Binary codes related to the moonshine vertex operator algebra

Akihiro Munemasa

1Graduate School of Information Sciences
Tohoku University
(in collaboration with K. Betsumiya, R. A. L. Betty, M. Harada and C. H. Lam)

May 21, 2011
MSP Annual Convention 2011
University of Santo Tomas
Manila
Group Theory

Starting from very small set of axioms

- $\cdot : G \times G \rightarrow G$, $(a, b) \mapsto a \cdot b$,
- associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- \exists identity $1 \in G$, $a \cdot 1 = 1 \cdot a = a$,
- \exists inverse: $\forall a \in G$, $\exists b \in G$, $a \cdot b = b \cdot a = 1$.

The goal of finite group theory is to understand the set of all finite G satisfying the axioms, in some reasonable manner.
Finite group theory has its origin in the remarkable work of É. Galois who proved that the occurrence of a non-abelian simple group caused impossibility of solvability by radical of polynomial equations of degree ≥ 5.

- A group G is simple if \nexists normal subgroup N with $\{1\} \neq N \neq G$,
- N is normal in $G \iff \forall a \in G$, $aN = Na$,
- Example: $A_5 =$ symmetry group of icosahedron

Burnside (1915) further developed finite group theory.
Finite Simple Groups

• Chevalley (1955) systematically constructed finite groups of Lie type. Steinberg, Ree, Suzuki found more families. There are 26 sporadic ones.

• E. Mathieu (1861, 1873), E. Witt (1938): \(\text{Aut}(\text{Steiner system } S(5, 8, 24)) = M_{24} \), M.J.E. Golay (1949): \(\text{Aut}(\text{Golay code}) = M_{24} \)

The smallest among 26 is the Mathieu group \(M_{11} \) of order

\[11 \cdot 10 \cdot 9 \cdot 8 = 7920, \]

the largest is \(\mathbb{M} \) of order

\[2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \]
Decompositions of V^\natural

\[V^\natural = \bigoplus_{n=0}^{\infty} V_n \]

infinite sum of finite-dimensional subspaces.

\[\dim V_0 = 1, \quad \dim V_1 = 0, \]

$V_2 = \text{Griess algebra}, \quad \dim V_2 = 196884.$

\[j(\tau) = \frac{1}{q} + 744 + 196884q + \cdots \]

This coincidence lead to Conway–Norton conjecture, proved by R. Borcherds (1992).

The smallest matrix representation of \mathbb{M} has dimension 196883. R. Wilson found an explicit 196882-dimensional matrix representation of \mathbb{M} over $\mathbb{F}_2 = \{0, 1\} = \mathbb{Z}/2\mathbb{Z}.$
Decompositions of $V^\mathbb{H}$

Instead of

$$V^\mathbb{H} = \bigoplus_{n=0}^{\infty} V_n$$

infinite sum of finite-dimensional subspaces,

$$V^\mathbb{H} = \bigoplus_{\alpha \in \mathbb{F}_2^{48}} V^\alpha$$

finite sum of infinite-dimensional subspaces.

Lam–Yamauchi (2008): every Virasoro frame (certain subalgebra of $V^\mathbb{H}$) gives rise to such a decomposition.

$$D = \{ \alpha \in \mathbb{F}_2^{48} \mid V^\alpha \neq 0 \}$$

is called the structure code of the Virasoro frame.

There are only finitely many Virasoro frames, and D is invariant under \mathcal{M}.
Let m be an integer (actually we need only $m = 2$ (binary) and $m = 4$).
A subgroup $C \subset (\mathbb{Z}/m\mathbb{Z})^n$ is called a code of length n over $\mathbb{Z}/m\mathbb{Z}$. The dual C^\perp of a code C is
\[C^\perp = \{ x \in (\mathbb{Z}/m\mathbb{Z})^n \mid (x, y) = 0 \ (\forall y \in C) \}. \]

- $m = 4$, $C \subset (\mathbb{Z}/4\mathbb{Z})^n$ is type II if $C = C^\perp$, $\sum_{i=1}^{n} x_i^2 \equiv 0 \pmod{8}$ for all $x \in C$,
 and for $n = 24$, C is extremal if $\sum_{i=1}^{n} x_i^2 > 8$,

- $m = 2$, $C \subset (\mathbb{Z}/2\mathbb{Z})^n$ is doubly even if
 $\text{wt}(x) = |\{ i \mid x_i = 1 \}| \equiv 0 \pmod{4}$ for all $x \in C$,

- $m = 2$, $D \subset (\mathbb{Z}/2\mathbb{Z})^n$ is triply even if
 $\text{wt}(x) = |\{ i \mid x_i = 1 \}| \equiv 0 \pmod{8}$ for all $x \in D$.

Equivalence: permutation of coordinates, and multiplication by -1 on some coordinates ($m = 4$).
Factorization of the polynomial $X^{23} - 1$

$$(X - 1)(X^{22} + X^{21} + \cdots + X + 1) \quad \text{over } \mathbb{Z}$$

$$= (X - 1)(X^{11} + X^{10} + \cdots + 1)$$
$$\times (X^{11} + X^9 + \cdots + 1) \quad \text{over } \mathbb{F}_2$$

$$= (X - 1)(X^{11} - X^{10} + \cdots - 1)$$
$$\times (X^{11} + 2X^{10} - X^9 + \cdots - 1) \quad \text{over } \mathbb{Z}/4\mathbb{Z}$$

(by Hensel’s lemma).
\[X^{23} - 1 = (X - 1) f(X) g(X) \] over \(\mathbb{Z}/4\mathbb{Z} \)

An extremal type II code of length 24 over \(\mathbb{Z}/4\mathbb{Z} \) is generated by the rows of:

\[
\begin{bmatrix}
1 & f(X) \\
1 & f(X) \\
1 & f(X) \\
\vdots & \vdots \\
1 & f(X)
\end{bmatrix}, \quad 23 \times 24 \text{ matrix}
\]

\(\overline{f}(X) = f(X) \mod 2 \). Golay code (a doubly even code of length 24) is generated by the rows of:

\[
\begin{bmatrix}
1 & \overline{f}(X) \\
1 & \overline{f}(X) \\
1 & \overline{f}(X) \\
\vdots & \vdots \\
1 & \overline{f}(X)
\end{bmatrix}, \quad \text{over } \mathbb{F}_2 \quad \text{(mod 2 reduction)}
\]
Codes and Virasoro frames

Theorem (Dong–Mason–Zhu (1994))

\[
\{ \text{extremal type II code of length 24 over } \mathbb{Z}/4\mathbb{Z} \} \rightarrow \{ \text{Virasoro frames } V^\flat \}
\]

Theorem (Lam–Yamauchi (2008))

\[
\{ \text{Virasoro frames of } V^\flat \} \xrightarrow{\text{str}} \{ \text{binary triply even codes of length 48} \} \quad V^\flat = \bigoplus_{\alpha \in D} V^\alpha
\]

- Actually these mapping induce mappings of equivalence classes.
- What happens if we compose these two mappings?
Composition of the two mappings gives a mapping from codes to codes

\[\{ \text{Virasoro frames of } V^h \} \overset{\text{str}}{\rightarrow} \{ \text{binary \triply\ even codes of length 48} \} \]

\[\uparrow \text{DMZ} \]

\[\{ \text{extremal type II codes of length 24 over } \mathbb{Z}/4\mathbb{Z} \} \]

There must be a easier description of the composition mapping.
Commutative Diagram

Lam–Yamauchi (2008): \(\text{str} \circ \text{DMZ} = \mathcal{D} \circ \text{Res} \).

\[\{ \text{Virasoro frames of } V^h \} \xrightarrow{\text{str}} \{ \text{binary triply even codes of length 48} \} \]

\[\uparrow \text{DMZ} \]

\[\{ \text{extremal type II codes of length 24 over } \mathbb{Z}/4\mathbb{Z} \} \xrightarrow{\text{Res}} \{ \text{binary doubly even codes of length 24} \} \]

\[\uparrow \mathcal{D} \text{ (doubling)} \]
Res(C) and D

If C is a code over $\mathbb{Z}/4\mathbb{Z}$, then its modulo 2 reduction is called the residue code and is denoted by

$$\text{Res}(C) \subset (\mathbb{Z}/2\mathbb{Z})^n = \mathbb{F}_2^n.$$

Let $C = \text{Span}_{\mathbb{F}_2}(A)$ be the binary code of length n spanned by the row vectors of a $k \times n$ matrix A. The doubling of C is defined by

$$D(C) = \text{Span}_{\mathbb{F}_2} \begin{bmatrix} A & A \\ 1_n & 0 \\ 0 & 1_n \end{bmatrix},$$

where $1_n = (1, 1, \ldots, 1)$.

If C is doubly even and $8 | n$, then $D(C)$ is a triply even code of length $2n$. In particular,

$$\{\text{doubly even code of length 24}\} \xrightarrow{D} \{\text{triply even code of length 48}\}$$
Commutative Diagram

\{\text{Virasoro frames of } V^h\} \xrightarrow{\text{difficult}} \begin{cases} \text{binary triply even codes} \\ \text{of length 48} \end{cases}

\uparrow \text{DMZ}

\begin{cases} \text{extremal type II codes} \\ \text{of length 24} \\ \text{over } \mathbb{Z}/4\mathbb{Z} \end{cases} \xrightarrow{\text{Res}} \begin{cases} \text{binary doubly even codes} \\ \text{of length 24} \end{cases}

\uparrow \mathcal{D} \text{ (doubling)}

Harada–Lam–M. (2010):

\str^{-1}(\mathcal{D}(\{\text{doubly even}\})) \overset{(\cong)}{=} \str^{-1}(\mathcal{D} \circ \text{Res}(\{\text{extremal type II}\}))

\overset{(\cong)}{=} \text{DMZ}(\{\text{extremal type II}\})

all coincide.
Virasoro frames of V^h

<table>
<thead>
<tr>
<th>difficult</th>
</tr>
</thead>
</table>

\[
\uparrow \text{DMZ} \quad \uparrow \mathcal{D} \quad \text{(doubling)}
\]

\[
\begin{cases}
\text{extremal type II codes} \\
of \text{length 24} \\
\text{over } \mathbb{Z}/4\mathbb{Z}
\end{cases}
\]

\[
\begin{cases}
\text{binary} \\
\text{doubly even codes} \\
of \text{length 24}
\end{cases}
\]

\[
\begin{cases}
\text{triply even codes} \\
of \text{length 48}
\end{cases}
\]

Pless–Sloane (1975) enumerated maximal (all have dimension 12) members of

\[
\{\text{binary doubly even codes of length 24}\}.
\]
Virasoro frames of V^h difficult

\uparrow DMZ

$\begin{align*}
\{ & \text{extremal type II codes of length 24} \\
& \text{of length 24 over } \mathbb{Z}/4\mathbb{Z} \} \\
\{ & \text{binary doubly even codes of length 24} \}
\end{align*}$

$\begin{align*}
\{ & \text{binary triply even codes of length 48} \}
\end{align*}$

Betsumiya–M. (2010) enumerated maximal (dimension $\{9, 13, 14, 15\}$) members of

$\{\text{binary triply even codes of length 48}\}$.
Theorem (Betsumiya–M., 2010)

Let D be a maximal binary triply even code of length 48. Then

- \exists doubly even codes C_1, C_2 of length 24,
- \exists linear isomorphism $f : C_1/R_1 \rightarrow C_2/R_2$, where

\[
R_i = \{ x \in (C_i \ast C_i)^\perp \mid \text{wt}(x) \equiv 0 \pmod{8} \} \subset C_i \quad (i = 1, 2),
\]

satisfying

\[
\begin{align*}
\mathbf{x}_1 \in C_1, \quad \mathbf{x}_2 + R_2 & \in f(\mathbf{x}_1 + R_1) \quad \implies \quad \text{wt}(\mathbf{x}_1) \equiv \text{wt}(\mathbf{x}_2) \pmod{8},
\end{align*}
\]

such that

\[
D \cong \{ (\mathbf{x}_1, \mathbf{x}_2) \mid \mathbf{x}_1 \in C_1, \ \mathbf{x}_2 + R_2 \in f(\mathbf{x}_1 + R_1) \}.
\]

Remark Taking $C_1 = C_2$, $f = \text{identity}$ gives $\mathcal{D}(C_1)$.
Theorem (Betsumiya–M., 2010)

Every maximal member of

\[
\begin{cases}
\text{binary triply even} \\
\text{code of length 48}
\end{cases}
\]

is

- \(\mathcal{D}(C)\) for some doubly even code \(C\) of length 24, or
- decomposable (only two such codes, one of the form \(\mathcal{D}(C_1) \oplus \mathcal{D}(C_2) \oplus \mathcal{D}(C_3)\), another of the form \(\mathcal{D}(C_1) \oplus \mathcal{D}(C_2)\)), or
- a code of dimension 9 obtained from the triangular graph \(T_{10}\) on \(45 = |S_{10} : S_2 \times S_8|\) vertices.
\{\text{Virasoro frames of } V^\mathfrak{h}\}\ \xrightarrow{\text{str}} \left\{ \begin{array}{l}
\text{binary triply even codes of length 48} \\
\uparrow \text{DMZ} \\
\uparrow \mathcal{D} \,(\text{doubling})
\end{array} \right\}

\left\{ \begin{array}{l}
\text{extremal type II codes of length 24} \\
\text{over } \mathbb{Z}/4\mathbb{Z}
\end{array} \right\} \xrightarrow{\text{Res}} \left\{ \begin{array}{l}
\text{binary doubly even codes of length 24}
\end{array} \right\}

Betsumiya created database of \{\text{binary triply even codes of length 48}\}.

http://www.st.hirosaki-u.ac.jp/~betsumi/triply-even/
Virasoro frames of \(V^q \) difficult

\[\uparrow \text{DMZ} \]

\[\begin{array}{l}
\{ \text{extremal type II codes} \\
of \text{length 24} \\
\text{over } \mathbb{Z}/4\mathbb{Z} \} \\
\end{array} \]

\[\xrightarrow{\text{str}} \]

\[\{ \text{binary triply even codes} \\
of \text{length 48} \} \]

\[\xrightarrow{\text{Res}} \]

\[\{ \text{binary doubly even codes} \\
of \text{length 24} \} \]

\(\uparrow \mathcal{D} \) (doubling)
extremal type II codes of length 24 over $\mathbb{Z}/4\mathbb{Z}$ \[\mapsto\] binary doubly even codes of length 24

For each binary doubly even C, classify C such that $\text{Res} C = C$. The map Res is neither injective nor surjective.

- Calderbank–Sloane (with Young) (1997): $\dim C = 12 \implies C \in \text{image of } \text{Res}$.
- Rains (1999) determined the preimage for $C = \text{Golay}$.
- The image was determined by Harada–Lam–M. (2010), but not preimages.
Theorem (Rains, 1999)

Given a doubly even code C of length n, dimension k, $\ni 1$.

- the set of all type II \mathbb{Z}_4-codes C with $\text{Res}(C) = C$ has a structure as an affine space of dimension $(k - 2)(k + 1)/2$ over \mathbb{F}_2 (due to Gaborit, 1996),
- the group $\{\pm 1\}^n \rtimes \text{Aut}(C)$ acts as an affine transformation group,
- two codes C, C' are equivalent if and only if they are in the same orbit under this group.
The number of doubly even codes $C \subset \mathbb{F}_2^{24}$ containing 1 and C^\perp has minimum weight ≥ 4, and the number of extremal type II codes $C \subset (\mathbb{Z}/4\mathbb{Z})^{24}$ with $\text{Res} C = C$.

<table>
<thead>
<tr>
<th>dim</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>doubly even</td>
<td>1</td>
<td>7</td>
<td>32</td>
<td>60</td>
<td>49</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>extremal type II</td>
<td>1</td>
<td>5</td>
<td>31</td>
<td>178</td>
<td>764</td>
<td>1886</td>
<td>1903</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{extremal type II codes} & \quad \longrightarrow \quad \text{binary doubly even codes} \\
\text{of length} \ 24 & \quad \text{of length} \ 24 \\
\text{over} \ \mathbb{Z}/4\mathbb{Z} & \quad &
\end{align*}
\]