension (k 2)(k + 1)/2 over 𝔽₂ (due to Gaborit, 1996),
- the group {±1}ⁿ ⋊ Aut(C) acts as an affine transformation group,
- two codes C, C' are equivalent if and only if they are in the same orbit under this group.

Given $C \subset \mathbb{F}_2^n$, classify type II codes $\mathcal{C} \subset \mathbb{Z}_4^n$ with $\operatorname{Res}(\mathcal{C}) = C$.

Note: C: type II \mathbb{Z}_4 -code $\implies \operatorname{Res}(C)$: doubly even, $\ni 1$. Theorem (Rains, 1999)

Given a doubly even code C of length n, dimension k, \ni 1.

- the set of all type II Z₄-codes C with Res(C) = C has a structure as an affine space of dimension (k 2)(k + 1)/2 over 𝔽₂ (due to Gaborit, 1996),
- the group {±1}ⁿ ⋊ Aut(C) acts as an affine transformation group,
- two codes C, C' are equivalent if and only if they are in the same orbit under this group.

The group $\{\pm 1\}^n \rtimes \operatorname{Aut}(C)$ acts as an affine transformation group on an affine space of dimension (k-2)(k+1)/2

Theorem (improved version)

Given a doubly even code C of length n, dimension k, containing $\mathbf{1}_n,$

- the set of all type II Z₄-codes C with Res(C) = C has a surjection onto an affine space of dimension at most (k 2)(k + 1)/2 over F₂, (e.g. 65 → 44)
- the group Aut(C) acts as an affine transformation group,
- two codes $\mathcal{C}, \mathcal{C}'$ are equivalent if and only if their images are in the same orbit under this group.

Type II \mathbb{Z}_4 -codes \mathcal{C} with $\operatorname{Res}(\mathcal{C}) = C$ Given a doubly even code C of length n, dimension k, with generator matrix [A], C^{\perp} is generated by $\begin{bmatrix} A \\ B \end{bmatrix}$, set

$$\mathcal{M} = \operatorname{Mat}_{k \times n}(\mathbb{F}_2),$$

$$U_0 = \{ M \in \mathcal{M} \mid MA^T + AM^T = 0,$$

$$\operatorname{Diag}(AM^T) + \operatorname{Diag}(\mathbf{1}M^T) = 0 \},$$

$$W_0 = \langle \{ M \in \mathcal{M} \mid MA^T = 0 \}, \{ AE_{ii} \mid 1 \le i \le n \} \rangle,$$

$$U = U_0 \oplus \mathbb{F}_2,$$

$$W = W_0 \oplus \{ 0 \}.$$

$$U_0/W_0 \ni M \pmod{W_0} \mapsto \begin{array}{c} \text{eq. class of} \\ \text{code generated by} \end{array} \begin{bmatrix} \tilde{A} + 2M \\ 2B \end{bmatrix}$$

is well-defined. (\tilde{A} will be chosen appropriately) Aut(C) acts on U_0/W_0 as an affine transformation group, and the orbits are the preimages of equivalence classes.

$\operatorname{Aut}(C)$ acts on U_0/W_0

First, take a matrix \tilde{A} over \mathbb{Z}_4 such that

$$\tilde{A} \mod 2 = A$$
 and $\tilde{A}\tilde{A}^T = 0$,
weight of rows of $\tilde{A} \equiv 0 \pmod{8}$

 $\forall P \in \operatorname{Aut}(C), \exists E_1(P) \in \operatorname{GL}(k, \mathbb{F}_2)$ such that

$$AP = E_1(P)A$$

and $\exists E_2(P) \in \mathcal{M}$ such that

$$2E_2(P) = E_1(P)^{-1}\tilde{A}P - \tilde{A}.$$

Then

$$P: M \mapsto E_1(P)^{-1}MP + E_2(P).$$

 $\operatorname{Aut}(C)$ acts on U_0/W_0

Theorem The group Aut(C) acts on U_0/W_0 by

$$P: U_0/W_0 \ni M \pmod{W_0} \mapsto E_1(P)^{-1}MP + E_2(P) \pmod{W_0} \in U_0/W_0,$$

where $P \in Aut(C)$. Moreover, there is a bijection

Aut(C)-orbits on
$$U_0/W_0 \rightarrow$$
 codes C with
Res(C) = C,

$$M \pmod{W_0} \mapsto \begin{array}{c} \text{eq. class of} \\ \text{codes generated by} \end{array} \begin{bmatrix} \tilde{A} + 2M \\ 2B \end{bmatrix}$$

Practical Implementation

 $\operatorname{Aut}(C) \to \operatorname{AGL}(U_0/W_0).$

Since $AGL(m, \mathbb{F}_2) \subset GL(1 + m, \mathbb{F}_2)$, we actually construct a linear representation:

 $\operatorname{Aut}(C) \to \operatorname{GL}(1 + \dim U_0/W_0).$

A straightforward implementation works provided

 $\dim U_0/W_0 \le 26$ (depending on available memory)

which is the case if $\dim C \leq 10$.

dim	6	7	8	9	10	11	12
#	1	7	32	60	49	21	9

If dim U_0/W_0 is large

A straightforward computation will not work if dim C = 11 or 12. For example, C = extended Golay code, dim $U_0/W_0 = 44$. So we will have a matrix representation

$$M_{24} = \operatorname{Aut}(C) \to \operatorname{GL}(45, \mathbb{F}_2).$$

As an estimate:

$$\frac{2^{44}}{|M_{24}|} = 71856.7\dots$$

but there are only 13 extremal type II codes C with $\text{Res}(\mathcal{C}) =$ Golay code.

$C = \mathsf{Golay} \ \mathsf{code}$

$$M_{24} \rightarrow \mathrm{AGL}(44,2) \rightarrow \mathrm{GL}(45,2)$$

acts on a hyperplane ${\mathcal H}$ of ${\mathbb F}_2^{45}$, and

orbits of M_{24} on $\mathcal{H} \leftrightarrow$ type II codes \mathcal{C} with $\operatorname{Res}(\mathcal{C}) = C$.

There are 2^{44} elements to examine for extremality. We need to extract only extremal codes and then classify up to equivalence.

Rains (1999) avoided this, instead classified self-dual codes of lengths 22, 23, then building up from these. (limitation to Golay case)

$$\{\mathcal{C}: \text{ type II, } \operatorname{Res}(\mathcal{C}) = \operatorname{Golay}\}/\{\pm 1\} \cong \mathbb{F}_2^{44}$$

For each octad $x \in C$, consider the subset

$$H(x) = \{ \mathcal{C} \mid \operatorname{Res}(\mathcal{C}) = C, \ \mathcal{C}: \text{ type II}, \\ \exists v \in \mathcal{C}, \ \operatorname{wt}(v) = 8, \ v \bmod 2 = x \}.$$

$$\begin{split} &x = (111111110000 \cdots 0000), \quad \text{octad}, \\ &v = (111111110000 \cdots 0000), \quad \text{weight 8}, \\ &v' = (11111112200 \cdots 0000), \quad \text{weight 16} \end{split}$$

 $v \in \mathcal{C} \implies \mathcal{C}$ is not extremal.

Every member of H(x) has minimum Euclidean weight 8 (non-extremal). H(x) is a subspace of codimension 4. Another trick is to use a subgroup to classify up to equivalence using a submodule, then later classify a manageable size of representatives by M_{24} . Note that M_{24} does not have a submodule of dimension less than 44 in $M_{24} \rightarrow \text{GL}(45,2)$. We recover

Rains (1999): there are exactly 13 extremal type II codes
 C s.t. Res(C) is the binary extended Golay code.

We can modify slightly for $C \neq$ Golay code. Numbers of doubly even codes $C \subset \mathbb{F}_2^{24}$ containing 1 and C^{\perp} has minimum weight ≥ 4 .

dim	6	7	8	9	10	11	12
#	1	7	32	60	49	21	9

 $F \to \mathcal{C} = L/F \to \operatorname{Res}(\mathcal{C})$

- Rains (1999): there are exactly 13 extremal type II codes C s.t. $\operatorname{Res}(C)$ is the binary extended Golay code.
- Harada-Lam-M. there is a unique extremal type II code C s.t. dim Res(C) = 6 (This is related to the code used by Miyamoto (2004) to construct V^β).

dim	6	7	8	9	10	11	12	
#	1	7	32	60	49	21	9	
# C	1	5	29	171	755	1880	1903	
	1						13	
(corrected after the talk)								