Binary codes related to the moonshine vertex operator algebra

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(in collaboration with K. Betsumiya, R. A. L. Betty, M. Harada and C. H. Lam)

> May 21, 2011
> MSP Annual Convention 2011
> University of Santo Tomas
> Manila

Group Theory

Starting from very small set of axioms

- $\cdot G \times G \rightarrow G,(a, b) \mapsto a \cdot b$,
- associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
- \exists identity $1 \in G, a \cdot 1=1 \cdot a=a$,
- \exists inverse: $\forall a \in G, \exists b \in G, a \cdot b=b \cdot a=1$.

The goal of finite group theory is to understand the set of all finite G satisfying the axioms, in some reasonable manner.

Finite Group Theory

Finite group theory has its origin in the remarkable work of É. Galois who proved that the occurrence of a non-abelian simple group caused impossibility of solvability by radical of polynomial equations of degree ≥ 5.

- A group G is simple if \nexists normal subgroup N with $\{1\} \neq N \neq G$,
- N is normal in $G \Longleftrightarrow \forall a \in G, a N=N a$,
- Example: $A_{5}=$ symmetry group of icosahedron

Burnside (1915) further developed finite group theory.

Finite Simple Groups

- Chevalley (1955) systematically constructed finite groups of Lie type. Steinberg, Ree, Suzuki found more families.
There are 26 sporadic ones.
- E. Mathieu (1861, 1873), E. Witt (1938): (Aut(Steiner system $S(5,8,24))=M_{24}$), M.J.E. Golay (1949): (Aut $\left(\right.$ Golay code) $=M_{24}$)
- B. Fischer, R. Griess (1982): The Monster M, I. Frenkel, J. Lepowsky and A. Meurman (1988): $\operatorname{Aut}\left(V^{\natural}\right)=\mathbb{M}$. $V^{\natural}=$ moonshine vertex operator algebra (VOA).
The smallest among 26 is the Mathieu group M_{11} of order

$$
11 \cdot 10 \cdot 9 \cdot 8=7920
$$

the largest is \mathbb{M} of order
$2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

Decompositions of V^{\natural}

$$
V^{\natural}=\bigoplus_{n=0}^{\infty} V_{n}
$$

infinite sum of finite-dimensional subspaces.

$$
\begin{aligned}
& \operatorname{dim} V_{0}=1, \operatorname{dim} V_{1}=0 \\
& V_{2}=\text { Griess algebra, } \quad \operatorname{dim} V_{2}=196884 \\
& \quad j(\tau)=\frac{1}{q}+744+196884 q+\cdots
\end{aligned}
$$

This coincidence lead to Conway-Norton conjecture, proved by R. Borcherds (1992).

The smallest matrix representation of \mathbb{M} has dimension 196883. R. Wilson found an explicit 196882-dimensional matrix representation of \mathbb{M} over $\mathbb{F}_{2}=\{0,1\}=\mathbb{Z} / 2 \mathbb{Z}$.

Decompositions of V^{\natural}

Instead of

$$
V^{\natural}=\bigoplus_{n=0}^{\infty} V_{n}
$$

infinite sum of finite-dimensional subspaces,

$$
V^{\mathfrak{\natural}}=\bigoplus_{\alpha \in \mathbb{F}_{2}^{48}} V^{\alpha}
$$

finite sum of infinite-dimensional subspaces. Lam-Yamauchi (2008): every Virasoro frame (certain subalgebra of V^{\natural}) gives rise to such a decomposition.

$$
D=\left\{\alpha \in \mathbb{F}_{2}^{48} \mid V^{\alpha} \neq 0\right\}
$$

is called the structure code of the Virasoro frame. There are only finitely many Virasoro frames, and D is invariant under \mathbb{M}.

Code

Let m be an integer (actually we need only $m=2$ (binary) and $m=4$).
A subgroup $C \subset(\mathbb{Z} / m \mathbb{Z})^{n}$ is called a code of length n over $\mathbb{Z} / m \mathbb{Z}$. The dual C^{\perp} of a code C is

$$
C^{\perp}=\left\{x \in(\mathbb{Z} / m \mathbb{Z})^{n} \mid(x, y)=0 \quad(\forall y \in C)\right\} .
$$

- $m=4, \mathcal{C} \subset(\mathbb{Z} / 4 \mathbb{Z})^{n}$ is type II if $\mathcal{C}=\mathcal{C}^{\perp}, \sum_{i=1}^{n} x_{i}^{2} \equiv 0(\bmod 8)$ for all $x \in \mathcal{C}$, and for $n=24, \mathcal{C}$ is extremal if $\sum_{i=1}^{n} x_{i}^{2}>8$,
- $m=2, C \subset(\mathbb{Z} / 2 \mathbb{Z})^{n}$ is doubly even if $\mathrm{wt}(x)=\left|\left\{i \mid x_{i}=1\right\}\right| \equiv 0(\bmod 4)$ for all $x \in C$,
- $m=2, D \subset(\mathbb{Z} / 2 \mathbb{Z})^{n}$ is triply even if

$$
\mathrm{wt}(x)=\left|\left\{i \mid x_{i}=1\right\}\right| \equiv 0(\bmod 8) \text { for all } x \in D .
$$

Equivalence: permutation of coordinates, and multiplication by -1 on some coordinates $(m=4)$.

Factorization of the polynomial $X^{23}-1$

$$
\begin{array}{ll}
(X-1)\left(X^{22}+X^{21}+\cdots+X+1\right) & \text { over } \mathbb{Z} \\
=(X-1)\left(X^{11}+X^{10}+\cdots+1\right) & \\
\quad \times\left(X^{11}+X^{9}+\cdots+1\right) & \text { over } \mathbb{F}_{2} \\
& \\
=(X-1)\left(X^{11}-X^{10}+\cdots-1\right) & \\
\quad \times\left(X^{11}+2 X^{10}-X^{9}+\cdots-1\right) & \text { over } \mathbb{Z} / 4 \mathbb{Z}
\end{array}
$$

(by Hensel's lemma).

$$
X^{23}-1=(X-1) f(X) g(X) \text { over } \mathbb{Z} / 4 \mathbb{Z}
$$

An extremal type II code of length 24 over $\mathbb{Z} / 4 \mathbb{Z}$ is generated by the rows of:

> 23×24 matrix
> Bonnecaze-Calderbank-Solé (1995) (construction of the Leech lattice)

$\bar{f}(X)=f(X) \bmod 2$. Golay code (a doubly even code of length 24) is generated by the rows of:

Codes and Virasoro frames

Theorem (Dong-Mason-Zhu (1994)) $\{$ extremal type II code of length 24 over $\mathbb{Z} / 4 \mathbb{Z}\}$ $\rightarrow\left\{\right.$ Virasoro frames $\left.V^{\natural}\right\}$

Theorem (Lam-Yamauchi (2008))
\{Virasoro frames of V^{\natural} \}
$\xrightarrow{\text { str }}\{$ binary triply even codes of length 48$\} \quad V^{\natural}=\bigoplus_{\alpha \in D} V^{\alpha}$

- Actually these mapping induce mappings of equivalence classes.
- What happens if we compose these two mappings?

Composition of the two mappings gives a mapping from codes to codes
$\underset{\left.\underset{\text { Virasoro frames of }}{ } V^{\natural}\right\}}{\text { difficult }} \quad \stackrel{\text { str }}{\rightarrow}\left\{\begin{array}{l}\text { binary } \\ \text { triply even codes } \\ \text { of length 48 }\end{array}\right\}$
\uparrow DMZ
$\left\{\begin{array}{l}\text { extremal type II codes } \\ \text { of length } 24 \\ \text { over } \mathbb{Z} / 4 \mathbb{Z}\end{array}\right\}$
There must be a easier description of the composition mapping.

Commutative Diagram

Lam-Yamauchi (2008): str $\circ \mathrm{DMZ}=\mathcal{D} \circ$ Res.
$\left\{\begin{array}{l}\left.\text { Virasoro frames of } V^{\natural}\right\} \\ \text { difficult }\end{array} \quad \xrightarrow{\text { str }}\left\{\begin{array}{l}\text { binary } \\ \text { triply even codes } \\ \text { of length } 48\end{array}\right\}\right.$
$\uparrow \mathrm{DMZ} \quad \uparrow \mathcal{D}$ (doubling)
$\left\{\begin{array}{l}\text { extremal type II codes } \\ \text { of length } 24 \\ \text { over } \mathbb{Z} / 4 \mathbb{Z}\end{array}\right\} \stackrel{\text { Res }}{ }\left\{\begin{array}{l}\text { binary } \\ \text { doubly even codes } \\ \text { of length } 24\end{array}\right\}$

$\operatorname{Res}(\mathcal{C})$ and \mathcal{D}

If \mathcal{C} is a code over $\mathbb{Z} / 4 \mathbb{Z}$, then its modulo 2 reduction is called the residue code and is denoted by

$$
\operatorname{Res}(\mathcal{C}) \subset(\mathbb{Z} / 2 \mathbb{Z})^{n}=\mathbb{F}_{2}^{n} .
$$

Let $C=\operatorname{Span}_{\mathbb{F}_{2}}(A)$ be the binary code of length n spanned by the row vectors of a $k \times n$ matrix A. The doubling of C is defined by

$$
\mathcal{D}(C)=\operatorname{Span}_{\mathbb{F}_{2}}\left[\begin{array}{cc}
A & A \\
\mathbf{1}_{n} & 0 \\
0 & \mathbf{1}_{n}
\end{array}\right],
$$

where $\mathbf{1}_{n}=(1,1, \ldots, 1)$.
If C is doubly even and $8 \mid n$, then $\mathcal{D}(C)$ is a triply even code of length $2 n$. In particular,
\{doubly even code of length 24$\} \xrightarrow{\mathcal{D}}$ \{triply even code of length 48$\}$

Commutative Diagram

$\left\{\right.$ Virasoro frames of $\left.V^{\natural}\right\}$ difficult $\stackrel{\text { str }}{\rightarrow}\{$

\uparrow DMZ
$\uparrow \mathcal{D}$ (doubling)
$\left\{\begin{array}{l}\begin{array}{l}\text { extremal type II codes } \\ \text { of length } 24 \\ \text { over } \mathbb{Z} / 4 \mathbb{Z}\end{array}\end{array}\right\} \xrightarrow{\text { Res }}\left\{\begin{array}{l}\text { binary } \\ \text { doubly even codes } \\ \text { of length } 24\end{array}\right\}$
Harada-Lam-M. (2010):
$\operatorname{str}^{-1}(\mathcal{D}(\{$ doubly even $\})) \stackrel{(D)}{=} \operatorname{str}^{-1}(\mathcal{D} \circ \operatorname{Res}(\{$ extremal type II $\}))$
$\stackrel{(\text { () }}{=} \operatorname{DMZ}(\{$ extremal type II\})
all coincide.

Pless-Sloane (1975) enumerated maximal (all have dimension
12) members of
\{binary doubly even codes of length 24 \}.
\uparrow DMZ
$\uparrow \mathcal{D}$ (doubling)
$\left\{\begin{array}{l}\begin{array}{l}\text { extremal type II codes } \\ \text { of length } 24 \\ \text { over } \mathbb{Z} / 4 \mathbb{Z}\end{array}\end{array}\right\} \xrightarrow{\text { Res }}\left\{\begin{array}{l}\text { binary } \\ \text { doubly even codes } \\ \text { of length } 24\end{array}\right\}$
Betsumiya-M. (2010) enumerated maximal (dimension $\{9,13,14,15\})$ members of
\{binary triply even codes of length 48 .

Theorem (Betsumiya-M., 2010)

Let D be a maximal binary triply even code of length 48 . Then

- \exists doubly even codes C_{1}, C_{2} of length 24 ,
- \exists linear isomorphism $f: C_{1} / R_{1} \rightarrow C_{2} / R_{2}$, where

$$
\begin{aligned}
R_{i}=\{ & \left\{\boldsymbol{x} \in\left(C_{i} * C_{i}\right)^{\perp} \mid \operatorname{wt}(\boldsymbol{x}) \equiv 0(\bmod 8)\right. \\
& \left.\operatorname{wt}(\boldsymbol{x} * \boldsymbol{y}) \equiv 0(\bmod 4)\left(\forall \boldsymbol{y} \in C_{i}\right)\right\} \subset C_{i} \quad(i=1,2),
\end{aligned}
$$

satisfying
$\boldsymbol{x}_{1} \in C_{1}, \boldsymbol{x}_{2}+R_{2} \in f\left(\boldsymbol{x}_{1}+R_{1}\right) \Longrightarrow \mathrm{wt}\left(\boldsymbol{x}_{1}\right) \equiv \mathrm{wt}\left(\boldsymbol{x}_{2}\right)(\bmod 8)$,
such that

$$
D \cong\left\{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right) \mid \boldsymbol{x}_{1} \in C_{1}, \boldsymbol{x}_{2}+R_{2} \in f\left(\boldsymbol{x}_{1}+R_{1}\right)\right\} .
$$

Remark Taking $C_{1}=C_{2}, f=$ identity gives $\mathcal{D}\left(C_{1}\right)$.

Theorem (Betsumiya-M., 2010)

Every maximal member of

$$
\left\{\begin{array}{l}
\text { binary triply even } \\
\text { code of length } 48
\end{array}\right\}
$$

is

- $\mathcal{D}(C)$ for some doubly even code C of length 24 , or
- decomposable (only two such codes, one of the form $\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right) \oplus \mathcal{D}\left(C_{3}\right)$, another of the form $\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right)$), or
- a code of dimension 9 obtained from the triangular graph T_{10} on $45=\left|S_{10}: S_{2} \times S_{8}\right|$ vertices.

Betsumiya created database of
\{binary triply even codes of length 48 \}.
http://www.st.hirosaki-u.ac.jp/~betsumi/triply-even/
$\underset{\left.\text { \{Virasoro frames of } V^{\natural}\right\}}{\text { dificult }} \quad \stackrel{\text { str }}{\rightarrow}\left\{\begin{array}{l}\text { binary } \\ \text { triply even codes } \\ \text { of length } 48\end{array}\right\}$
\uparrow DMZ
$\uparrow \mathcal{D}$ (doubling)
$\left\{\begin{array}{l}\text { extremal type II codes } \\ \text { of length } 24 \\ \text { over } \mathbb{Z} / 4 \mathbb{Z}\end{array}\right\} \stackrel{\text { Res }}{\longrightarrow}\left\{\begin{array}{l}\text { binary } \\ \text { doubly even codes } \\ \text { of length } 24\end{array}\right\}$

For each binary doubly even C, classify \mathcal{C} such that
$\operatorname{Res} \mathcal{C}=C$. The map Res is neither injective nor surjective.

- Calderbank-Sloane (with Young) (1997): $\operatorname{dim} C=12 \Longrightarrow C \in$ image of Res.
- Rains (1999) determined the preimage for $C=$ Golay.
- Dong-Griess-Höhn (1998) found a code C of dimension 6 in the image of Res, and Harada-Lam-M. (2010) showed its preimage is unique.
- The image was determined by Harada-Lam-M. (2010), but not preimages.

Theorem (Rains, 1999)
Given a doubly even code C of length n, dimension $k, \ni \mathbf{1}$.

- the set of all type II \mathbb{Z}_{4}-codes \mathcal{C} with $\operatorname{Res}(\mathcal{C})=C$ has a structure as an affine space of dimension
$(k-2)(k+1) / 2$ over \mathbb{F}_{2} (due to Gaborit, 1996),
- the group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}(C)$ acts as an affine transformation group,
- two codes $\mathcal{C}, \mathcal{C}^{\prime}$ are equivalent if and only if they are in the same orbit under this group.

Enumeration by Betty-M. (2010)

The number of doubly even codes $C \subset \mathbb{F}_{2}^{24}$ containing 1 and C^{\perp} has minimum weight ≥ 4, and the number of extremal type II codes $\mathcal{C} \subset(\mathbb{Z} / 4 \mathbb{Z})^{24}$ with $\operatorname{Res} \mathcal{C}=C$.

dim	6	7	8	9	10	11	12
doubly even	1	7	32	60	49	21	9
extremal type II	1	5	31	178	764	1886	1903
	1						13

$\left\{\begin{array}{l}\text { extremal type II codes } \\ \text { of length } 24 \\ \text { over } \mathbb{Z} / 4 \mathbb{Z}\end{array}\right\} \stackrel{\text { Res }}{ }\left\{\begin{array}{l}\text { binary } \\ \text { doubly even codes } \\ \text { of length } 24\end{array}\right\}$

