Towards the classification of 4-frames in the Leech lattice

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Rowena A. L. Betty)

December 13, 2010
Kyoto, Japan

Main result

The Leech lattice has
$1+5+29+171+755+1880+1903$ (corrected after the talk)
4-frames.

- What (Definitions)
- Where (History)
- Why (Motivations)
- How (Computation)

The Leech lattice L

A \mathbb{Z}-submodule L of rank 24 in \mathbb{R}^{24} with basis B characterized by the following properties of its Gram matrix $G=B B^{T}$:

- $\operatorname{det} G=1$,
- $G_{i j} \in \mathbb{Z}$,
- $G_{i i} \in 2 \mathbb{Z}$
- rootless: $\forall x \in L,\|x\|^{2} \neq 2$.
unique up to isometry in \mathbb{R}^{24}.

McKay's construction of the Leech lattice (1972)

- A Hadamard matrix of order n is a square matrix with entries ± 1 satisfying $H H^{T}=n I$.
- When $n=12$, there exists a unique (up to equivalence) Hadamard matrix H, and one may take H with $H+H^{T}=-2 I$.

$$
\begin{gathered}
L=\frac{1}{2} \operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}
I & H-I \\
0 & 4 I
\end{array}\right] \subset \frac{1}{2} \mathbb{Z}^{24} \subset \mathbb{R}^{24} \\
L \supset \frac{1}{2} \operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}
4 I & 4(H-I) \\
0 & 4 I
\end{array}\right]=\operatorname{Span}_{\mathbb{Z}} 2 I=2 \mathbb{Z}^{24} .
\end{gathered}
$$

$L=$ Leech lattice

$$
\begin{gathered}
\min L=\min \left\{\|x\|^{2} \mid 0 \neq x \in L\right\}=4 \quad \text { (rootless). } \\
\#\left\{x \in L \mid\|x\|^{2}=4\right\}=196560
\end{gathered}
$$

A 4 -frame of L is $\left\{ \pm f_{1}, \pm f_{2}, \ldots, \pm f_{24}\right\}$ with $\left(f_{i}, f_{j}\right)=4 \delta_{i j}$. We also call the sublattice $F=\bigoplus_{i=1}^{24} f_{i}$ a 4 -frame.
Example:

$$
L \supset \frac{1}{2} \operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}
4 I & 4(H-I) \\
0 & 4 I
\end{array}\right]=\operatorname{Span}_{\mathbb{Z}} 2 I=2 \mathbb{Z}^{24} .
$$

There are many others, but certainly finite. Equivalence by isometry group of L.

$$
F \subset L \subset \frac{1}{4} F .
$$

$F \subset L \subset \frac{1}{4} F$

$L / F \subset \frac{1}{4} F / F \cong \mathbb{Z}_{4}^{24}$.
A code over \mathbb{Z}_{4} of length n is a submodule of \mathbb{Z}_{4}^{n}.

$$
F \rightarrow \mathcal{C}=L / F \subset \mathbb{Z}_{4}^{24},
$$

Conversely, given a code \mathcal{C} over \mathbb{Z}_{4} of length 24 , there is a frame $F \subset L$ s.t. $\mathcal{C}=L / F$ if and only if
(1) \mathcal{C} is self-dual,
(2) $\forall x \in \mathcal{C}$, the Euclidean weight $\mathrm{wt}(x)$ is divisible by 8 ,
(3) $\min \{\operatorname{wt}(x) \mid x \in \mathcal{C}, x \neq 0\}=16$.

A code \mathcal{C} is called type II if (1) and (2) holds. If (1), (2) and (3) hold, then \mathcal{C} is called an extremal type II code over \mathbb{Z}_{4} of length 24.

$F \rightarrow \mathcal{C}=L / F \subset \mathbb{Z}_{4}^{24}$: Equivalence

Consider another $F^{\prime} \rightarrow \mathcal{C}^{\prime}=L / F^{\prime} \subset \mathbb{Z}_{4}^{24}$.
Then

$$
\begin{aligned}
F & \cong F^{\prime} \text { under Aut } L \\
& \Longleftrightarrow \mathcal{C} \text { and } \mathcal{C}^{\prime} \text { are monomially equivalent. }
\end{aligned}
$$

Classification of 4 -frames in $L \Longleftrightarrow$ classification of extremal type II code over \mathbb{Z}_{4} of length 24 .

Example of an extremal type II code over \mathbb{Z}_{4} of length 24: Bonnecaze-Solé-Calderbank (1995): Hensel lifted Golay code.

Residue code $=\mathcal{C} \bmod 2=\operatorname{Res}(\mathcal{C})$

If \mathcal{C} is a code over \mathbb{Z}_{4}, then its modulo 2 reduction is called the residue code and is denoted by

$$
\operatorname{Res}(\mathcal{C}) \subset \mathbb{F}_{2}^{n}
$$

Example: For the Hensel-lifted Golay code $\mathcal{C}, \operatorname{Res}(\mathcal{C})$ is the Golay code.
\mathcal{C} : type II of length n
$\Longrightarrow \operatorname{Res}(\mathcal{C})$ is a doubly even binary code containing 1 $\Longrightarrow 8 \mid n$.

Frame of $L \rightarrow$ Virasoro Frame of V^{\natural}

\{Virasoro frames of V^{\natural} \} difficult
\uparrow DMZ
$\{$ frames of $L\}$

DMZ = Dong-Mason-Zhu (1994)

Frame of $L \rightarrow$ Virasoro Frame of V^{\natural}

\{Virasoro frames of V^{\natural} \} difficult
\uparrow DMZ
$\{$ frames of $L\}$
$\xrightarrow{\text { str }}\left\{\begin{array}{l}\text { triply even } D \\ \text { len }=48, \mathbf{1}_{48} \in D \\ \min D^{\perp} \geq 4\end{array}\right\}$ $\left\{\begin{array}{l}\text { triply even } D \\ \text { len }=48, \mathbf{1}_{48} \in D \\ \min D^{\perp} \geq 4\end{array}\right\}$
$\uparrow \mathcal{D}$ (doubling)

Lam-Yamauchi (2008): the diagram commutes, and $\operatorname{DMZ}(\{$ frames of $L\}) \stackrel{(C)}{=} \operatorname{str}^{-1}(\mathcal{D}(\{$ doubly even $\}))$.

Determine $\{$ frames of $L\}$, with the help of the map
$\{$ frames of $L\} \xrightarrow{L / F \bmod 2}\left\{\begin{array}{l}\text { doubly even } C \\ \text { length }=24, \mathbf{1}_{24} \in C \\ \text { min } C^{\perp} \geq 4 \\ \text { easily enumerated }\end{array}\right\}$
$F \subset L \subset \frac{1}{4} F \rightsquigarrow \mathcal{C}=L / F \subset \mathbb{Z}_{4}^{24} \rightsquigarrow C=L / F \bmod 2$.
For each $C \in \mathrm{RHS}$, classify F such that $\operatorname{Res}(L / F) \cong C$.
The map $F \mapsto L / F \bmod 2$ is neither injective nor surjective. Calderbank-Sloane (with Young) (1997): \{doubly even self-dual codes\} \subset image.
The image was determined by Harada-Lam-M., but not preimages.
Rains (1999) determined the preimage for $C=$ Golay.

- $(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$, where $x, y \in \mathbb{Z}_{4}^{n}$,
- a code of length n over \mathbb{Z}_{4} is a submodule $\mathcal{C} \subset \mathbb{Z}_{4}^{n}$,
- \mathcal{C} is self-dual if $\mathcal{C}=\mathcal{C}^{\perp}$, where

$$
\mathcal{C}^{\perp}=\left\{x \in \mathbb{Z}_{4}^{n} \mid(x, y)=0(\forall y \in \mathcal{C})\right\},
$$

- the residue: $\operatorname{Res}(\mathcal{C}) \subset \mathbb{F}_{2}^{n} \quad\left(\right.$ reduction $\left.\mathbb{Z}_{4} \rightarrow \mathbb{F}_{2} \bmod 2\right)$.
- For $u \in \mathbb{Z}_{4}^{n}$,

$$
\mathrm{wt}(u)=\sum_{i=1}^{n} u_{i}^{2}
$$

where we regard $u_{i} \in\{0,1,2,-1\} \subset \mathbb{Z}$. A code $\mathcal{C} \subset \mathbb{Z}_{4}^{n}$ is type II if \mathcal{C} is self-dual and $8 \mid \operatorname{wt}(u)$ for all $u \in \mathcal{C}$.

- Conway-Sloane (1993): 4 type II codes of length 8
- Pless-Leon-Fields (1997): 133 type II codes of length 16

The set of all type II \mathbb{Z}_{4}-codes \mathcal{C} with $\operatorname{Res}(\mathcal{C})=C$ has a structure as an affine space of dimension

$$
(k-2)(k+1) / 2 \text { over } \mathbb{F}_{2}
$$

Classifying such \mathcal{C} amounts to enumerating $k \times n$ binary matrices M such that

$$
\left[\begin{array}{c}
A+2 M \\
2 B
\end{array}\right] \text {, where }[A] \text { generates } C,\left[\begin{array}{l}
A \\
B
\end{array}\right] \text { generates } C^{\perp},
$$

generates a type II code.
Among the $2^{k n}$ matrices M, not all of them generate a self-dual code, while some matrices generate the same code as the one generated by some other matrix. This reduces the number

$$
2^{k n} \text { to } 2^{(k-2)(k+1) / 2} \text {. }
$$

Given $C \subset \mathbb{F}_{2}^{n}$, classify type II codes $\mathcal{C} \subset \mathbb{Z}_{4}^{n}$ with

$$
\operatorname{Res}(\mathcal{C})=C
$$

Note: \mathcal{C} : type II \mathbb{Z}_{4}-code $\Longrightarrow \operatorname{Res}(\mathcal{C})$: doubly even, $\ni \mathbf{1}$.
Theorem (Rains, 1999)
Given a doubly even code C of length n, dimension k, $\ni \mathbf{1}$.

- the set of all type II \mathbb{Z}_{4}-codes \mathcal{C} with $\operatorname{Res}(\mathcal{C})=C$ has a structure as an affine space of dimension $(k-2)(k+1) / 2$ over \mathbb{F}_{2} (due to Gaborit, 1996),
- the group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}(C)$ acts as an affine transformation group,
- two codes $\mathcal{C}, \mathcal{C}^{\prime}$ are equivalent if and only if they are in the same orbit under this group.

Given $C \subset \mathbb{F}_{2}^{n}$, classify type II codes $\mathcal{C} \subset \mathbb{Z}_{4}^{n}$ with

$$
\operatorname{Res}(\mathcal{C})=C
$$

Note: \mathcal{C} : type II \mathbb{Z}_{4}-code $\Longrightarrow \operatorname{Res}(\mathcal{C})$: doubly even, $\ni \mathbf{1}$.
Theorem (Rains, 1999)
Given a doubly even code C of length n, dimension k, $\ni \mathbf{1}$.

- the set of all type II \mathbb{Z}_{4}-codes C with $\operatorname{Res}(\mathcal{C})=C$ has a structure as an affine space of dimension $(k-2)(k+1) / 2$ over \mathbb{F}_{2} (due to Gaborit, 1996),
- the group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}(C)$ acts as an affine transformation group,
- two codes $\mathcal{C}, \mathcal{C}^{\prime}$ are equivalent if and only if they are in the same orbit under this group.

Given $C \subset \mathbb{F}_{2}^{n}$, classify type II codes $\mathcal{C} \subset \mathbb{Z}_{4}^{n}$ with

$$
\operatorname{Res}(\mathcal{C})=C
$$

Note: \mathcal{C} : type II \mathbb{Z}_{4}-code $\Longrightarrow \operatorname{Res}(\mathcal{C})$: doubly even, $\ni \mathbf{1}$.
Theorem (Rains, 1999)
Given a doubly even code C of length n, dimension $k, \ni \mathbf{1}$.

- the set of all type II \mathbb{Z}_{4}-codes C with $\operatorname{Res}(\mathcal{C})=C$ has a structure as an affine space of dimension $(k-2)(k+1) / 2$ over \mathbb{F}_{2} (due to Gaborit, 1996),
- the group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}(C)$ acts as an affine transformation group,
- two codes $\mathcal{C}, \mathcal{C}^{\prime}$ are equivalent if and only if they are in the same orbit under this group.

The group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}(C)$ acts as an affine transformation group on an affine space of

$$
\text { dimension }(k-2)(k+1) / 2
$$

Theorem (improved version)

Given a doubly even code C of length n, dimension k, containing $\mathbf{1}_{n}$,

- the set of all type II \mathbb{Z}_{4}-codes C with $\operatorname{Res}(\mathcal{C})=C$ has a surjection onto an affine space of dimension at most $(k-2)(k+1) / 2$ over \mathbb{F}_{2}, (e.g. $65 \rightarrow 44$)
- the group $\operatorname{Aut}(C)$ acts as an affine transformation group,
- two codes $\mathcal{C}, \mathcal{C}^{\prime}$ are equivalent if and only if their images are in the same orbit under this group.

Type II \mathbb{Z}_{4}-codes \mathcal{C} with $\operatorname{Res}(\mathcal{C})=C$

Given a doubly even code C of length n, dimension k, with generator matrix $[A], C^{\perp}$ is generated by $\left[\begin{array}{l}A \\ B\end{array}\right]$, set

$$
\begin{aligned}
\mathcal{M}= & \operatorname{Mat}_{k \times n}\left(\mathbb{F}_{2}\right), \\
U_{0}= & \left\{M \in \mathcal{M} \mid M A^{T}+A M^{T}=0,\right. \\
& \left.\operatorname{Diag}\left(A M^{T}\right)+\operatorname{Diag}\left(\mathbf{1} M^{T}\right)=0\right\}, \\
W_{0}= & \left\langle\left\{M \in \mathcal{M} \mid M A^{T}=0\right\},\left\{A E_{i i} \mid 1 \leq i \leq n\right\}\right\rangle, \\
U= & U_{0} \oplus \mathbb{F}_{2}, \\
W= & W_{0} \oplus\{0\} . \\
U_{0} / W_{0} \ni & M \quad\left(\bmod W_{0}\right) \mapsto \quad \begin{array}{l}
\text { eq. class of } \\
\text { code generated by }
\end{array}\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right]
\end{aligned}
$$

is well-defined. (\tilde{A} will be chosen appropriately)
Aut (C) acts on U_{0} / W_{0} as an affine transformation group, and the orbits are the preimages of equivalence classes.

$\operatorname{Aut}(C)$ acts on U_{0} / W_{0}

First, take a matrix \tilde{A} over \mathbb{Z}_{4} such that

$$
\begin{aligned}
& \tilde{A} \bmod 2=A \text { and } \tilde{A} \tilde{A}^{T}=0, \\
& \text { weight of rows of } \tilde{A} \equiv 0(\bmod 8)
\end{aligned}
$$

$\forall P \in \operatorname{Aut}(C), \exists E_{1}(P) \in \mathrm{GL}\left(k, \mathbb{F}_{2}\right)$ such that

$$
A P=E_{1}(P) A
$$

and $\exists E_{2}(P) \in \mathcal{M}$ such that

$$
2 E_{2}(P)=E_{1}(P)^{-1} \tilde{A} P-\tilde{A} .
$$

Then

$$
P: M \mapsto E_{1}(P)^{-1} M P+E_{2}(P) .
$$

$\operatorname{Aut}(C)$ acts on U_{0} / W_{0}

Theorem
The group $\operatorname{Aut}(C)$ acts on U_{0} / W_{0} by

$$
\begin{aligned}
P & : U_{0} / W_{0} \ni M\left(\bmod W_{0}\right) \\
& \mapsto E_{1}(P)^{-1} M P+E_{2}(P)\left(\bmod W_{0}\right) \in U_{0} / W_{0},
\end{aligned}
$$

where $P \in \operatorname{Aut}(C)$. Moreover, there is a bijection

$$
\begin{gathered}
\text { Aut }(C) \text {-orbits on } U_{0} / W_{0} \rightarrow \begin{array}{c}
\text { eq. class of } \\
\operatorname{codes} C \text { with } \\
\operatorname{Res}(\mathcal{C})=C,
\end{array} \\
M \quad\left(\bmod W_{0}\right) \mapsto \begin{array}{c}
\text { eq. class of } \\
\text { codes generated by }
\end{array}\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right]
\end{gathered}
$$

Practical Implementation

$$
\operatorname{Aut}(C) \rightarrow \operatorname{AGL}\left(U_{0} / W_{0}\right)
$$

Since $\operatorname{AGL}\left(m, \mathbb{F}_{2}\right) \subset \mathrm{GL}\left(1+m, \mathbb{F}_{2}\right)$, we actually construct a linear representation:

$$
\operatorname{Aut}(C) \rightarrow \mathrm{GL}\left(1+\operatorname{dim} U_{0} / W_{0}\right)
$$

A straightforward implementation works provided

$$
\operatorname{dim} U_{0} / W_{0} \leq 26 \text { (depending on available memory) }
$$

which is the case if $\operatorname{dim} C \leq 10$.

dim	6	7	8	9	10	11	12
$\#$	1	7	32	60	49	21	9

If $\operatorname{dim} U_{0} / W_{0}$ is large

A straightforward computation will not work if $\operatorname{dim} C=11$ or 12. For example, $C=$ extended Golay code, $\operatorname{dim} U_{0} / W_{0}=44$. So we will have a matrix representation

$$
M_{24}=\operatorname{Aut}(C) \rightarrow \operatorname{GL}\left(45, \mathbb{F}_{2}\right)
$$

As an estimate:

$$
\frac{2^{44}}{\left|M_{24}\right|}=71856.7 \ldots
$$

but there are only 13 extremal type II codes C with $\operatorname{Res}(\mathcal{C})=$ Golay code.

$C=$ Golay code

$$
M_{24} \rightarrow \operatorname{AGL}(44,2) \rightarrow \operatorname{GL}(45,2)
$$

acts on a hyperplane \mathcal{H} of \mathbb{F}_{2}^{45}, and orbits of M_{24} on $\mathcal{H} \leftrightarrow$ type II codes \mathcal{C} with $\operatorname{Res}(\mathcal{C})=C$.

There are 2^{44} elements to examine for extremality.
We need to extract only extremal codes and then classify up to equivalence.
Rains (1999) avoided this, instead classified self-dual codes of lengths 22,23 , then building up from these. (limitation to Golay case)
$\{\mathcal{C}$: type II, $\operatorname{Res}(\mathcal{C})=$ Golay $\} /\{ \pm 1\} \cong \mathbb{F}_{2}^{44}$
For each octad $x \in C$, consider the subset

$$
\begin{aligned}
H(x)= & \{\mathcal{C} \mid \operatorname{Res}(\mathcal{C})=C, \mathcal{C}: \text { type II, } \\
& \exists v \in \mathcal{C}, \operatorname{wt}(v)=8, v \bmod 2=x\} .
\end{aligned}
$$

$$
\begin{array}{rlll}
x & =(111111110000 \cdots 0000), & & \text { octad, } \\
v & =(111111110000 \cdots 0000), & & \text { weight } 8, \\
v^{\prime} & =(111111112200 \cdots 0000), & & \text { weight } 16
\end{array}
$$

$$
v \in \mathcal{C} \Longrightarrow \mathcal{C} \text { is not extremal. }
$$

Every member of $H(x)$ has minimum Euclidean weight 8 (non-extremal).
$H(x)$ is a subspace of codimension 4.

Another trick is to use a subgroup to classify up to equivalence using a submodule, then later classify a manageable size of representatives by M_{24}. Note that M_{24} does not have a submodule of dimension less than 44 in $M_{24} \rightarrow \operatorname{GL}(45,2)$. We recover

- Rains (1999): there are exactly 13 extremal type II codes \mathcal{C} s.t. $\operatorname{Res}(\mathcal{C})$ is the binary extended Golay code.
We can modify slightly for $C \neq$ Golay code. Numbers of doubly even codes $C \subset \mathbb{F}_{2}^{24}$ containing 1 and C^{\perp} has minimum weight ≥ 4.

dim	6	7	8	9	10	11	12
$\#$	1	7	32	60	49	21	9

$$
F \rightarrow \mathcal{C}=L / F \rightarrow \operatorname{Res}(\mathcal{C})
$$

- Rains (1999): there are exactly 13 extremal type II codes \mathcal{C} s.t. $\operatorname{Res}(\mathcal{C})$ is the binary extended Golay code.
- Harada-Lam-M. there is a unique extremal type II code \mathcal{C} s.t. $\operatorname{dim} \operatorname{Res}(\mathcal{C})=6$ (This is related to the code used by Miyamoto (2004) to construct V^{\natural}).

dim	6	7	8	9	10	11	12
$\#$	1	7	32	60	49	21	9
$\# \mathcal{C}$	1	5	29	171	755	1880	1903
	1						13
corrected after the talk)							

