Binary codes related to the moonshine vertex operator algebra

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (in collaboration with K. Betsumiya, R. A. L. Betty, M. Harada and C. H. Lam)

> May 21, 2011 MSP Annual Convention 2011 University of Santo Tomas Manila

Group Theory

Starting from very small set of axioms

- $\cdot:G\times G\to G$, $(a,b)\mapsto a\cdot b$,
- associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- \exists identity $1 \in G$, $a \cdot 1 = 1 \cdot a = a$,
- \exists inverse: $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = 1.$

The goal of finite group theory is to understand the set of all finite G satisfying the axioms, in some reasonable manner.

Finite Group Theory

Finite group theory has its origin in the remarkable work of É. Galois who proved that the occurrence of a non-abelian simple group caused impossibility of solvability by radical of polynomial equations of degree ≥ 5 .

- A group G is simple if $\not\exists$ normal subgroup N with $\{1\} \neq N \neq G$,
- N is normal in $G \iff \forall a \in G$, aN = Na,

• Example: A_5 = symmetry group of icosahedron Burnside (1915) further developed finite group theory.

Finite Simple Groups

- Chevalley (1955) systematically constructed finite groups of Lie type. Steinberg, Ree, Suzuki found more families.
 There are 26 sporadic ones.
 - E. Mathieu (1861, 1873), E. Witt (1938): (Aut(Steiner system $S(5, 8, 24)) = M_{24}$), M.J.E. Golay (1949): (Aut(Golay code) = M_{24})
 - B. Fischer, R. Griess (1982): The Monster M, I. Frenkel, J. Lepowsky and A. Meurman (1988): Aut(V[♯]) = M. V[♯] = moonshine vertex operator algebra (VOA).

The smallest among 26 is the Mathieu group $M_{\rm 11}$ of order

$$11 \cdot 10 \cdot 9 \cdot 8 = 7920,$$

the largest is ${\mathbb M}$ of order

 $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

Decompositions of V^{\natural}

$$V^{\natural} = \bigoplus_{n=0}^{\infty} V_n$$

infinite sum of finite-dimensional subspaces.

dim
$$V_0 = 1$$
, dim $V_1 = 0$,
 $V_2 =$ Griess algebra, dim $V_2 = 196884$.
 $j(\tau) = \frac{1}{q} + 744 + 196884q + \cdots$

This coincidence lead to Conway–Norton conjecture, proved by R. Borcherds (1992).

The smallest matrix representation of \mathbb{M} has dimension 196883. R. Wilson found an explicit 196882-dimensional matrix representation of \mathbb{M} over $\mathbb{F}_2 = \{0, 1\} = \mathbb{Z}/2\mathbb{Z}$.

Decompositions of V^{\natural}

Instead of

$$V^{\natural} = \bigoplus_{n=0}^{\infty} V_n$$

infinite sum of finite-dimensional subspaces,

$$V^{\natural} = \bigoplus_{\alpha \in \mathbb{F}_2^{48}} V^{\alpha}$$

finite sum of infinite-dimensional subspaces. Lam–Yamauchi (2008): every Virasoro frame (certain subalgebra of V^{\natural}) gives rise to such a decomposition.

$$D = \{ \alpha \in \mathbb{F}_2^{48} \mid V^\alpha \neq 0 \}$$

is called the structure code of the Virasoro frame. There are only finitely many Virasoro frames, and D is invariant under \mathbb{M} .

Code

Let m be an integer (actually we need only m = 2 (binary) and m = 4).

A subgroup $C \subset (\mathbb{Z}/m\mathbb{Z})^n$ is called a code of length n over $\mathbb{Z}/m\mathbb{Z}$. The dual C^{\perp} of a code C is

$$C^{\perp} = \{ x \in (\mathbb{Z}/m\mathbb{Z})^n \mid (x, y) = 0 \quad (\forall y \in C) \}.$$

•
$$m = 4$$
, $C \subset (\mathbb{Z}/4\mathbb{Z})^n$ is type II if
 $C = C^{\perp}$, $\sum_{i=1}^n x_i^2 \equiv 0 \pmod{8}$ for all $x \in C$,
and for $n = 24$, C is extremal if $\sum_{i=1}^n x_i^2 > 8$,

•
$$m = 2$$
, $C \subset (\mathbb{Z}/2\mathbb{Z})^n$ is doubly even if
 $\operatorname{wt}(x) = |\{i \mid x_i = 1\}| \equiv 0 \pmod{4}$ for all $x \in C$,

•
$$m = 2$$
, $D \subset (\mathbb{Z}/2\mathbb{Z})^n$ is triply even if $\operatorname{wt}(x) = |\{i \mid x_i = 1\}| \equiv 0 \pmod{8}$ for all $x \in D$.

Equivalence: permutation of coordinates, and multiplication by -1 on some coordinates (m = 4).

Factorization of the polynomial $X^{23}-1$

$$(X - 1)(X^{22} + X^{21} + \dots + X + 1) \quad \text{over } \mathbb{Z}$$
$$= (X - 1)(X^{11} + X^{10} + \dots + 1)$$
$$\times (X^{11} + X^9 + \dots + 1) \quad \text{over } \mathbb{F}_2$$

$$= (X - 1)(X^{11} - X^{10} + \dots - 1) \times (X^{11} + 2X^{10} - X^9 + \dots - 1) \quad \text{over } \mathbb{Z}/4\mathbb{Z}$$

(by Hensel's lemma).

 $X^{23} - 1 = (X - 1)f(X)g(X)$ over $\mathbb{Z}/4\mathbb{Z}$ An extremal type II code of length 24 over $\mathbb{Z}/4\mathbb{Z}$ is generated by the rows of:

 23×24 matrix Bonnecaze-Calderbank-Solé (1995) (construction of the Leech lattice)

 $\overline{f}(X) = f(X) \mod 2$. Golay code (a doubly even code of length 24) is generated by the rows of:

over \mathbb{F}_2 (mod 2 reduction) Codes and Virasoro frames Theorem (Dong–Mason–Zhu (1994)) {extremal type II code of length 24 over $\mathbb{Z}/4\mathbb{Z}$ } \rightarrow {Virasoro frames V^{\natural} }

Theorem (Lam–Yamauchi (2008)) {Virasoro frames of V^{\natural} } $\stackrel{\text{str}}{\rightarrow}$ {binary triply even codes of length 48} $V^{\natural} = \bigoplus_{\alpha \in D} V^{\alpha}$

- Actually these mapping induce mappings of equivalence classes.
- What happens if we compose these two mappings?

Composition of the two mappings gives a mapping from codes to codes

 $\{ \text{Virasoro frames of } V^{\natural} \} \xrightarrow{\text{str}} \left\{ \begin{array}{c} \text{binary} \\ \text{triply even codes} \\ \text{of length } 48 \end{array} \right\}$

 $\uparrow \mathsf{DMZ}$

 $\left\{\begin{array}{l} \text{extremal type II codes} \\ \text{of length } 24 \\ \text{over } \mathbb{Z}/4\mathbb{Z} \end{array}\right\}$

There must be a easier description of the composition mapping.

Commutative Diagram

Lam–Yamauchi (2008): str \circ DMZ = $\mathcal{D} \circ \text{Res.}$

 $\begin{cases} \text{Virasoro frames of } V^{\natural} \\ \text{difficult} \end{cases} \xrightarrow{\text{str}} \begin{cases} \text{binary} \\ \text{triply even codes} \\ \text{of length } 48 \end{cases} \\ \uparrow \text{DMZ} \qquad \qquad \uparrow \mathcal{D} \text{ (doubling)} \\ \begin{cases} \text{extremal type II codes} \\ \text{of length } 24 \\ \text{over } \mathbb{Z}/4\mathbb{Z} \end{cases} \xrightarrow{\text{Res}} \begin{cases} \text{binary} \\ \text{doubly even codes} \\ \text{of length } 24 \\ \text{of length } 24 \end{cases} \end{cases}$

$\operatorname{Res}(\mathcal{C})$ and $\mathcal D$

If C is a code over $\mathbb{Z}/4\mathbb{Z}$, then its modulo 2 reduction is called the residue code and is denoted by

$$\operatorname{Res}(\mathcal{C}) \subset (\mathbb{Z}/2\mathbb{Z})^n = \mathbb{F}_2^n.$$

Let $C = \text{Span}_{\mathbb{F}_2}(A)$ be the binary code of length n spanned by the row vectors of a $k \times n$ matrix A. The doubling of C is defined by

$$\mathbf{D}(C) = \operatorname{Span}_{\mathbb{F}_2} \begin{bmatrix} A & A \\ \mathbf{1}_n & 0 \\ 0 & \mathbf{1}_n \end{bmatrix},$$

where $\mathbf{1}_n = (1, 1, \dots, 1)$. If C is doubly even and 8|n, then $\mathcal{D}(C)$ is a triply even code of length 2n. In particular,

{doubly even code of length 24} $\xrightarrow{\mathcal{D}}$ {triply even code of length 48}

Commutative Diagram

$\{Virasoro frames of V^{\natural}\}$ difficult	$\stackrel{str}{\longrightarrow}$	<pre>{ binary triply even codes of length 48</pre>	}
↑ DMZ		$\uparrow \mathcal{D} \text{ (doubling)}$	
$\left\{\begin{array}{l} \text{extremal type II codes} \\ \text{of length } 24 \\ \text{over } \mathbb{Z}/4\mathbb{Z} \end{array}\right\}$	$\stackrel{\rm Res}{\rightarrow}$	<pre>{ binary doubly even codes of length 24</pre>	}

Harada–Lam–M. (2010):

$$\begin{split} \mathsf{str}^{-1}(\mathcal{D}(\{\mathsf{doubly even}\})) & \stackrel{(\supseteq)}{=} \mathsf{str}^{-1}(\mathcal{D} \circ \operatorname{Res}(\{\mathsf{extremal type II}\})) \\ & \stackrel{(\supseteq)}{=} \mathsf{DMZ}(\{\mathsf{extremal type II}\}) \end{split}$$

all coincide.

Pless–Sloane (1975) enumerated maximal (all have dimension 12) members of

{binary doubly even codes of length 24}.

Betsumiya–M. (2010) enumerated maximal (dimension $\{9, 13, 14, 15\}$) members of

{binary triply even codes of length 48}.

Theorem (Betsumiya–M., 2010)

Let D be a maximal binary triply even code of length $48. \ensuremath{\mathsf{Then}}$

- \exists doubly even codes C_1, C_2 of length 24,
- \exists linear isomorphism $f: C_1/R_1 \rightarrow C_2/R_2$, where

$$R_i = \{ \boldsymbol{x} \in (C_i * C_i)^{\perp} \mid \text{wt}(\boldsymbol{x}) \equiv 0 \pmod{8} \\ \text{wt}(\boldsymbol{x} * \boldsymbol{y}) \equiv 0 \pmod{4} (\forall \boldsymbol{y} \in C_i) \} \subset C_i \quad (i = 1, 2),$$

satisfying

$$\boldsymbol{x}_1 \in C_1, \ \boldsymbol{x}_2 + R_2 \in f(\boldsymbol{x}_1 + R_1) \implies \operatorname{wt}(\boldsymbol{x}_1) \equiv \operatorname{wt}(\boldsymbol{x}_2) \pmod{8},$$
such that

$$D \cong \{ (\boldsymbol{x}_1 \ \boldsymbol{x}_2) \mid \boldsymbol{x}_1 \in C_1, \ \boldsymbol{x}_2 + R_2 \in f(\boldsymbol{x}_1 + R_1) \}.$$

Remark Taking $C_1 = C_2$, $f = \text{identity gives } \mathcal{D}(C_1)$.

Theorem (Betsumiya–M., 2010)

Every maximal member of

{ binary triply even }
 code of length 48 }

is

- $\ensuremath{\mathcal{D}}(C)$ for some doubly even code C of length $24\mbox{, or}$
- decomposable (only two such codes, one of the form $\mathcal{D}(C_1) \oplus \mathcal{D}(C_2) \oplus \mathcal{D}(C_3)$, another of the form $\mathcal{D}(C_1) \oplus \mathcal{D}(C_2)$), or
- a code of dimension 9 obtained from the triangular graph T_{10} on $45 = |S_{10} : S_2 \times S_8|$ vertices.

Betsumiya created database of

{binary triply even codes of length 48}.

http://www.st.hirosaki-u.ac.jp/~betsumi/triply-even/

$\{Virasoro frames of V^{\natural}\}$ difficult	\xrightarrow{str}	<pre>{ binary triply even codes of length 48</pre>	}
↑ DMZ		$\uparrow \mathcal{D} \text{ (doubling)}$	
$\left\{\begin{array}{l} \text{extremal type II codes} \\ \text{of length } 24 \\ \text{over } \mathbb{Z}/4\mathbb{Z} \end{array}\right\}$	$\overset{\mathrm{Res}}{\rightarrow}$	<pre>{ binary doubly even codes of length 24</pre>	}

 $\left\{\begin{array}{l} \text{extremal type II codes} \\ \text{of length } 24 \\ \text{over } \mathbb{Z}/4\mathbb{Z} \end{array}\right\} \xrightarrow[]{\text{Res}} \left\{\begin{array}{l} \text{binary} \\ \text{doubly even codes} \\ \text{of length } 24 \end{array}\right\}$

For each binary doubly even C, classify C such that $\operatorname{Res} C = C$. The map Res is neither injective nor surjective.

- Calderbank–Sloane (with Young) (1997): $\dim C = 12 \implies C \in \text{image of Res.}$
- Rains (1999) determined the preimage for C = Golay.
- Dong-Griess-Höhn (1998) found a code C of dimension 6 in the image of Res, and Harada-Lam-M. (2010) showed its preimage is unique.
- The image was determined by Harada–Lam–M. (2010), but not preimages.

Theorem (Rains, 1999)

Given a doubly even code C of length n, dimension k, \ni 1.

- the set of all type II \mathbb{Z}_4 -codes C with $\operatorname{Res}(C) = C$ has a structure as an affine space of dimension (k-2)(k+1)/2 over \mathbb{F}_2 (due to Gaborit, 1996),
- the group {±1}ⁿ ⋊ Aut(C) acts as an affine transformation group,
- two codes $\mathcal{C}, \mathcal{C}'$ are equivalent if and only if they are in the same orbit under this group.

Enumeration by Betty-M. (2010)

The number of doubly even codes $C \subset \mathbb{F}_2^{24}$ containing 1 and C^{\perp} has minimum weight ≥ 4 , and the number of extremal type II codes $\mathcal{C} \subset (\mathbb{Z}/4\mathbb{Z})^{24}$ with $\operatorname{Res} \mathcal{C} = C$.

dim	6	7	8	9	10	11	12
doubly even	1	7	32	60	49	21	9
extremal type II	1	5	31	178	764	1886	1903
	1						13

 $\left\{\begin{array}{l} \text{extremal type II codes} \\ \text{of length } 24 \\ \text{over } \mathbb{Z}/4\mathbb{Z} \end{array}\right\} \xrightarrow[]{\text{Res}} \left\{\begin{array}{l} \text{binary} \\ \text{doubly even codes} \\ \text{of length } 24 \end{array}\right\}$