Variations of two results of Jungnickel–Tonchev on projective spaces

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

August 15, 2011 GAC5 Oisterwijk, The Netherlands

Two results of Jungnickel-Tonchev (1999, 2009)

• $\operatorname{PG}(d,q)$

(1999) Construction of a balanced generalized weighing matrix of order ^{q^{d+1}-1}/_{q-1}, weight q^d
→ weighing matrix of order 2^{q^{d+1}-1}/_{q-1}, weight q^d if q ≡ 1 (mod 4)

• PG(2e,q)

(2009) Distorting blocks of $2 - (\frac{q^{2e+1}-1}{q-1}, \frac{q^{e+1}-1}{q-1}, \begin{bmatrix} 2e-1\\e-1 \end{bmatrix})$ design \rightarrow twisted Grassmann graph of E. van Dam and J. Koolen (joint work with V. Tonchev).

Weighing matrices

Definition

A weighing matrix W of order n and weight k is an $n \times n$ matrix W with entries 1, -1, 0 such that $WW^T = kI$.

- A Hadamard matrix is a W(n, n).
- We write "W is W(n, k)" for short.

•
$$W(n_1, k) \oplus W(n_2, k) = W(n_1 + n_2, k).$$

Chan–Rodger–Seberry (1985) classified weighing matrices of small n or k.

Harada–M. (to appear) extended classification, pointed out errors.

Notably, a $\mathrm{W}(12,5)$ was missing, which is a signed incidence matrix of a semibiplane.

Balanced generalized weighing matrices

• G: a finite group (multiplicatively written), $\bar{G} = G \cup \{0\}$. An $n \times n$ matrix $B = (b_{ij})$ with entries from \bar{G} is a balanced generalized weighing matrix (written $BGW(n, k, \mu)$) over G, if

- $\bullet\,$ each row of B contains exactly k nonzero entries,
- for any $i \neq i'$, the multiset

$$\{g_{ij}g_{i'j}^{-1} \mid 1 \le j \le n, \ g_{ij} \ne 0, \ g_{i'j} \ne 0\}$$

represents every element of G exactly $\frac{\mu}{|G|}$ times.

If $G = \{\pm 1\}$, then $\operatorname{BGW}(n, k, \mu) \rightleftharpoons \operatorname{W}(n, k)$ If $G = \{1\}$, then W is just an incidence matrix of a symmetric $2 \cdot (n, k, \mu)$ design. Jungnickel–Tonchev (1999) (also Jungnickel (1982)).

 $G \rightarrow 1$: incidence matrix of the symmetric design whose blocks are complements of hyperplanes.

- $B: \operatorname{BGW}(n,k,\mu)$ over G,
- $\chi: G \to H$: surjective homo. Define $\chi(0) = 0$.

Then $\chi(B)$: BGW (n, k, μ) over H. In particular,

- $G \to \{\pm 1\}$ surjective $\implies \operatorname{BGW}(n,k,\mu) \to \operatorname{W}(n,k).$
- If $q \equiv 1 \pmod{4}$, then $\operatorname{GF}(q)^{\times} \to \{\pm 1, \pm i\}$ (surjective). $a^{d+1} = 1$

$$\exists \operatorname{BGW}(\frac{q^{-1}}{q-1}, q^d, q^d - q^{d-1}) \text{ over } \{\pm 1, \pm i\}$$

Doubling

Lemma

 $B=X+iY{:}~{\rm BGW}(n,k,\mu)$ over $\{\pm 1,\pm i\},$ where X and Y are $(0,\pm 1){\rm -matrices}.$ Then

$$W = \begin{bmatrix} X & Y \\ -Y & X \end{bmatrix}$$

is a W(2n, k).

Proof.

In
$$M_n(\mathbb{C})$$
, $BB^* = kI \implies WW^T = kI$.

Thus

$$\exists \operatorname{W}(2\frac{q^{d+1}-1}{q-1},q^d) \quad \text{if } q \equiv 1 \pmod{4}.$$

This gives the $\mathrm{W}(12,5)$ missed by Chan–Rodger–Seberry.

Distorting blocks of $PG_e(2e, q)$

- V = V(2e+1,q), $PG(2e,q) = \begin{bmatrix} V \\ 1 \end{bmatrix}$,
- Geometric design $PG_e(2e, q)$ has blocks $\begin{bmatrix} V\\ e+1 \end{bmatrix}$.

$$2 \text{-} (\frac{q^{2e+1}-1}{q-1}, \frac{q^{e+1}-1}{q-1}, \begin{bmatrix} 2e-1 \\ e-1 \end{bmatrix}) \text{ design}.$$

Distorting (Jungnickel–Tonchev, 2009): fix $H \in {V \choose 2e}$ and a polarity σ on H (σ permutes ${H \choose e}$). For $W \in {V \choose e+1}$ with $W \cap H \in {H \choose e}$, replace $W \cap H$ by $\sigma(W \cap H)$.

 \implies 2-design with the same parameters but not isomorphic as the geometric design

The Grassmann graph $J_q(2e+1, e+1)$

Let V = V(n, q). The Grassmann graph $J_q(n, d)$ has vertex set $= \begin{bmatrix} V \\ d \end{bmatrix}$. The adjacency is defined as follows:

$$W_1 \sim W_2 \iff \dim W_1 \cap W_2 = d - 1.$$

Then $J_q(n, d)$ is a distance-transitive graph, with intersection array

$$b_i = q^{2i+1} \frac{(q^{d-i}-1)(q^{n-d-i}-1)}{(q-1)^2}, \qquad c_i = \begin{bmatrix} i\\1 \end{bmatrix}^2.$$

The intersection array

 $\Gamma_i(x) = \{ \text{vertices at distance } i \text{ from } x \} \ni y. \\ c_i = |\Gamma_{i-1}(x) \cap \Gamma_1(y)|. \ b_i = |\Gamma_{i+1}(x) \cap \Gamma_1(y)|.$

The Grassmann graph $J_q(2e+1, e+1)$

Let V = V(n,q). The Grassmann graph $J_q(n,d)$ has vertex set $= \begin{bmatrix} V \\ d \end{bmatrix}$. The adjacency is defined as follows:

$$W_1 \sim W_2 \iff \dim W_1 \cap W_2 = d - 1.$$

Then $J_q(n,d)$ is a distance-transitive graph, with intersection array

$$b_i = q^{2i+1} \frac{(q^{d-i} - 1)(q^{n-d-i} - 1)}{(q-1)^2}, \qquad c_i = \begin{bmatrix} i\\1 \end{bmatrix}^2.$$

Characterization (Metsch, 1995): $J_q(n,d)$ is characterized by the intersection array, in many cases, but (n,d) = (2e+1, e+1) was left open.

Twisted Grassmann graph (Van Dam–Koolen, 2005)

$$V(2e+1,q), H \in \begin{bmatrix} V\\ 2e \end{bmatrix}. \text{ Define}$$
$$\mathcal{A} = \{W \in \begin{bmatrix} V\\ e+1 \end{bmatrix} \mid W \not\subset H\},$$
$$\mathcal{B} = \begin{bmatrix} H\\ e-1 \end{bmatrix}.$$

The adjacency on $\mathcal{A} \cup \mathcal{B}$ is defined as follows:

V =

$$W_1 \sim W_2 \iff \dim W_1 \cap W_2 - \frac{1}{2} (\dim W_1 + \dim W_2) + 1 = 0.$$

This graph has the same intersection array as the Grassmann graph $J_q(2e+1, e+1)$ with vertex set $\begin{bmatrix} V\\ e+1 \end{bmatrix}$.

Blocks of the distorted design (Jungnickel-Tonchev, 2009)

Let σ be a polarity of H. Points are PG(2e,q). Blocks are

$$\mathcal{A}' = \{ (W \setminus H) \cup \sigma(W \cap H) \mid W \in \begin{bmatrix} V \\ e+1 \end{bmatrix}, \ W \not\subset H \},$$
$$\mathcal{B}' = \begin{bmatrix} H \\ e+1 \end{bmatrix}.$$

This design has the same parameters, q-rank, and block intersection numbers as the geometric design whose blocks are $\begin{bmatrix} V \\ e+1 \end{bmatrix}$.

The isomorphism

$$\mathcal{A} = \{ W \in \begin{bmatrix} V \\ e+1 \end{bmatrix} \mid W \not\subset H \}, \qquad \mathcal{B} = \begin{bmatrix} H \\ e-1 \end{bmatrix}, \\ \mathcal{A}' = \{ (W \setminus H) \cup \sigma(W \cap H) \mid W \in \mathcal{A} \}, \quad \mathcal{B}' = \begin{bmatrix} H \\ e+1 \end{bmatrix}.$$

Lemma

Define $f: \mathcal{A} \cup \mathcal{B} \to \mathcal{A}' \cup \mathcal{B}'$ by

$$f(W) = \begin{cases} (W \setminus H) \cup \sigma(W \cap H) & \text{if } W \in \mathcal{A}, \\ \sigma(W) & \text{if } W \in \mathcal{B}. \end{cases}$$

Then for $W_1, W_2 \in \mathcal{A} \cup \mathcal{B}$, the blocks $f(W_1)$ and $f(W_2)$ meet

at

$$\frac{\dim W_1 \cap W_2 - \frac{\dim W_1 + \dim W_2}{2} + 1}{1} + e \right] \text{ points.}$$

The twisted Grassmann graph is the block graph

Theorem (M.–Tonchev)

The twisted Grassmann graph, is isomorphic to the block graph of the distorted design $(PG(2e, q), \mathcal{A}' \cup \mathcal{B}')$, where two blocks are adjacent iff they have the largest possible intersection: $\begin{bmatrix} e \\ 1 \end{bmatrix}$.

Corollary

The automorphism group of the distorted design is the same as that of the twisted Grassmann graph, which is the stabilizer of H in $P\Gamma L(2e + 1, q)$.

Proof.

By Fujisaki-Koolen-Tagami (2006).