Variations of two results of Jungnickel-Tonchev on projective spaces

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences

Tohoku University
August 15, 2011 GAC5
Oisterwijk, The Netherlands

Two results of Jungnickel-Tonchev $(1999,2009)$

- $\operatorname{PG}(d, q)$
(1999) Construction of a balanced generalized weighing matrix of order $\frac{q^{d+1}-1}{q-1}$, weight q^{d} \rightarrow weighing matrix of order $2 \frac{q^{d+1}-1}{q-1}$, weight q^{d} if $q \equiv 1$ $(\bmod 4)$
- $\operatorname{PG}(2 e, q)$
(2009) Distorting blocks of $2-\left(\frac{q^{2 e+1}-1}{q-1}, \frac{q^{e+1}-1}{q-1},\left[\begin{array}{c}2 e-1 \\ e-1\end{array}\right]\right)$ design \rightarrow twisted Grassmann graph of E. van Dam and J. Koolen (joint work with V. Tonchev).

Weighing matrices

Definition

A weighing matrix W of order n and weight k is an $n \times n$ matrix W with entries $1,-1,0$ such that $W W^{T}=k I$.

- A Hadamard matrix is a $\mathrm{W}(n, n)$.
- We write " W is $\mathrm{W}(n, k)$ " for short.
- $\mathrm{W}\left(n_{1}, k\right) \oplus \mathrm{W}\left(n_{2}, k\right)=\mathrm{W}\left(n_{1}+n_{2}, k\right)$.

Chan-Rodger-Seberry (1985) classified weighing matrices of small n or k.
Harada-M. (to appear) extended classification, pointed out errors.
Notably, a W $(12,5)$ was missing, which is a signed incidence matrix of a semibiplane.

Balanced generalized weighing matrices

- G : a finite group (multiplicatively written), $\bar{G}=G \cup\{0\}$.

An $n \times n$ matrix $B=\left(b_{i j}\right)$ with entries from \bar{G} is a balanced generalized weighing matrix (written $\operatorname{BGW}(n, k, \mu)$) over G, if

- each row of B contains exactly k nonzero entries,
- for any $i \neq i^{\prime}$, the multiset

$$
\left\{g_{i j} g_{i^{\prime} j}^{-1} \mid 1 \leq j \leq n, g_{i j} \neq 0, g_{i^{\prime} j} \neq 0\right\}
$$

represents every element of G exactly $\frac{\mu}{|G|}$ times.
If $G=\{ \pm 1\}$, then $\operatorname{BGW}(n, k, \mu) \Longrightarrow \mathrm{W}(n, k)$
If $G=\{1\}$, then W is just an incidence matrix of a symmetric $2-(n, k, \mu)$ design.

$\operatorname{PG}(d, q)$

Jungnickel-Tonchev (1999) (also Jungnickel (1982)).

$$
\begin{gathered}
\exists \mathrm{BGW}\left(\frac{q^{d+1}-1}{q-1}, \quad q^{d}, \quad q^{d}-q^{d-1}\right) \text { over } \operatorname{GF}(q)^{\times} . \\
\uparrow \uparrow \underset{\uparrow}{\uparrow} \uparrow \uparrow \begin{array}{c}
\text { Complements of intersection } \\
\text { hyperplanes }
\end{array} \\
|\mathrm{PG}(d, q)|
\end{gathered}
$$

$G \rightarrow 1$: incidence matrix of the symmetric design whose blocks are complements of hyperplanes.

Homomorphic image

- B: $\operatorname{BGW}(n, k, \mu)$ over G,
- $\chi: G \rightarrow H$: surjective homo. Define $\chi(0)=0$.

Then $\chi(B)$: $\operatorname{BGW}(n, k, \mu)$ over H. In particular,

- $G \rightarrow\{ \pm 1\}$ surjective $\Longrightarrow \mathrm{BGW}(n, k, \mu) \rightarrow \mathrm{W}(n, k)$.
- If $q \equiv 1(\bmod 4)$, then $\operatorname{GF}(q)^{\times} \rightarrow\{ \pm 1, \pm i\}$ (surjective).

$$
\exists \operatorname{BGW}\left(\frac{q^{d+1}-1}{q-1}, q^{d}, q^{d}-q^{d-1}\right) \text { over }\{ \pm 1, \pm i\}
$$

Doubling

Lemma

$B=X+i Y: \operatorname{BGW}(n, k, \mu)$ over $\{ \pm 1, \pm i\}$, where X and Y are ($0, \pm 1$)-matrices. Then

$$
W=\left[\begin{array}{cc}
X & Y \\
-Y & X
\end{array}\right]
$$

is a $\mathrm{W}(2 n, k)$.

Proof.

$\ln M_{n}(\mathbb{C}), B B^{*}=k I \Longrightarrow W W^{T}=k I$.
Thus

$$
\exists \mathrm{W}\left(2 \frac{q^{d+1}-1}{q-1}, q^{d}\right) \quad \text { if } q \equiv 1 \quad(\bmod 4) .
$$

This gives the $\mathrm{W}(12,5)$ missed by Chan-Rodger-Seberry.

Distorting blocks of $\mathrm{PG}_{e}(2 e, q)$

- $V=V(2 e+1, q), \mathrm{PG}(2 e, q)=\left[\begin{array}{l}V \\ 1\end{array}\right]$,
- Geometric design $\mathrm{PG}_{e}(2 e, q)$ has blocks $\left[\begin{array}{c}V \\ e+1\end{array}\right]$.

$$
2-\left(\frac{q^{2 e+1}-1}{q-1}, \frac{q^{e+1}-1}{q-1},\left[\begin{array}{c}
2 e-1 \\
e-1
\end{array}\right]\right) \text { design. }
$$

Distorting (Jungnickel-Tonchev, 2009): fix $H \in\left[\begin{array}{c}V \\ 2 e\end{array}\right]$ and a polarity σ on H (σ permutes $\left[\begin{array}{c}H \\ e\end{array}\right]$).
For $W \in\left[\begin{array}{c}V \\ e+1\end{array}\right]$ with $W \cap H \in\left[\begin{array}{c}H \\ e\end{array}\right]$, replace $W \cap H$ by $\sigma(W \cap H)$.
\Longrightarrow 2-design with the same parameters but not isomorphic as the geometric design

The Grassmann graph $J_{q}(2 e+1, e+1)$

Let $V=V(n, q)$. The Grassmann graph $J_{q}(n, d)$ has vertex set $=\left[\begin{array}{l}V \\ d\end{array}\right]$. The adjacency is defined as follows:

$$
W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d-1
$$

Then $J_{q}(n, d)$ is a distance-transitive graph, with intersection array

$$
b_{i}=q^{2 i+1} \frac{\left(q^{d-i}-1\right)\left(q^{n-d-i}-1\right)}{(q-1)^{2}}, \quad c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2}
$$

The intersection array

$\Gamma_{i}(x)=\{$ vertices at distance i from $x\} \ni y$. $c_{i}=\left|\Gamma_{i-1}(x) \cap \Gamma_{1}(y)\right| . b_{i}=\left|\Gamma_{i+1}(x) \cap \Gamma_{1}(y)\right|$.

The Grassmann graph $J_{q}(2 e+1, e+1)$

Let $V=V(n, q)$. The Grassmann graph $J_{q}(n, d)$ has vertex set $=\left[\begin{array}{l}V \\ d\end{array}\right]$. The adjacency is defined as follows:

$$
W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d-1
$$

Then $J_{q}(n, d)$ is a distance-transitive graph, with intersection array

$$
b_{i}=q^{2 i+1} \frac{\left(q^{d-i}-1\right)\left(q^{n-d-i}-1\right)}{(q-1)^{2}}, \quad c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2}
$$

Characterization (Metsch, 1995): $J_{q}(n, d)$ is characterized by the intersection array, in many cases, but $(n, d)=(2 e+1, e+1)$ was left open.

Twisted Grassmann graph (Van Dam-Koolen, 2005)

$V=V(2 e+1, q), H \in\left[\begin{array}{c}V \\ 2 e\end{array}\right]$. Define

$$
\begin{aligned}
\mathcal{A} & =\left\{\left.W \in\left[\begin{array}{c}
V \\
e+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
\mathcal{B} & =\left[\begin{array}{c}
H \\
e-1
\end{array}\right]
\end{aligned}
$$

The adjacency on $\mathcal{A} \cup \mathcal{B}$ is defined as follows:
$W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}-\frac{1}{2}\left(\operatorname{dim} W_{1}+\operatorname{dim} W_{2}\right)+1=0$.
This graph has the same intersection array as the Grassmann graph $J_{q}(2 e+1, e+1)$ with vertex set $\left[\begin{array}{c}V \\ e+1\end{array}\right]$.

Blocks of the distorted design (JungnickelTonchev, 2009)

Let σ be a polarity of H.
Points are $\mathrm{PG}(2 e, q)$.
Blocks are

$$
\begin{aligned}
\mathcal{A}^{\prime} & =\left\{(W \backslash H) \cup \sigma(W \cap H) \left\lvert\, W \in\left[\begin{array}{c}
V \\
e+1
\end{array}\right]\right., W \not \subset H\right\} \\
\mathcal{B}^{\prime} & =\left[\begin{array}{c}
H \\
e+1
\end{array}\right]
\end{aligned}
$$

This design has the same parameters, q-rank, and block intersection numbers as the geometric design whose blocks are $\left[\begin{array}{c}V \\ e+1\end{array}\right]$.

The isomorphism

$$
\begin{aligned}
\mathcal{A}=\left\{\left.W \in\left[\begin{array}{c}
V \\
e+1
\end{array}\right] \right\rvert\, W \not \subset H\right\}, & \mathcal{B}=\left[\begin{array}{c}
H \\
e-1
\end{array}\right] \\
\mathcal{A}^{\prime}=\{(W \backslash H) \cup \sigma(W \cap H) \mid W \in \mathcal{A}\}, & \mathcal{B}^{\prime}=\left[\begin{array}{c}
H \\
e+1
\end{array}\right] .
\end{aligned}
$$

Lemma

Define $f: \mathcal{A} \cup \mathcal{B} \rightarrow \mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}$ by

$$
f(W)= \begin{cases}(W \backslash H) \cup \sigma(W \cap H) & \text { if } W \in \mathcal{A} \\ \sigma(W) & \text { if } W \in \mathcal{B}\end{cases}
$$

Then for $W_{1}, W_{2} \in \mathcal{A} \cup \mathcal{B}$, the blocks $f\left(W_{1}\right)$ and $f\left(W_{2}\right)$ meet at

$$
\left[\operatorname{dim} W_{1} \cap W_{2}-\frac{\operatorname{dim} W_{1}+\operatorname{dim} W_{2}}{2}+1+e\right] \text { points. }
$$

The twisted Grassmann graph is the block graph

Theorem (M.-Tonchev)

The twisted Grassmann graph, is isomorphic to the block graph of the distorted design $\left(\mathrm{PG}(2 e, q), \mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}\right)$, where two blocks are adjacent iff they have the largest possible intersection: $\left[\begin{array}{l}e \\ 1\end{array}\right]$.

Corollary

The automorphism group of the distorted design is the same as that of the twisted Grassmann graph, which is the stabilizer of H in $\operatorname{P\Gamma L}(2 e+1, q)$.

Proof.
By Fujisaki-Koolen-Tagami (2006).

