Variations of two results of Jungnickel–Tonchev on projective spaces

Akihiro Munemasa1

1Graduate School of Information Sciences
Tohoku University

August 15, 2011
GAC5
Oisterwijk, The Netherlands
Two results of Jungnickel–Tonchev (1999, 2009)

- **PG(d, q)**

 (1999) Construction of a balanced generalized weighing matrix of order \(\frac{q^{d+1}-1}{q-1}\), weight \(q^d\)

 \[\rightarrow\] weighing matrix of order \(2\frac{q^{d+1}-1}{q-1}\), weight \(q^d\) if \(q \equiv 1 \pmod{4}\)

- **PG(2e, q)**

 (2009) Distorting blocks of 2-(\(\frac{q^{2e+1}-1}{q-1}\), \(\frac{q^{e+1}-1}{q-1}\), \([2e-1]\)) design

 \[\rightarrow\] twisted Grassmann graph of E. van Dam and J. Koolen (joint work with V. Tonchev).
Weighing matrices

Definition

A **weighing matrix** W of order n and weight k is an $n \times n$ matrix W with entries $1, -1, 0$ such that $WW^T = kI$.

- A Hadamard matrix is a $W(n, n)$.
- We write “W is $W(n, k)$” for short.
- $W(n_1, k) \oplus W(n_2, k) = W(n_1 + n_2, k)$.

Chan–Rodger–Seberry (1985) classified weighing matrices of small n or k.
Notably, a $W(12, 5)$ was missing, which is a signed incidence matrix of a semibiplane.
Balanced generalized weighing matrices

- **G**: a finite group (multiplicatively written), $\bar{G} = G \cup \{0\}$.

An $n \times n$ matrix $B = (b_{ij})$ with entries from \bar{G} is a balanced generalized weighing matrix (written $\text{BGW}(n, k, \mu)$) over G, if

- each row of B contains exactly k nonzero entries,
- for any $i \neq i'$, the multiset

$$\{g_{ij}g_{i'j}^{-1} \mid 1 \leq j \leq n, g_{ij} \neq 0, g_{i'j} \neq 0\}$$

represents every element of G exactly $\frac{\mu}{|G|}$ times.

If $G = \{\pm 1\}$, then $\text{BGW}(n, k, \mu) \iff \text{W}(n, k)$

If $G = \{1\}$, then W is just an incidence matrix of a symmetric 2-(n, k, μ) design.
Jungnickel–Tonchev (1999) (also Jungnickel (1982)).

\[\exists \text{BGW}(\frac{q^{d+1} - 1}{q - 1}, q^d, q^d - q^{d-1}) \text{ over } \text{GF}(q)^\times. \]

Complements of intersection hyperplanes

\[G \to 1: \text{incidence matrix of the symmetric design whose blocks are complements of hyperplanes.} \]
- B: $\text{BGW}(n, k, \mu)$ over G,

- $\chi : G \to H$: surjective homo. Define $\chi(0) = 0$.

Then $\chi(B)$: $\text{BGW}(n, k, \mu)$ over H. In particular,

- $G \to \{\pm 1\}$ surjective $\implies \text{BGW}(n, k, \mu) \to W(n, k)$.

- If $q \equiv 1 \pmod{4}$, then $\text{GF}(q)^\times \to \{\pm 1, \pm i\}$ (surjective).

$$\exists \text{BGW}\left(\frac{q^{d+1} - 1}{q - 1}, q^d, q^d - q^{d-1}\right) \text{ over } \{\pm 1, \pm i\}$$
Lemma

\[B = X + iY: \text{BGW}(n, k, \mu) \text{ over } \{\pm1, \pm i\}, \text{ where } X \text{ and } Y \text{ are } (0, \pm1)\text{-matrices. Then} \]

\[W = \begin{bmatrix} X & Y \\ -Y & X \end{bmatrix} \]

is a \(W(2n, k) \).

Proof.

In \(M_n(\mathbb{C}) \), \(BB^* = kI \implies WW^T = kI \).

Thus

\[\exists W(2 \frac{q^{d+1} - 1}{q - 1}, q^d) \text{ if } q \equiv 1 \pmod{4}. \]

This gives the \(W(12, 5) \) missed by Chan–Rodger–Seberry.
Distorting blocks of $\text{PG}_e(2e, q)$

- $V = V(2e + 1, q)$, $\text{PG}(2e, q) = \binom{V}{1}$,
- Geometric design $\text{PG}_e(2e, q)$ has blocks $\binom{V}{e+1}$.

$$2\left(\frac{q^{2e+1} - 1}{q - 1}, \frac{q^{e+1} - 1}{q - 1}, \binom{2e - 1}{e - 1}\right)$$

Distorting (Jungnickel–Tonchev, 2009): fix $H \in \binom{V}{2e}$ and a polarity σ on H (σ permutes $\binom{H}{e}$).

For $W \in \binom{V}{e+1}$ with $W \cap H \in \binom{H}{e}$, replace $W \cap H$ by $\sigma(W \cap H)$.

\Rightarrow 2-design with the same parameters but not isomorphic as the geometric design.
Let $V = V(n, q)$. The Grassmann graph $J_q(n, d)$ has vertex set $= \binom{V}{d}$. The adjacency is defined as follows:

$$W_1 \sim W_2 \iff \dim W_1 \cap W_2 = d - 1.$$

Then $J_q(n, d)$ is a distance-transitive graph, with intersection array

$$b_i = q^{2i+1} \frac{(q^{d-i} - 1)(q^{n-d-i} - 1)}{(q - 1)^2}, \quad c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}^2.$$
The intersection array

\[\Gamma_i(x) = \{ \text{vertices at distance } i \text{ from } x \} \ni y. \]

\[c_i = |\Gamma_{i-1}(x) \cap \Gamma_1(y)|. \quad b_i = |\Gamma_{i+1}(x) \cap \Gamma_1(y)|. \]
Let $V = V(n, q)$. The Grassmann graph $J_q(n, d)$ has vertex set $= \binom{V}{d}$. The adjacency is defined as follows:

$$W_1 \sim W_2 \iff \dim W_1 \cap W_2 = d - 1.$$

Then $J_q(n, d)$ is a distance-transitive graph, with intersection array

$$b_i = q^{2i+1} \frac{(q^{d-i} - 1)(q^{n-d-i} - 1)}{(q - 1)^2}, \quad c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}^2.$$

Characterization (Metsch, 1995): $J_q(n, d)$ is characterized by the intersection array, in many cases, but $(n, d) = (2e + 1, e + 1)$ was left open.
Twisted Grassmann graph (Van Dam–Koolen, 2005)

\[V = V(2e + 1, q), \ H \in \binom{V}{2e}. \]

Define

\[\mathcal{A} = \{ W \in \binom{V}{e + 1} | W \not\subset H \}, \]

\[\mathcal{B} = \begin{bmatrix} H \\ e - 1 \end{bmatrix}. \]

The adjacency on \(\mathcal{A} \cup \mathcal{B} \) is defined as follows:

\[W_1 \sim W_2 \iff \dim W_1 \cap W_2 - \frac{1}{2}(\dim W_1 + \dim W_2) + 1 = 0. \]

This graph has the same intersection array as the Grassmann graph \(J_q(2e + 1, e + 1) \) with vertex set \(\binom{V}{e+1} \).
Let σ be a polarity of H. Points are $\text{PG}(2e, q)$. Blocks are

$$\mathcal{A}' = \{(W \setminus H) \cup \sigma(W \cap H) \mid W \in \begin{bmatrix} V \\ e+1 \end{bmatrix}, \ W \not\subset H\},$$

$$\mathcal{B}' = \begin{bmatrix} H \\ e+1 \end{bmatrix}.$$

This design has the same parameters, q-rank, and block intersection numbers as the geometric design whose blocks are $\begin{bmatrix} V \\ e+1 \end{bmatrix}$.
The isomorphism

\[A = \left\{ W \in \begin{bmatrix} V \\ e+1 \end{bmatrix} \mid W \not\subset H \right\} , \quad \mathcal{B} = \begin{bmatrix} H \\ e-1 \end{bmatrix} , \]

\[A' = \left\{ (W \setminus H) \cup \sigma(W \cap H) \mid W \in A \right\} , \quad \mathcal{B}' = \begin{bmatrix} H \\ e+1 \end{bmatrix} . \]

Lemma

Define \(f : A \cup \mathcal{B} \to A' \cup \mathcal{B}' \) by

\[f(W) = \begin{cases} (W \setminus H) \cup \sigma(W \cap H) & \text{if } W \in A, \\ \sigma(W) & \text{if } W \in \mathcal{B}. \end{cases} \]

Then for \(W_1, W_2 \in A \cup \mathcal{B} \), the blocks \(f(W_1) \) and \(f(W_2) \) meet at

\[\left\lfloor \dim W_1 \cap W_2 - \frac{\dim W_1 + \dim W_2}{2} + 1 + e \right\rfloor \text{ points.} \]
The twisted Grassmann graph is the block graph

Theorem (M.–Tonchev)

The twisted Grassmann graph, is isomorphic to the block graph of the distorted design \((\text{PG}(2e, q), \mathcal{A}' \cup \mathcal{B}')\), where two blocks are adjacent iff they have the largest possible intersection: \(\left[\begin{array}{c} e \\ 1 \end{array}\right]\).

Corollary

The automorphism group of the distorted design is the same as that of the twisted Grassmann graph, which is the stabilizer of \(H\) in \(\text{PGL}(2e + 1, q)\).

Proof.